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Metabolic syndrome (MetS) is characterized by hyperglycemia, hypertension,

dyslipidemia and abdominal obesity. Patients with MetS or other metabolic disorders are

more susceptible to cancer development and recurrence and have a worse long-term

prognosis. Moreover, the metabolic reprogramming observed in cancer cells has also

been described as one of the new hallmarks of cancer. Thus, aberrant metabolism has

been proposed as an important risk factor for cancer. Chronic inflammation, reactive

oxygen species (ROS), and oncogenic signaling pathways are considered as main

potential triggers. Considering the strong association between metabolism and cancer,

metabolism-modulating drugs, including metformin and statins, as well as adopting a

healthy lifestyle, have been extensively investigated as strategies to combat cancer.

Furthermore, strategies that interfere with the metabolic rewiring of cells may also have

potent anti-cancer effects. In this article, we provide a comprehensive review of current

knowledge on the relationship between aberrant metabolism and cancer and discuss

the potential use of metabolism-targeting strategy for the treatment of cancer.
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INTRODUCTION

Metabolic Syndrome (MetS) is a constellation of metabolic risk factors and a significant cause of
morbidity andmortality. The fivemain components ofMetS are abdominal obesity, hyperglycemia,
high blood pressure, hypertriglyceridemia, and low high-density lipoprotein (HDL)-cholesterol
levels (1, 2). Although the reported prevalence ofMetS varies among different studies, its prevalence
is increasing at an alarming rate worldwide.In Western countries, one in five adults are diagnosed
with MetS (3). Cancer is the leading cause of death and, despite advances in cancer prevention, its
incidence remains exceptionally high. Given the high prevalence of metabolic disorders and cancer,
as well as the fact that many patients suffer from both, the potential association between MetS and
cancer has been extensively investigated.

Several studies have suggested that people who suffer from MetS have higher chances of
developing cancer; the rate of cancer recurrence and mortality are also higher. A recent study
has shown that people diagnosed with MetS have a 33% higher cancer mortality rate compared to
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patients who have no metabolic disorders (4). Furthermore,
the number of MetS components was directly proportional
to the cancer-related mortality rate (4). Among the MetS
components, obesity and hyperglycemia have been suggested
as the determinants of tumor-associated clinicopathology.
Furthermore, mounting evidence highlights the impact of
certain metabolic disorders on the risk for several types
of cancer, including colorectal, prostate, pancreatic, renal,
liver, post-menopausal breast, and endometrial cancer (5–8).
Moreover, malignant cells acquire changes in anabolic and
catabolic pathways to meet their high metabolic and energy
demands, a phenomenon known as metabolic reprogramming
(9). Importantly, metabolic reprogramming has emerged as a
hallmark of cancer and has been shown to be involved in
cancer initiation, progression, and metastasis, as well as the
survival of cancer cells and the development of resistance to
antitumor therapies.

The identification of metabolic reprogramming andmetabolic
syndrome as important regulators of cancer development and
progression has provided a rationale for the development
of metabolism-targeting therapies as a promising therapeutic
approach for cancer. Herein, we provide a comprehensive review
of the current understanding related to the association between
metabolism and cancer, the potential underlying mechanisms,
and emerging metabolism-targeting anticancer therapies.

CANCER CELL METABOLIC
REPROGRAMMING

Rewiring of Cancer Cell Metabolism
The rapidly dividing cancer cells have high demands for energy
and nutrients to meet their high metabolic needs. Consequently,
the cellular metabolism undergoes a rewiring during malignant
transformation. Importantly, cancer cells switch from oxidative
phosphorylation to aerobic glycolysis to generate ATP (adenosine
triphosphate), a phenomenon commonly referred to as the
Warburg effect (10). Several mechanisms have been identified
to mediate the metabolic rewiring of cancer cells. Genome
instability play a vital part in the alternation of energymetabolism
(11). The aberrant activation of certain oncogenes such as K-ras
(12), MYC (13), mTOR (14), and P53 (15), have been identified
as cell-autonomous mechanisms regulating various aspects of
the Warburg effect. Somatic mutations in the mitochondrial
genome (mtDNA) or changes in the mtDNA content leading

Abbreviations: MetS, metabolic syndrome; ROS, reactive oxygen species;
ATP, adenosine triphosphate; TRIM59, tripartite motif-containing59; PI3K,
phosphatidylinositol 3-kinase; mtDNA, mitochondrial genome; TAM, tumor-
associated macrophages; MG, methylglyoxal; GLUT1:glucose-transporter1; HK2,
hexokinase 2; GLS1, glutaminase 1; MMPs, matrix-metalloproteinases; ECM,
extracellular matrix; EMT, epithelial to mesenchymal transition; GDH1, glutamate
dehydrogenase1; FASN, fattyacid synthase; ACLY, ATP-citrate lyase; TNF-α, tumor
necrosis factor-alpha; IL, interleukin; NF-κB, nuclear factor kappa B; TME, tumor
microenvironment; NADPH, nicotinamide adenine dinucleotide phosphate; CSC,
cancer stem cell; MAPK,Mitogen-activated protein kinase; CRC, colorectal cancer;
PFK-1, phosphofructokinase-1; HMG-CoA, 3-hydroxy-3methylglutary-coenzyme
A; ICAM-1, intracellular adhesion molecule-1; HA, hyaluronan.

to mitochondrial dysfunction have been associated with an
increased glycolytic rate in malignant cells (16).

Apart from cell-autonomous mechanisms, extrinsic factors
have also been identified as driving metabolic reprogramming
in cancer cells. The tumor microenvironment is often hypoxic
in solid cancers, leading to the activation of HIF-1α. The
transcriptional activity of HIF-1α inhibits mitochondrial
respiratory chains and induces glycolysis, among other
things. Several types of stromal cells, including tumor-
associated macrophages (TAM), have also been implicated
in establishing a hypoxic tumor microenvironment and
promoting aerobic glycolysis (17), subsequently leading to
metabolic reprogramming in cancer cells (18).

Increased uptake of glutamine and enhanced glutaminolysis
have been identified as a hallmark of cancer cells. Glutamine
is essential in cancer cells and has been implicated in cancer
progression, as it serves as a substrate for oxidative metabolism,
which generates more than half of the ATP that is required
by malignant cells (19). As well as an important source of
energy, glutamine also acts as a biosynthetic precursor for
numerous molecules that are essential for rapidly proliferating
cells, including fatty acids, pyrimidines, purines, and amino acids
(19). Therefore, glutaminolysis is indispensable for metabolic
reprogramming in cancer cells.

Mounting evidence suggests that lipid metabolism is also
rewired in rapidly proliferating cells (20). The up-regulation
of fatty acid synthase (FASN) and subsequent enhanced de
novo synthesis of fatty acids have been described as a frequent
event in cancer cells (21). The elevated levels of fatty acids will
act as signaling molecules, energy storage, and cell membrane
components, which enable tumor cells to meet the increased
demands in energy and cellular components (20). Oncogenic
mutations and loss of tumor suppressor genes have been
shown to contribute to alterations in glutamine and lipid
metabolism (11).

Metabolic Reprogramming and Metastatic
Potential of Tumor Cells
Metabolic rewiring has been implicated in the enhanced ability
of cancer cells to survive and proliferate, enabling them to
survive under stressful conditions and resist anticancer therapies
(22, 23). Importantly, increasing evidence suggests a role for
metabolic reprogramming in enhancing the metastatic ability
and development of cancer cells (Figure 1). Promoting the
epithelial to mesenchymal transition (EMT) and subsequent
detachment of cancer cells from the extracellular matrix early
during metastasis are vital potential mechanisms (24). Lactate
accumulation and extracellular matrix acidification due to the
enhanced glycolytic rate can promote EMT by regulating the
expression of EMT-related proteins (25). Moreover, extracellular
acidosis can activate matrix-metalloproteinases (MMPs), which
play a crucial role in the degradation of extracellular matrix
and subsequent invasion of cancer cells into the vascular
wall (26). The increase in the levels of the glycolysis by-
product methylglyoxal, as well as the overexpression of glucose
transporter 1 (GLUT1) and hexokinase 2 (HK2), have also
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FIGURE 1 | The effects of metabolic reprogramming in cancer development and metastasis. Metabolic reprogramming in cancer cells, mainly including glycolysis,

glutaminolysis and lipogenesis can enhance their metastatic abilities. The products of rewired metabolism like lactate, methylglyoxal (MG) and glutamate as well as

up-regulated key enzymes or concerning transporters in energy metabolism such as glutamate dehydrogenase 1(GDH1), glutaminase 1(GLS1), fatty acid synthase

(FASN), ATP-citrate lyse (ACLY) and glucose transporter 1(GLUT1) are the potential regulatory mechanisms in addition to suppressed mitochondrial oxidative

metabolism. These regulators can give rise to activation of matrix-metalloproteinases (MMPs), extracellular matrix (ECM) remodeling, angiogenesis, anoikis resistance,

and enhanced invasiveness, which assist primary cancer cells in invading blood vessels and metastasizing to distant organs. In addition, rewired metabolism also

promotes epithelial to mesenchymal transition, contributing to the metastasis of malignant cells.

been linked to enhanced metastatic potential (27–29). Aerobic
glycolysis suppresses mitochondrial oxidative metabolism and
induces anoikis resistance, promoting cancer cell migration and
invasion (30).

Similarly, glutaminolysis contributes to EMT and metastasis
by inducing the expression of glutamate dehydrogenase 1
(GDH1) (31). The serum levels of glutamate, the end product
of glutaminolysis, have been linked to enhanced invasiveness
and proliferation of prostate cancer cells (32), while in breast
cancer cells, glutamate has been shown to induce migration
by up-regulating the expression of transmembrane matrix
metalloproteinases (33). Additionally, glutaminase 1 (GLS1), a
key enzyme of glutamine metabolism, has also been implicated in
cancer metastasis (34). FASN can also promote tumor cell growth
and metastasis by activating the AMP-activated protein kinase
(AMPK)/mTOR signaling pathway (35). The overexpression of
another key enzyme of de novo lipogenesis, ATP-citrate lyase
(ACLY), has been linked to enhanced metastatic ability and
resistance to radiotherapy (36).

POTENTIAL MECHANISMS LINKING
METABOLIC SYNDROME TO CANCER

Inflammation
Inflammatory immune responses protect organisms from
external pathological insults, including mechanical trauma and

infectious microorganisms. In contrast to acute inflammation
that has protective roles, chronic inflammation has been
linked to numerous diseases, including cancer (37). Conditions
caused by the disruption in metabolic homeostasis, such as
central obesity and hyperglycemia, have been linked to chronic
inflammation (38, 39). Anti-inflammation roles have been
attributed to HDL, and a decrease in HDL levels combined with
hyperglycemia can have synergistic effects in the establishment of
chronic inflammation (40), linking the disruption in metabolic
homeostasis to cancer development and progression.

Epidemiological studies have shown that approximately 15–
20% of all cancers can be attributed to chronic inflammation
or chronic infections (37). Inflammatory bowel disease (IBD),
chronic hepatitis, and gastritis, respectively, elevating the
risk of colorectal cancer, liver cancer, and gastric cancer
are most notable examples. Inflammatory response makes a
significant contribution to different stages of cancer progression
(Table 1). Genetic mutations or alternations are recognized
to account for most carcinogenic initiation. The long-term
infiltration of inflammatory immune cells and chronic secretion
of inflammatory cytokines, including tumor necrosis factor-
alpha (TNF-α) and interleukins (ILs), may promote mutagenesis
and abnormal gene expression (41). The increased generation
of ROS by immune cells like macrophages and neutrophils
during inflammation may also give rise to genetic alterations
in normal cells (42). Herein, persistent inflammation can
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potentially predispose cells to undergo malignant transformation
via inducing accumulated gene mutations. Furthermore, creating
a favorable niche for transformed cells to reproduce and
grow also makes a big difference in cancer development.
Inflammatory cells and cytokines have been shown to induce
EMT and promote cancer cell invasion (43, 44), as well as
enhance cancer stemness (45), augmenting metastatic property
of malignant cells. STAT3 and nuclear factor kappa B (NF-κB)
signaling pathway can be activated by inflammatory responses
which may mediate survival-favoring signaling and induce
metabolic reprogramming, driving cancer cell growth, migration,
and invasion (46, 47). The crosstalk between infiltrating
inflammatory cells and malignant cells and recruitment of
tumor-promoting auxiliary cells like fibroblasts confirm the
decisive effect that inflammation exerts in modulating tumor
microenvironment (TME) (48). Additionally, the relationship
between inflammation and carcinogenesis is extremely complex,
as tumors or anti-cancer therapy can also trigger inflammation
via several pathways, further promoting cancer progression (62).

ROS and Oxidative Stress
Reactive oxygen species (ROS) are chemically reactive molecules
that are produced during oxygen metabolism. Superoxide anion
(O−

2 ), hydrogen peroxide (H2O2), and hydroxyl radical (HO•)
are the most important ROS and are primarily produced in
mitochondria by nicotinamide adenine dinucleotide phosphate
(NADPH) oxidases (NOXs) (63). ROS serve as singling
molecules and, in normal cells, the homeostasis in ROS levels
is maintained by several cellular antioxidant mechanisms,
protecting from oxidative damage. Abnormal metabolism and
metabolic disorders, including hyperglycemia and adipose tissue
expansion, can lead to enhanced ROS generation (64, 65).

Detection of a high ROS level in many cancer cells
suggests that ROS play an essential role in cancer initiation
and progression (66) (Table 1). An important mechanism by
which ROS can drive carcinogenesis is the induction of DNA
damage and genomic instability, contributing to malignant
transformation (49). Additionally, ROS have been shown to
induce mutagenesis in mitochondrial DNA (mtDNA), which has
been linked to the development of certain malignancies, such
as colon (50) and prostate (51) cancer. Promoting metabolic
shift to glycolysis and doing damage to electron transfer may
serve as underlying reasons why mutations in mtDNA can
lead to tumorgenesis (52). However, only when cancer cells
own the abilities to adapt to ROS stress can they survive
and progress. The redox adaption including activation of
redox-sensitive transcription factors like NF-κB and subsequent
elevated expression of ROS-scavenging enzymes is not only
responsible for cell survival but for progression as well (67). Some
researchers already found ROS stress can promote angiogenesis
and metastasis by inducing VEGF-A secretion and subsequent
endothelial cell migration and proliferation (53). Additionally,
the Wnt/β-catenin signaling pathway, which is known to drive
EMT, cancer stem cell (CSC) development, and chemotherapy
resistance, can be activated by ROS (54–56). Intriguingly,
oncogene activation can also result in elevated ROS levels,
thereby promoting cancer progression (68).

Cell Signaling Pathways Associated With
Cancer
Mutagenic signaling pathways like Mitogen-activated protein
kinase (MAPK), Wnt, TGF-β, and JAK/STAT have been
well-demonstrated to be critical for cancer initiation and
progression (Table 1). Accumulating evidence suggests that

TABLE 1 | The mechanism linking MetS to cancer.

Subjects Factors Results Risks Reference

Hyperglycemia Inflammation↑ Genetic mutation↑ Carcinogenesis↑ (41, 42)

Obesity EMT↑ Metastasis↑ (43, 44)

Dyslipidemia Cancer stemness↑ Metastasis↑; Therapy-resistance↑ (45)

NF-κB↑; STAT3↑ Proliferation↑; Invasiveness↑ (46, 47)

Modulating TME↑ Carcinogenesis↑ (48)

Hyperglycemia ROS↑ Genomic instability↑ Carcinogenesis↑ (49)

Obesity mtDNA mutation↑ Carcinogenesis↑ (50, 51)

Metabolic reprogramming↑ Carcinogenesis↑ (52)

Anginogenesis↑ Metastasis↑ (53)

EMT↑; Cancer stemness↑ Metastasis↑ (54–56)

Hyperglycemia Cell signaling pathways↑ Wnt/β- catenin signaling↑ Carcinogenesis↑; Metastasis↑ (57, 58)

Obesity Insulin/IGF-1 signaling↑ Carcinogenesis↑; Proliferation↑ (59)

TGF-β signaling↑ Metastasis↑ (60)

JAK/STAT signaling↑ Proliferation↑; Metastasis↑ (61)

MAPK signaling↑ proliferation↑; Metastasis↑ (61)

Metabolic syndrome or its individual components can give rise to chronic inflammation, ROS, and aberrant cell signaling pathways. And all of them are able to facilitate the initiation and

progression of cancer via inducing one result or another. ↑Means enhancement or up-regulation.
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metabolic disorders are involved in the dysregulation of these and
other oncogenic pathways. In accordance with previous studies
demonstrating the role of hyperglycemia in carcinogenesis,
a recent study has shown that hyperglycemia can induce
the Wnt/β-catenin signaling pathway, promoting cancer cell
survival and the progression of hyperglycemia-related cancer
(57). Obesity has also been reported to activate the Wnt/β-
catenin signaling pathway in a TNF-α-dependent way (58).
Moreover, aberrant insulin/insulin-like growth factor-1 (IGF-
1) signaling, which has a long-standing role in cancer, is
activated by hyperglycemia or obesity and is believed to be an
essential mediator of the oncogenic effects of these metabolic
disorders (59). Hyperinsulinemia and insulin resistance augment
the activation of the MAPK pathway, promoting cancer cell
proliferative survival (69). Moreover, insulin has been shown
to enhance TGF-β signaling (60). In an animal model, the
AMPK/mTORC1/Nox4 signaling axis was highlighted as a
critical molecularmechanism linking hyperglycemia to colorectal
cancer (CRC) (70). The expansion of adipocytes and subsequent
disruption of adipokine signaling homeostasis has also been
suggested to be an important mechanism driving the progression
of cancers associated with metabolic disorders. The enhanced
secretion of leptin has been linked to cancer cell growth
and migration by inducing the activation of STAT3, MAPK,
JAK/STAT signaling pathways (61). On the other hand,
adiponectin counteracting the carcinogenic effects of leptin by
interfering with the activation of oncogenic signaling pathways
is remarkably reduced in obese individuals (71). In summary,
the aberrant activation of oncogenic signaling pathways observed
in patients with metabolic disorders represents a link between
metabolic syndrome and cancer.

THERAPEUTIC APPROACHES TO TARGET
METABOLIC DISORDERS

Metformin
Several epidemiological studies have suggested the potential
anti-cancer effects of the antidiabetic agent metformin,
especially in colorectal cancer (72) and endometrial cancer
(73). The mechanisms underlying the anti-cancer effects of
metformin have been extensively investigated (74). Metformin
administration can reduce the levels of glucose in the blood,
potentially contributing to its anti-cancer effects. In a study in
hepatocellular carcinoma, metformin has been demonstrated to
reduce the glycolytic flux by inhibiting phosphofructokinase-1
(PFK-1), suppressing the proliferation of cancer cells (75).
Additionally, metformin suppresses the expression of HIF-
1α and elevation of PDH levels under hypoxic conditions,
interfering with aerobic glycolysis in cancer cells (76). A study by
Kitson et al. showed that metformin was capable of interfering
with the function of cancer stem cells and repressing the
expression of CSC-related genes (77); the inhibitory effect of
metformin on CSCs is likely to be dependent on AMPK-mTOR
and glutamine metabolism (78). Furthermore, a recent study
suggested that the vascular effects of metformin are potential
mechanisms by which metformin suppresses metastasis and

sensitizes to chemotherapy (79). Metformin has also been shown
to suppress cancer cell growth, as well as induce apoptosis and
autophagy (80). Despite mounting evidence suggesting the
potential clinical benefit of metformin for cancer prevention
and treatment, Farmer et al. pointed out that different types of
bias existed in many observational clinical studies on metformin
and cancer (81). Notably, latest findings show that when the
studies are better designed, the protective effect of metformin is
attenuated (82). Accordingly, the exact efficacy of metformin in
cancer and clinical application need further exploration.

Statins
Statins are lipid-lowering agents commonly prescribed in
patients with hyperlipidemia. Numerous epidemiological studies
have suggested that statins may be useful in lowering the
risk of cancer development. A prospective cohort study
has demonstrated that statins can improve cancer patient
survival and decrease the rate of cancer-related mortality in
postmenopausal women (83). Patients with colorectal cancer
(84) and liver cancer (85) may benefit from statins according to
clinical or preclinical studies. The mechanisms underlying the
anti-tumor effects of statins remain elusive. Statins are known
to interfere with cholesterol synthesis by inhibiting 3-hydroxy-
3methylglutary-coenzyme A(HMG-CoA) reductase. Interfering
with cellular lipid biogenesis, mitochondrial metabolism, and
ROS generation have been suggested as potential mechanisms
by which statins may suppress cancer initiation and progression
(86, 87). A study by Sadaria et al. has shown that intracellular
adhesion molecule-1 (ICAM-1), an essential mediator of cancer
cell metastasis, was suppressed by statins (88). Statins could
also inhibit the transcription of MACC1 in colon cancer cells,
suppressing cancer cell growth and metastasis (89). Importantly,
statins have also been reported to have radiosensitizing effects
in cancer cells (90). Autophagy evasion has been described as
a hallmark of cancer, and statins have recently been shown to
exert anti-cancer effects by inducing autophagy (91). A study
in prostate cancer suggested that the combination of metformin
and statins has synergistic effects in inducing apoptosis in
chemotherapy-resistant cancer cells (92). Nevertheless, some
meta-analyses demonstrated that more evidence is needed
which supports the preventing role stains play in cancer (93,
94). Risk of bias must be attached more significance and be
avoided in observational studies before evaluating links between
statins and cancer (95). Taking all aforementioned findings into
consideration, while statins seem to emerge as potential anti-
cancer agents, especially for cancer patients with obesity or
hypercholesterolemia, the application of statins to cancer needs
further investigation.

Lifestyle Interventions
Extensive multicenter cohort studies have demonstrated that
an unhealthy lifestyle is a strong risk factor for all-cause
mortality (96), including death related to MetS and MetS-
associated cancer. Therefore, adopting a healthy lifestyle has been
proposed as a promising approach to prevent MetS and MetS-
associated malignancies. Exercise is strongly recommended,
not only for reducing the risk of obesity and other MetS
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components but also for lowering the risk of cancer development
and cancer recurrence, as well as improving the quality of
life of cancer patients (97). Additionally, exercise can improve
insulin resistance and modulate chronic inflammation in obese
individuals (98). Undoubtedly, regular exercise is extremely
important in preventing MetS and tumor development (99).
Keeping a disturbed circadian rhythms at a distance is also
vigorously proposed due to its intimate relation with cancer and
metabolism (100). Moreover, eating too fast has been associated
with hypertriglyceridemia and other MetS components (101).
According to the American Dietary Guidelines, its recommended
food intake patterns, moderate alcohol consumption, and a diet
high in vegetables, fruits, and whole grains and low in sugar or
fat, can provide a benefit to numerous chronic diseases (102).
Notably, a strong link between dietary patterns and microbiota
composition has been described, suggesting that a healthy diet
can promote gut microbiota diversity (103), reducing the risk of
MetS and cancer. In summary, increasing evidence indicates that
adopting a healthy lifestyle is a potent, easy, and low economic
burden mechanism for preventing MetS and cancer (104, 105).

DISCUSSION

As indicated by numerous epidemiological studies, along with
changes in the pace and patterns of modern lifestyles, an
increasing number of people are suffering from metabolic
syndrome and cancer. A positive association between metabolic
syndrome and cancer has been established (8). Metabolic
disorders are widely accepted to be involved in the development
and progression of several types of human cancers. Increased
ROS production, chronic inflammation, and aberrant activation
of oncogenic signaling pathways represent important links
between metabolic disorders and cancer (41, 106). However,
additional underlying mechanisms potentially exist, which are
yet to be elucidated. For example, elevated estrogen levels in
adipose tissue, as well as the increased synthesis of extracellular
matrix proteins and hyaluronan (HA) in hyperglycemia, are
believed to be implicated in cancer development and progression

(107, 108). Cancer is strongly linked not only to alterations
in metabolism at the organismal level but also at the cellular
level. Cancer cells undergo metabolic reprogramming, which
facilitates their malignant properties, including rapid growth,
migration, and invasion (109). Given the essential role of
metabolic rewiring in tumor development, drugs interfering with
glycolysis, glutaminolysis, or lipogenesis, may provide a clinical
benefit in cancer patients (110). Furthermore, considering the
strong links between the disruption of organismal metabolic
homeostasis and malignancy, therapeutic interventions already
in use for patients with metabolic disorders, includingmetformin
and statins, may serve as promising strategies to inhibit cancer
development and progression. It has also become evident that a
healthy lifestyle can prevent not only the development of MetS
but also the development of cancer (104, 105).

In conclusion, metabolic syndrome has been established
as an important risk factor for cancer development; hence,
cancer patients or individuals who are at high risk of cancer
development are likely to benefit from the prevention and
treatment of metabolic diseases. Further efforts are required for
the development of therapeutic interventions that target both
aberrant metabolism and cancer.
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