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Immunohistochemistry (IHC) for ER, PR, HER2, and Ki67 is used to predict outcome

and therapy response in breast cancer patients. The current IHC assessment, visual or

digital, is based mostly on global biomarker expression levels in the tissue sample. In our

study, we explored the prognostic value of digital image analysis of conventional breast

cancer IHC biomarkers supplemented with their intratumoral heterogeneity and tissue

immune response indicators. Surgically excised tumor samples from 101 female patients

with hormone receptor-positive breast cancer (HRBC) were stained for ER, PR, HER2,

Ki67, SATB1, CD8, and scanned at 20x. Digital image analysis was performed using

the HALOTM platform. Subsequently, hexagonal tiling was used to compute intratumoral

heterogeneity indicators for ER, PR and Ki67 expression. Multiple Cox regression analysis

revealed three independent predictors of the patient’s overall survival: Haralick’s texture

entropy of PR (HR = 0.19, p = 0.0005), Ki67 Ashman’s D bimodality (HR = 3.0,

p = 0.01), and CD8+SATB1+ cell density in tumor tissue (HR = 0.32, p = 0.02).

Remarkably, the PR and Ki67 intratumoral heterogeneity indicators were prognostically

more informative than the rates of their expression. In particular, a distinct non-linear

relationship between the rate of PR expression and its intratumoral heterogeneity was

observed and revealed a non-linear prognostic effect of PR expression. The independent

prognostic significance of CD8+SATB1+ cells infiltrating the tumor could indicate

their role in anti-tumor immunity. In conclusion, we suggest that prognostic modeling,

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.00950
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.00950&domain=pdf&date_stamp=2020-06-16
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dovile.zilenaite@vpc.lt
https://doi.org/10.3389/fonc.2020.00950
https://www.frontiersin.org/articles/10.3389/fonc.2020.00950/full
http://loop.frontiersin.org/people/914167/overview
http://loop.frontiersin.org/people/915853/overview


Zilenaite et al. Heterogeneity and Immune Response Model

based entirely on the computational image-based IHC biomarkers, is possible in HRBC

patients. The intratumoral heterogeneity and immune response indicators outperformed

both conventional breast cancer IHC and clinicopathological variables while markedly

increasing the power of the model.

Keywords: immunohistochemistry, digital pathology, breast cancer, intratumoral heterogeneity, progesterone

receptor, Ki67, SATB1, immune response

INTRODUCTION

Gene expression profiling studies have identified several subtypes
of breast cancer (BC) distinguished by the expression of
hormone receptor, cell proliferation, and human epidermal
growth factor receptor 2 (HER2) genes (1–3). The subtypes have
been associated with different biological behavior and different
responses to treatment (4–6). The current clinical practice is
mainly based on immunohistochemistry (IHC) for estrogen
receptors (ER), progesterone receptors (PR), HER2, and Ki67.
In fact, the American Society of Clinical Oncology (ASCO) and
the College of American Pathologists (CAP) guidelines, updated
in 2020, recommended to continue the use of IHC of these
biomarkers as the primarymethod to categorize BC cases, predict
disease outcomes and guide treatment decisions (7, 8).

Combined IHC biomarkers have been proposed for better
prognostic modeling of BC. In 2005, Abd El-Rehim et al. (9)
demonstrated that combinedmultiple protein expression profiles
from visual IHC assessment of 25 relevant biomarkers in tissue
microarrays (TMA) might be used as an alternative to gene
expression profiling methods. Subsequently, Soria et al. (10)
applied hierarchical clustering to reduce this number to only
10 biomarkers. In 2011, Cuzick et al. (11) proposed to combine
semi-quantitative scoring of ER, PR, Ki67 and HER2 IHC into an
“IHC4 score”; further studies (11, 12) confirmed that the IHC4
score along with clinicopathological features provided similar
prognostic information compared to gene expression profiling
tests such as the Oncotype DX (Genomic Health Inc., Redwood
City, CA) or Prosigna (NanoString Technologies, Seattle, WA).
However, the IHC analyses were criticized for a lack of reliability
and poor reproducibility (13–19).

Advances in digital image analysis (DIA) and computational
pathology have opened new opportunities for more accurate and
reproducible measurements (20–26). In 2002, Camp et al. (27)
developed a set of algorithms for automated quantification of
protein expression with pixel-based tissue segmentation using
fluorescent labels for cytokeratin and α-catenin. They found
that automated analysis of ER has better reproducibility and

Abbreviations: ASCO, the American Society of Clinical Oncology; AshD,

Ashman’s D; CAP, the College of American Pathologists; CI, confidence intervals;

d, density; DIA, digital image analysis; ER, estrogen receptor; G, histological

grade; HER2, human epidermal growth factor receptor 2; HR, hazard ratio;

HRBC, hormone receptor-positive breast cancer; IHC, immunohistochemistry;

LR, likelihood ratio; OS, overall survival; PD-1, programmed death 1; PD-L1,

programmed death-ligand 1; pN, lymph node metastasis status; PR, progesterone

receptor; pT, tumor invasion stage; S, stroma compartment; SATB1, special AT-

rich sequence-binding protein 1; T, tumor compartment; TIL, tumor-infiltrating

lymphocytes; TMA, tissue microarray; TME, tumor microenvironment.

higher significance of prognostic information than conventional
pathologist-based scoring (27). Jakobsen et al. (28) compared
visual HER2 IHC scoring with quantitative measurements by
DIA and detected that automated analysis could significantly
(67%) reduce the proportion of HER2 equivocal cases without
affecting false-negative rate. Likewise, Stalhammar et al. (29)
demonstrated that tumor subtyping by a combination of ER,
PR, Ki67, and HER2 manual scores was prognostically and
predictively inferior when compared to DIA of corresponding
biomarkers and concluded that DIA is a robust, reproducible and
less time-consuming alternative to the manual scoring in BC.

Besides the benefits of better accuracy and precision,
indicators based on large scale data extraction by DIA enable
application of more powerful statistical processing methods
when combining the informative value of the various IHC
markers (30). In 2015, Laurinavicius et al. (31) demonstrated
independent prognostic power of special AT-rich sequence-
binding protein 1 (SATB1) and Ki67 ratio in a study of 10
IHC markers in BC TMA obtained by automated DIA and
multivariate statistical modeling of the data. In 2019, Abubakar
et al. (32) reported that the IHC4 method retained its prognostic
value when based on DIA quantification measurements;
furthermore, a combined quantitative measure of biomarkers
outperformed the conventional dichotomous IHC scoring in two
independent BC patient cohorts (32).

DIA applications in IHC have also enabled new ways to

measure intratumoral heterogeneity of the biomarker expression.
In particular, the issue of Ki67 hotspot detection and assessment
has been addressed by many investigators (15, 16, 22, 23, 33–
35). Stalhammer et al. (29) showed that the error rate of
a pathologist’s stratification into distinct BC subtypes based

on visual assessment of Ki67 expression could be reduced by
12% using DIA with automated hotspot detection. However, a

rigorous definition of hotspots has not been established: hotspots

may vary in size, shape, number and difficult to ascertain
in homogeneous cases (23, 36, 37). Conversely, intratumoral

heterogeneity assessment, based on systematic hexagonal grid

subsampling of the DIA data, is a clear statistical definition
of heterogeneity and (34) revealed that Ki67 intratumoral

heterogeneity was more prognostically important than its rate of

expression per se.
Recent advances in cancer immunotherapy have opened

new challenges in the search for reliable prognostic and
predictive biomarkers of the antitumor immune response in the

context of tumor microenvironment (TME) (38–42). Chronic
inflammation properties, one of the hallmarks of cancer, have
been shown to contribute to tumor initiation, progression, and
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metastasis (43–46). Tumor-infiltrating lymphocytes (TIL) have
been associated with a better prognosis and clinical outcome (47–
49). An abundance of CD3+, CD4+, CD8+, and CD45RO+
TIL has been reported to be a feature of efficient immune
response in several cancers (48, 50–54). While a higher density of
cytotoxic CD8+ T cells has been linked to a positive anti-tumor
effect (55–59), the CD8+PD-1+ subset of TIL is associated with
worse prognosis and therapy outcomes (60–63). This could be
related to the interaction between programmed death 1 (PD-
1) receptor and programmed death-ligand 1 (PD-L1) which
leads to the impairment and exhaustion of TIL and inhibition
of immune responses against tumor cells (60, 64). This has
made the blockade of PD-1 or PD-L1 an important therapeutic
approach in treating tumors (65–70). However, a rather low
proportion of patients benefit from this immunotherapy (65–
71). A comprehensive TIL study in BC has demonstrated that
CD8+T cells can retain cytolytic activity despite PD-1 expression
and highlighted the need for a better understanding of how PD-
1 pathway could induce T cell exhaustion (72). Recently, a link
between PD-1, SATB1 and cancer immunity has been reported
(73, 74) suggesting that SATB1 may be a novel biomarker for
prediction of the functional properties of T cells in the TME.

In this study of hormone receptor-positive BC (HRBC),
we explored the prognostic value of IHC, performed on
full-face surgical excision slides, by combining DIA data
from multiple IHC biomarkers, along with their intratumoral
heterogeneity indicators and tissue immune response properties,
in the context of conventional clinicopathologic variables.
We found that the DIA IHC data alone generated the
most significant prognostic model of the patient overall
survival (OS), represented by three independent features:
PR entropy, Ki67 bimodality, and CD8+SATB1+ cell
density in the tumor tissue. Remarkably, the intratumoral
heterogeneity indicators of PR and Ki67 were prognostically
more informative than the rates of their expression. The
independent prognostic role of CD8+SATB1+ TIL is suggestive
of the potential utility of this biomarker in the context of
cancer immunotherapy.

MATERIALS AND METHODS

Study Population and Tumor
Characteristics
Surgically excised tumor samples from 101 patients with HRBC
were used. The same patient cohort was investigated in the
previous TMA studies (30, 31), with extended follow-up period
now. Briefly, the patients were treated at the National Cancer
Institute (Vilnius, Lithuania) and tested at the National Center of
Pathology (Vilnius, Lithuania) from 2007 to 2009. The OS follow-
up period ranges from 17 to 143 months, with a median of 135
months. The demographic, clinicopathological and follow-up
characteristics of the patient cohort are summarized in Table 1.
The study was approved by the Lithuanian Bioethics Committee
(reference number: 40, date 2007-04-26, updated 2017-09-12).
Informed written consent was obtained from all patients before
study entry.

TABLE 1 | Patient and tumor clinicopathologic parameters.

Clinicopathologic parameters

Patients 101 (100%)

Age, years

Median 59

Range 27–87

Sex

Female 101 (100%)

Male 0

Follow up, months

Median 135

Range 17–143

Deceased 24 (23.8%)

Histological grade (G)

G1 23 (22.8%)

G2 47 (46.5%)

G3 31 (30.7%)

Tumor invasion stage (pT)

T1 55 (54.5%)

T2 46 (45.5%)

T3 0

T4 0

Lymph node metastasis status (pN)

N0 54 (53.5%)

N1 35 (34.6%)

N2 9 (8.9%)

N3 3 (3.0%)

Treatment

Hormone therapy 88 (87.1%)

Chemotherapy 61 (60.4%)

Radiotherapy 85 (84.2%)

Trastuzumab therapy 7 (6.9%)

Immunohistochemistry
Formalin-fixed paraffin-embedded full-face sections of surgically
excised tumors were cut 3µm thick and mounted on positively
charged slides (six sections per case). A Roche Ventana
BenchMark ULTRA automated staining system (Ventana
Medical Systems, Tucson, Arizona, USA) was used to perform
the IHC staining. ER, PR, HER2, Ki67, HIF1α, and SATB1
were detected using the ultraView Universal DAB Detection
kit, and CD8 was visualized using the ultraView Universal
Alkaline Phosphatase Red Detection kit (Ventana Medical
Systems, Tucson, Arizona, USA). IHC was performed
using ready-to-use antibodies for ER, PR, HER2 (SP1,
1E2, 4B5, respectively, Ventana (Tucson, Arizona, USA),
Ki67 (MIB-1, DAKO (Glostrup, Denmark), dilution 1:200),
HIF1α (EP118, Epitomics (San Mateo, USA), dilution 1:200)
and double IHC for SATB1 (SP287, Abcam (Cambridge,
United Kingdom), dilution 1:250) and CD8 (C8/144B, DAKO,
dilution 1:1100). The sections were counterstained with
Mayer’s hematoxylin.
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FIGURE 1 | Examples of IHC and DIA output images. (A,G,M): IHC and corresponding DIA outputs of ER, (B,H,N) of PR, (C,I,O) of HER2, (D,J,P) of Ki67, (E,K,Q) of

double IHC of CD8 and SATB1, and (F,L,R) of HIF1α. The nuclear algorithms mark positive (brown), and negative (blue) cells: (G) of ER, (H) of PR, (J) of Ki67 and

cytoplasmic/nuclear algorithm marks positive HIF1α cells (L), HER2 algorithm marks the positive cells of HER2 (I) with color masks according to staining intensity

(negative—blue, week positive—yellow, moderate positive—orange, intense positive—red). Multiplex algorithm of double IHC (E) separates positive SATB1 (brown),

positive CD8 (red) and negative (blue) cells. (M–R): illustrate the automated detection of the tumor (red) and stroma (green) compartments by the HALO AI tissue

classifier.

Digital Image Acquisition and Analysis
The IHC slides were scanned with a ScanScope XT Slide Scanner
(Leica Aperio Technologies, Vista, CA, USA) at 20× objective
magnification (0.5µmpixel resolution). DIAwas performedwith
the HALO software (version 3.0311.174; Indica Labs, Corrales,
New Mexico, United States): the HALO AI tissue classifier
was trained to segment tumor tissue, stroma, and background
(consisting of necrosis, artifacts, and glass); HALOMultiplex IHC
algorithm (version 1.2) was used to detect and extract coordinates
of nuclear ER, PR, Ki67, SATB1, and cytoplasmic CD8 andHIF1α
positive cells, while HALO HER2 algorithm (version 1.1) was
used for HER2 positive cells. Examples of IHC and DIA analysis
output images are presented in Figure 1.

Computation of IHC Indicators
The set of IHC indicators used in the prognostic models
included: (1) per-case global quantities (percentages of ER,
PR, Ki67 positive cells and HER2 2+ and 3+ in the tumor
compartment), (2) intratumoral heterogeneity of ER, PR, and
Ki67 positivity, (3) immune response properties represented
by the densities of CD8+ and CD8+SATB1+ cells in tumor
and stroma compartments, and (4) hypoxia-inducible properties
represented by the percentage of HIF1α positive cells in tumor
and stroma compartments.

Indicator sets 1, 3 and 4 were readily extracted from the
HALO DIA data for each digitized slide. The intratumoral

heterogeneity indicators were computed using the hexagonal
tiling methodology as previously reported (30, 31, 35). Briefly,
the HALO DIA data were subsampled by a randomly positioned
hexagonal grid (hexagon side length 257µm). Based on the
cell coordinates obtained by the DIA, the number of positive
and negative cells of all biomarkers were counted inside each
hexagon. Hexagons containing fewer than 50 cells were regarded
as insufficient sampling and discarded from further analyses.
Since low expression and low dynamic range was observed for
HER2, CD8+, CD8+SATB1+, and HIF1α, no heterogeneity
indicators were extracted for these biomarkers and were instead
quantified in the stroma and/or tumor compartment. The
percentages of ER, PR, and Ki67 were calculated for each
hexagon, and subsequently ranked linearly into ten intervals
(0–10%, >10–20%, etc.) for computation of a co-occurrence
matrix. Heterogeneity markers were extracted from the co-
occurrence matrix as Haralick’s texture indicators (contrast,
dissimilarity, entropy, energy, homogeneity). The bimodality
indicator Ashman’s D (AshD) was computed for the intratumoral
distributions of ER, PR and Ki67 expression in the hexagonal
grids as described in detail previously (31).

Statistical Methods
Summary statistics and distribution analyses were performed
with significance tests based on one-way ANOVA. Bonferroni’s
post hoc test and Welch’s t-tests were used for pairwise and
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homogeneity of variances comparisons, respectively. Fisher’s
exact test was used to determine the associations between

categorical variables. Highly correlated (r > 0.90) indicators

were eliminated to avoid multicollinearity or singularity in
multivariate survival analysis. Due to a limited cohort size

overfitting wasminimized by leave-one-out cross-validation (75),

the most frequent variable subsets were further tested in the
survival prediction models. Subsequently, a factor analysis was
performed for seven IHC biomarkers with factors retained
based on an eigenvalue > 1; orthogonal varimax rotation of
the initial factors was used. A cut-off value for each indicator
was determined by Cutoff Finder software (Charité University,
Berlin, Germany) (76) to test univariate OS predictions.
The OS distributions were estimated using the Kaplan–Meier

method followed by log-rank testing to assess the statistical
significance of differences between the stratified groups. Cox
proportional hazards analysis was performed to test independent
prognostic significance of the IHC indicators in the context of
clinicopathologic variables. Statistical analyses were performed
using SAS (version 9.4; SAS Institute Inc., Cary, North Carolina,
USA). The statistical significance level was set at p < 0.05. Plots
were produced using R (version 3.4.4).

RESULTS

Summary Statistics
Summary statistics of the IHC indicators are presented
in Supplementary Table 1. Of note, one-way ANOVA and

FIGURE 2 | Rotated factor pattern of the IHC indicators: AshD, Ashman’s D; d, density; S, stroma compartment; T, tumor compartment. (A) The loading of factors 1

and 2; (B) factors 1 and 3; (C) factors 1 and 4 and (D) factors 1 and 5 are plotted (n = 101).
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TABLE 2 | Kaplan-Meier estimates using log-rank test for overall survival in relation to IHC, intratumoral heterogeneity and clinicopathologic indicators.

Univariate regression analysis Intratumoral heterogeneity indicators

HR 95% CI p-value HR 95% CI p-value

Conventional breast cancer indicators

ER% 3.11 1.16–8.34 0.017 ER_energy 4.56 1.36–15.31 0.007

PR% 0.30 0.14–0.68 0.002 ER_homogeneity 3.40 1.52–7.62 0.002

Ki67% 2.13 0.80–5.71 0.120 ER_entropy 0.09 0.01–0.68 0.003

HER2% 0.39 0.17–0.92 0.025 ER_contrast 0.31 0.14–0.71 0.004

Immune response indicators ER_dissimilarity 0.32 0.14–0.70 0.003

CD8_d_S 0.31 0.11–0.82 0.013 ER_AshD 2.11 0.72–6.17 0.160

CD8_d_T 0.23 0.10–0.57 0.0005 PR_energy 5.36 2.12–13.52 <0.0001

CD8_SATB1_d_S 0.32 0.13–0.81 0.011 PR_homogeneity 4.88 2.02–11.79 0.0001

CD8_SATB1_d_T 0.26 0.11–0.57 0.0004 PR_entropy 0.21 0.08–0.52 0.0002

Hypoxia-inducible indicators PR_contrast 0.22 0.09–0.56 0.0005

HIF1α%_S 0.43 0.15–1.26 0.11 PR_dissimilarity 0.15 0.05–0.44 <0.0001

HIF1α%_T 0.46 0.16–1.35 0.15 PR_AshD 0.32 0.14–0.71 0.003

Clinicopathological variables Ki67_energy 0.48 0.20–1.17 0.100

G stage (G1–2 vs. G3) 1.20 0.52–2.81 0.670 Ki67_homogeneity 0.46 0.19–1.12 0.079

T stage (T1 vs. T2) 0.99 0.45–2.22 0.986 Ki67_entropy 2.06 0.85–4.98 0.100

N status (N0 vs. N1–3) 2.17 0.95–4.97 0.07 Ki67_contrast 2.11 0.93–4.74 0.066

Age (≤ 59 vs. > 59) 2.45 1.05–5.73 0.039 Ki67_dissimilarity 2.16 0.89–5.21 0.079

– – – – Ki67_AshD 2.48 1.09–5.68 0.026

AshD, Ashman’s D; d, density; S, stroma compartment; T, tumor compartment; HR, hazard ratio; CI, confidence interval.

Bonferroni’s post hoc test of immune response and hypoxia-
inducible indicators showed that the percentage of HIF1α and
density of CD8+ and CD8+SATB1+ were significantly higher
in stroma than in the tumor compartment (p < 0.0001) (data
not shown).

Factor Analysis of IHC Indicators
To explore inherent correlations between the IHC indicators,
a factor analysis was performed for a set of conventional
BC, immune response, hypoxia-inducible and intratumoral
heterogeneity (ER, PR and Ki67 AshD bimodality and Haralick’s
texture entropy) indicators. Five orthogonally independent
factors were extracted, the rotated factor loadings are presented in
Supplementary Table 2 and the pattern of five factors is plotted
in Figure 2. Factor 1 was characterized by strong loadings of
CD8+ and CD8+SATB1+ cell densities within the tumor and
stroma compartments, factor 2 by the percentage of PR, PR AshD
and entropy indicators; factor 3 by the percentage of Ki67 and
Ki67 entropy indicators; factor 4 by ER entropy and factor 5 by
ER bimodality. Altogether, the five factors explained 64% of the
variance in the dataset and indicated orthogonally independent
latent factors governing the variation of IHC indicators.

Prognostic Value of IHC and
Clinicopathologic Indicators in Univariate
Analyses
Kaplan-Meier survival analyses with hazard ratio (HR) and log-
rank test were performed to estimate the prognostic potential
of the IHC and clinicopathologic indicators. The main results

are summarized in Table 2; the results in their entirety are
presented in Supplementary Figure 1. Higher PR and HER2
expression in the tumor tissue, CD8+ and CD8+SATB1+ cell
densities in the stroma and tumor tissue, ER and PR entropy,
contrast, dissimilarity and PR AshD are associated with higher
OS probabilities. Worse OS is associated with higher ER, ER
and PR energy, homogeneity and Ki67 AshD. No significant
stratifications were obtained for the Ki67 and HIF1α expression,
histological grade, T stage, lymph node status, ER AshD, Ki67
energy, homogeneity, entropy, contrast and dissimilarity. Higher
patient age at the time of surgery was associated with worse OS
(HR= 2.45, p= 0.039).

Independent Predictors of OS
The independent prognostic value of the global IHC biomarker
expression rates, their intratumoral heterogeneity, and immune
response indicators was tested by multivariate Cox regression
analysis, including conventional clinicopathologic characteristics
(Table 3). To estimate the added prognostic value of the novel
IHC indicators, the analyses were performed in 2 datasets:
Model 1 was generated from a subset consisting of the age
group, pathology characteristics (pT, pN status and histological
grade) and the global IHC DIA indicators (ER, PR, HER2 and
Ki67 expression rates in the tumor compartment). Model 2 was
obtained by supplementing the data set with the intratumoral
heterogeneity and immune response indicators (Table 3). Model
1 revealed two independent factors of worse OS—lower PR
expression and lymph node involvement. Model 2 showed a
remarkable increase of the statistical power likelihood ratio
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TABLE 3 | Statistics of multivariate Cox regression analyses for correlation of IHC,

intratumoral heterogeneity and immune response indicators with overall survival.

Multivariate regression analysis

HR 95% CI p-value

Model 1 (LR: 12.23, p = 0.0022)

N status (N0 vs. N1–3) 2.30 1.01–5.28 0.0485

PR% 0.29 0.13–0.66 0.0028

Model 2 (LR: 27.67, p < 0.0001)

CD8_SATB1_d_T 0.30 0.13–0.67 0.0035

PR_entropy 0.22 0.08–0.56 0.0015

Ki67_AshD 3.26 1.40–7.61 0.0062

AshD, Ashman’s D; d, density; T, tumor compartment; HR, hazard ratio; CI, confidence

interval; LR, likelihood ratio.

(LR), 27.67 compared to 12.23 of Model 1 based exclusively on
three novel IHC indicators: better OS was predicted by higher
CD8+SATB1+ cell density in the tumor compartment and
higher entropy (intratumoral heterogeneity) of PR expression;
worse OS was predicted by the bimodality (AshD) of Ki67
expression in the tumor tissue. Prognostic stratifications for these
indicators are presented in Figure 3.

Nonlinear Relationship Between PR
Expression and Its Intratumoral
Heterogeneity
A non-linear relationship between the rate of PR expression
and its intratumoral heterogeneity (entropy) was detected: high
PR entropy was observed within the PR expression range
from 20 to 80% (Figure 4). Importantly, neither of these two
variables were significantly associated with other patient or
tumor characteristics (data not shown). Of note, only a weak
linear correlation between ER entropy and PR entropy was found
(r = 0.31, p= 0.0017).

Prognostic Value of PR Expression Rates
Revealed by Its Heterogeneity Property
To investigate the impact the non-linear relationship between
PR expression rate and its intratumoral heterogeneity has on
the prognostic stratification, the patients were stratified into
three groups: low expression (<20%) low entropy, moderate
expression (20–80%) high entropy and high expression (higher
than 80%) low entropy. Tumors with moderate expression of PR
(20–80%) were associated with the best OS (91% OS probability
after 143months), followed by high (>80%) expression (71%OS)
and low (<20%) expression (63% OS) (Figures 5A,B).

DISCUSSION

Our study demonstrates the benefits of combined IHC image-
based biomarker prognostic modeling and is important in several
aspects: (1) the multidimensional IHC prognostic model was
achieved solely from the IHC DIA data and reflected three
biologic features of HRBC (PR expression, proliferation rate,

FIGURE 3 | Kaplan-Meier survival plots with hazard ratio and log-rank test for

correlation of IHC and intratumoral heterogeneity indicators with overall

survival: (A) the density of CD8+SATB1+ in the tumor compartment (T), (B)

PR entropy, (C) Ki67 Ashman’s D (AshD).

immune response) and outperformed standard clinicopathologic
parameters in the dataset tested; (2) intratumoral heterogeneity
indicators of PR and Ki67 expression were prognostically more
informative than the rates of their expression; (3) supplementing
the IHC DIA results with intratumoral heterogeneity analytics
markedly increased the power of the prognostic model. Overall,
the study demonstrated for the first time independent prognostic
value of intratumoral PR heterogeneity and intratumoral
CD8+SATB1+ cell density in early HRBC.

The study was performed on full-face surgical excision
sections and essentially confirms and extends the findings of
a previous study based on TMA with automated IHC DIA in
the same patient cohort with a shorter follow-up period (31). It
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FIGURE 4 | Non-linear association between the rate of PR expression and its

intratumoral heterogeneity (entropy).

FIGURE 5 | Kaplan-Meier survival plots with hazard ratio and log-rank test for

correlation of PR% groups with overall survival: (A) low expression (< 20%),

moderate expression (20–80%) and high expression (higher than 80%), (B)

low and high expression (< 20% or higher than 80%) and moderate

expression (20–80%).

also confirms the positive prognostic value of SATB1 expression
in the tumor tissue as reported previously (31). However, by
adding the CD8 marker to the study, we find more specifically
that the prognostic impact of SATB1 is related to the density
of intratumoral CD8+SATB1+ cells. Although the expression
of SATB1 alone could be noted in some cancer cells in a few
cases, it was not sufficient to obtain its prognostic value (data not
shown). On the other hand, the density of CD8+ cells in tumor

compartment revealed positive prognostic value (HR= 0.23, p=
0.00047); however, it was outperformed by CD8+SATB1+ in the
multivariate prognostic model (HR= 0.30, p= 0.0035).

The biological and prognostic significance of SATB1
expression in malignancies remains controversial. Studies by Cai
et al. (77) and Han et al. (78) revealed that SATB1 regulates the
expression of more than 1,000 genes which are predominantly
associated with cell adhesion, proliferation, cell cycle invasion,
migration and apoptosis and confirmed that overexpression of
SATB1 is associated with aggressive BC phenotype. In contrast
to these studies, Iorns et al. (79) reported that SATB1 transcript
levels acquired no function in BC pathogenesis, while Selinger
et al. (80) demonstrated that the loss of SATB1 is associated
with a worse prognosis in lung squamous cell carcinoma. Gene
expression experiments have confirmed that SATB1 regulates
around 300 of T cell genes (81–83) and initial studies have
indicated that SATB1 might play a vital role in anti-tumor T
cell responses (74, 84). Stephen et al. (74) demonstrated in
mouse models that SATB1 regulates T cell exhaustion marker
PD-1, T-cell proliferative capacity and effector function. They
have shown that decreased expression of SATB1 leads to a
40-fold increased expression of PD-1 and impaired anti-tumor
immunity. Temporal SATB1 expression changes were noted by
Nüssing et al. (84) in human tissue samples (blood, thymus,
spleen, lymph nodes) supporting the notion that downregulation
of SATB1 may lead to T cell dysfunction. In our study, besides
the independent prognostic value of tumoral CD8+SATB1+ cell
infiltrates, we found that SATB1 was more frequently expressed
in CD8+ cells in stroma than in tumor tissue (26 and 21%, p
< 0.0001, respectively). We suggest, therefore, that our findings
further support the hypothesis that SATB1 expression can be
a feature of activated CD8+ cells and may serve as a potential
immune response biomarker in malignancies.

The role of TIL has been investigated in BC and association
with better prognosis was demonstrated in ER-negative, HER2-
positive and triple-negative breast tumors (85–88). However,
contradicting findings on the clinical relevance of TIL have been
reported in ER-positive and HER2-negative cancer (85, 89–91).
A large study (89) of 12,439 BC patients, found no association
between survival and manually quantified CD8+ T cells while
Sobral-Leite et al. (92), who analyzed TIL based on IHC and
DIA, detected that CD8+ T cells were associated with worse
clinical outcome and PIK3CA mutations in ER-positive BC.
Lee at al. (93) also indicated that TIL might have a different
prognostic impact across BC subtypes, although their study
results were not statistically significant. Our study, based on
DIA, retrieved the prognostic value of both stromal and tumoral
CD8+ lymphocytes (HR = 0.31, p = 0.013 and HR = 0.23,
p = 0.00047, respectively) in univariate analyses and tumoral
CD8+ lymphocytes (HR = 0.39, p = 0.04) in multiple Cox
regression model (not shown); however, tumoral CD8+SATB1+
cells further increased the prognostic power (Table 3).

IHC for ER and PR has been used for decades now to
predict the patient’s outcome and response to hormonal therapy
(94). Routine clinical practices are generally based on the
qualitative status of the IHC expression and categorize samples
into negative, weakly positive or positive tumors, although some
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studies have demonstrated an additional prognostic value of
quantitative assessment of ER or PR expression (32, 94–96).
In particular, Barllet et al. (95) showed that ER and PR IHC
by visual scoring predicted a higher risk of early relapse in
hormone receptor-moderate compared to hormone receptor-
rich patients (>80–85% for ER, >75% for PR) and demonstrated
that patients with a high rate of ER expression might get
additional benefit from exemestane. In our study, we found that
>74% expression of ER was associated with worse prognosis (HR
= 3.11, p = 0.017) while expression of PR >3% predicted better
OS (HR = 0.30, p = 0.002). Before including the intratumor
heterogeneity indicators, we found an independent beneficial
prognostic value of PR expression rate in the context of lymph
node status (Table 3, Model 1). Similar results were reported
by Barllet et al. (95) and Lamy et al. (96), who found the
higher PR expression rate was a significant indicator of better
prognosis. Nevertheless, a recent overview (94) of 19 studies,
which collectively involved 30,754 BC patients, concluded that
there is no clear evidence for quantitatively assessed ER and
PR as neither prognostic nor predictive marker. Furthermore,
they suggested that information on the hormone receptor status
beyond “positive” or “negative” should no longer be reported to
prevent oncologists subconsciously making different treatment
decisions. International studies (97–101) based on the mRNA
or IHC data have found that tumors with low expression of ER
(1–10%) do not have a significant prognostic impact on survival
and benefit from hormonal therapy compared to patients with
high ER expression (≥10%). Based on this data, ASCO and CAP
recently updated the guideline for ER and PR testing (7) and
recommended to report the borderline ER-positive cases (1–10%
positive cells) with the additional comment that biologically this
type of tumors is more similar to ER-negative cancer and the
potential benefit of hormonal therapy is unclear (7). However, a
strategy on how to ensure reproducible results of the IHC scoring
was not suggested.

Intratumor heterogeneity of PR expression was first measured
by Haralick’s texture indicators in the present study based on
hexagonal grid sampling developed previously for Ki67 studies
and subsequently also by AshD bimodality indicator (33–35).
This novel data revealed a non-linear relationship between the
ratio of PR expression in the tumor tissue and its Haralick’s
texture entropy (Figure 4). This finding could be explained by the
nature of the features extracted (less heterogeneity is observed at
the low-minimal and high-diffuse end of the range of expression)
and has been reported previously for Ki67 (35). However, the
importance of this relationship is highlighted by the finding that
PR heterogeneity was an independent predictor of better OS
(HR = 0.21, p = 0.00021) rather than the rate of PR expression
per se. This is further supported by the prognostic stratification
of our patients revealing that lower than 20% and higher than
80% rate of PR expression was associated with worse OS while
moderate PR expression (>20% and <80%) was associated with
better OS (p= 0.0035). While the biological meaning of this non-
linearity in the prognostic effect of PR expression remains to be
elucidated, it supports the notion that “intratumor heterogeneity
is universal, although perhaps non-linear prognostic biomarker”
(102). This phenomenon may also explain ambiguous results of

the previous efforts to quantify hormone receptor expression for
prognostic and predictive modeling with various methodologies
and cut-off values.

Bimodality of Ki67 intratumoral distribution, expressed by the
AshD indicator, has been reported previously (34) to provide
an independent prediction of worse OS and outperforming
the rate of Ki67 per se in multiple prognostic models. Our
current study, performed on a different patient cohort, with IHC
slides stained in another laboratory and with the application
of slightly different DIA and hexagonal grid analysis settings,
provides independent evidence to support this phenomenon.
Furthermore, we confirm the independent prognostic role of
Ki67 bimodality in the context of PR intratumor heterogeneity,
TIL, and clinicopathologic features included in this study of
HRBC (HR= 3.26, p= 0.0062).

Our study does contain some limitations. Firstly, it is based
on a relatively small patient cohort with a rather benign course
of the disease. Secondly, the retrospective data available about
therapy modes did not allow exploring the predictive value of the
biomarkers. Nevertheless, we were able to achieve independent
prognostic models as a proof-of-concept for computational
image-based tissue pathology biomarkers generated from IHC
slides. Importantly, the models enabled identification of patients
at risk of worse OS in this relatively well-managed disease entity.
Of course, large-scale studies with long-term follow-up and
therapy data are needed to further validate our findings.

In conclusion, we present a multi-dimensional digital IHC
prognostic model for early HRBC, based on three independent
cancer pathobiology hallmarks—ssPR expression, proliferation,
and immune response. The study revealed that subvisual
intratumor heterogeneity indicators of PR and Ki67 expression
were more prognostically informative than the rates of their
expression. Intratumoral CD8+SATB1+ cell density predicted
better OS and could potentially serve as a specific biomarker of
anti-tumor immunity. Remarkably, the final prognostic model
did not require any other clinicopathologic parameters besides
the automatically extracted comprehensive IHC DIA indicators.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation, to any
qualified researcher.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by the Lithuanian Bioethics Committee. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

DZ, AR, JB, RA, AiL, BP, VO, and ArL participated in the
conception and design of the study. DZ and AiL participated
in tumor sample collection and IHC staining. DZ and RA

Frontiers in Oncology | www.frontiersin.org 9 June 2020 | Volume 10 | Article 950

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zilenaite et al. Heterogeneity and Immune Response Model

performed digital image and statistical analyses. JB carried out
the Ki67 digital analysis. DZ in collaboration with AR and
ArL, participated in the interpretation of the results and drafted
essential parts of the manuscript. All authors critically revised
and approved the final version of the manuscript.

FUNDING

This project had received funding from the European Social
Fund, project No. 09.3.3-LMT-K-712-01-0139 under grant
agreement with the Research Council of Lithuania.

ACKNOWLEDGMENTS

The authors would like to thank Richard Levenson, Kuang-Yu
Jen and Michael Shribak for their support and assistance with
this project.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2020.00950/full#supplementary-material

REFERENCES

1. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et

al. Molecular portraits of human breast tumours. Nature. (2000) 406:747–

52. doi: 10.1038/35021093

2. Güler EN. Gene expression profiling in breast cancer and its effect on

therapy selection in early-stage breast cancer. Eur J Breast Health. (2017)

13:168–74. doi: 10.5152/ejbh.2017.3636

3. Bao T, Davidson NE. Gene expression profiling of breast cancer. Adv Surg.

(2008) 42:249–60. doi: 10.1016/j.yasu.2008.03.002

4. Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al.

Gene expression patterns of breast carcinomas distinguish tumor subclasses

with clinical implications. Proc Natl Acad Sci USA. (2001) 98:10869–

74. doi: 10.1073/pnas.191367098

5. West M, Blanchette C, Dressman H, Huang E, Ishida S, Spang R,

et al. Predicting the clinical status of human breast cancer by using

gene expression profiles. Proc Natl Acad Sci U S A. (2001) 98:11462–

7. doi: 10.1073/pnas.201162998

6. van ’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al.

Gene expression profiling predicts clinical outcome of breast cancer. Nature.

(2002) 415:530–6. doi: 10.1038/415530a

7. Allison KH, Hammond MEH, Dowsett M, McKernin SE, Carey LA,

Fitzgibbons PL, et al. Estrogen and progesterone receptor testing in

breast cancer: ASCO/CAP guideline update. J Clin Oncol. (2020) 38:1346–

66. doi: 10.1200/JCO.19.02309

8. Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M,

Thurlimann B, et al. Personalizing the treatment of women with early

breast cancer: highlights of the St gallen international expert consensus

on the primary therapy of early breast cancer 2013. Ann Oncol. (2013)

24:2206–23. doi: 10.1093/annonc/mdt303

9. Abd El-Rehim DM, Ball G, Pinder SE, Rakha E, Paish C, Robertson JF,

et al. High-throughput protein expression analysis using tissue microarray

technology of a large well-characterised series identifies biologically distinct

classes of breast cancer confirming recent cDNA expression analyses. Int J

Cancer. (2005) 116:340–50. doi: 10.1002/ijc.21004

10. Soria D, Garibaldi JM, Ambrogi F, Green AR, Powe D, Rakha E, et al.

A methodology to identify consensus classes from clustering algorithms

applied to immunohistochemical data from breast cancer patients. Comput

Biol Med. (2010) 40:318–30. doi: 10.1016/j.compbiomed.2010.01.003

11. Cuzick J, Dowsett M, Pineda S, Wale C, Salter J, Quinn E, et al. Prognostic

value of a combined estrogen receptor, progesterone receptor, ki-67, and

human epidermal growth factor receptor 2 immunohistochemical score and

comparison with the genomic health recurrence score in early breast cancer.

J Clin Oncol. (2011) 29:4273–8. doi: 10.1200/JCO.2010.31.2835

12. Bartlett JM, Bayani J, Marshall A, Dunn JA, Campbell A, Cunningham

C, et al. Comparing breast cancer multiparameter tests in the OPTIMA

prelim trial: no test is more equal than the others. J Natl Cancer Inst. (2016)

108:djw050. doi: 10.1093/jnci/djw050

13. Goldstein NS, Hewitt SM, Taylor CR, Yaziji H, Hicks

DG. Recommendations for improved standardization of

immunohistochemistry. Appl Immunohistochem Mol Morphol. (2007)

15:124–33. doi: 10.1097/PAI.0b013e31804c7283

14. Rhodes A, Jasani B, Barnes DM, Bobrow LG, Miller KD. Reliability

of immunohistochemical demonstration of oestrogen receptors

in routine practice: interlaboratory variance in the sensitivity of

detection and evaluation of scoring systems. J Clin Pathol. (2000)

53:125–30. doi: 10.1136/jcp.53.2.125

15. Mikami Y, Ueno T, Yoshimura K, Tsuda H, Kurosumi M, Masuda S, et al.

Interobserver concordance of Ki67 labeling index in breast cancer: Japan

breast cancer research group Ki67 ring study. Cancer Sci. (2013) 104:1539–

43. doi: 10.1111/cas.12245

16. Polley MY, Leung SC, McShane LM, Gao D, Hugh JC, Mastropasqua MG,

et al. An international ki67 reproducibility study. J Natl Cancer Inst. (2013)

105:1897–906. doi: 10.1093/jnci/djt306

17. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et

al. American society of clinical oncology/college of American pathologists

guideline recommendations for immunohistochemical testing of estrogen

and progesterone receptors in breast cancer. Arch Pathol Lab Med. (2010)

134:907–22. doi: 10.1043/1543-2165-134.7.e48

18. Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote

RJ, et al. American society of clinical oncology/college of American

pathologists guideline recommendations for human epidermal growth factor

receptor 2 testing in breast cancer. Arch Pathol Lab Med. (2007) 131:18–

43. doi: 10.1200/JCO.2006.09.2775

19. de Azambuja E, Cardoso F, de Castro G Jr, Colozza M, Mano MS, et

al. Ki-67 as prognostic marker in early breast cancer: a meta-analysis of

published studies involving 12,155 patients. Br J Cancer. (2007) 96:1504–

13. doi: 10.1038/sj.bjc.6603756

20. Laurinavicius A, Laurinaviciene A, Dasevicius D, Elie N, Plancoulaine B, Bor

C, et al. Digital image analysis in pathology: benefits and obligation. Anal Cell

Pathol. (2012) 35:75–8. doi: 10.1155/2012/243416

21. Robertson S, Azizpour H, Smith K, Hartman J. Digital image analysis in

breast pathology-from image processing techniques to artificial intelligence.

Transl Res. (2018) 194:19–35. doi: 10.1016/j.trsl.2017.10.010

22. Laurinavicius A, Plancoulaine B, Laurinaviciene A, Herlin P, Meskauskas

R, Baltrusaityte I, et al. A methodology to ensure and improve accuracy of

Ki67 labelling index estimation by automated digital image analysis in breast

cancer tissue. Breast Cancer Res. (2014) 16:R35. doi: 10.1186/bcr3639

23. Wang YX, Wang YY, Yang CG, Bu H, Yang WT, Wang L, et

al. An interobserver reproducibility analysis of size-set semiautomatic

counting for Ki67 assessment in breast cancer. Breast. (2019) 49:225–

32. doi: 10.1016/j.breast.2019.12.009

24. Aeffner F, Zarella MD, Buchbinder N, Bui MM, Goodman MR, Hartman

DJ, et al. Introduction to digital image analysis in whole-slide imaging: a

white paper from the digital pathology association. J Pathol Inform. (2019)

10:9. doi: 10.4103/jpi.jpi_82_18

25. Rimm DL, Leung SCY, McShane LM, Bai Y, Bane AL, Bartlett JMS, et al.

An international multicenter study to evaluate reproducibility of automated

scoring for assessment of Ki67 in breast cancer. Modern Pathol. (2019)

32:59–69. doi: 10.1038/s41379-018-0109-4

Frontiers in Oncology | www.frontiersin.org 10 June 2020 | Volume 10 | Article 950

https://www.frontiersin.org/articles/10.3389/fonc.2020.00950/full#supplementary-material
https://doi.org/10.1038/35021093
https://doi.org/10.5152/ejbh.2017.3636
https://doi.org/10.1016/j.yasu.2008.03.002
https://doi.org/10.1073/pnas.191367098
https://doi.org/10.1073/pnas.201162998
https://doi.org/10.1038/415530a
https://doi.org/10.1200/JCO.19.02309
https://doi.org/10.1093/annonc/mdt303
https://doi.org/10.1002/ijc.21004
https://doi.org/10.1016/j.compbiomed.2010.01.003
https://doi.org/10.1200/JCO.2010.31.2835
https://doi.org/10.1093/jnci/djw050
https://doi.org/10.1097/PAI.0b013e31804c7283
https://doi.org/10.1136/jcp.53.2.125
https://doi.org/10.1111/cas.12245
https://doi.org/10.1093/jnci/djt306
https://doi.org/10.1043/1543-2165-134.7.e48
https://doi.org/10.1200/JCO.2006.09.2775
https://doi.org/10.1038/sj.bjc.6603756
https://doi.org/10.1155/2012/243416
https://doi.org/10.1016/j.trsl.2017.10.010
https://doi.org/10.1186/bcr3639
https://doi.org/10.1016/j.breast.2019.12.009
https://doi.org/10.4103/jpi.jpi_82_18
https://doi.org/10.1038/s41379-018-0109-4
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zilenaite et al. Heterogeneity and Immune Response Model

26. Laurinavicius A, Laurinaviciene A, Meskauskas R, Baltrusaityte I, Besusparis

J, Herlin P, et al. Automated image analysis enables accurate enumeration of

the Ki-67 labelling index of breast cancer. Virchows Arch. (2013) 463:101.

27. Camp RL, Chung GG, Rimm DL. Automated subcellular localization and

quantification of protein expression in tissue microarrays. Nat Med. (2002)

8:1323–7. doi: 10.1038/nm791

28. Jakobsen MR, Teerapakpinyo C, Shuangshoti S, Keelawat S.

Comparison between digital image analysis and visual assessment of

immunohistochemical HER2 expression in breast cancer. Pathol Res Pract.

(2018) 214:2087–92. doi: 10.1016/j.prp.2018.10.015

29. Stalhammar G, Fuentes Martinez N, Lippert M, Tobin NP,

Molholm I, Kis L, et al. Digital image analysis outperforms

manual biomarker assessment in breast cancer. Mod Pathol. (2016)

29:318–29. doi: 10.1038/modpathol.2016.34

30. Laurinavicius A, Laurinaviciene A, Ostapenko V, Dasevicius D, Jarmalaite

S, Lazutka J. Immunohistochemistry profiles of breast ductal carcinoma:

factor analysis of digital image analysis data. Diagn Pathol. (2012)

7:27. doi: 10.1186/1746-1596-7-27

31. Laurinavicius A, Green AR, Laurinaviciene A, Smailyte G, Ostapenko

V, Meskauskas R, et al. Ki67/SATB1 ratio is an independent prognostic

factor of overall survival in patients with early hormone receptor-

positive invasive ductal breast carcinoma. Oncotarget. (2015) 6:41134–

45. doi: 10.18632/oncotarget.5838

32. Abubakar M, Figueroa J, Ali HR, Blows F, Lissowska J, Caldas C, et al.

Combined quantitative measures of ER, PR, HER2, and KI67 provide more

prognostic information than categorical combinations in luminal breast

cancer. Mod Pathol. (2019) 32:1244–56. doi: 10.1038/s41379-019-0270-4

33. Besusparis J, Plancoulaine B, Rasmusson A, Augulis R, Green AR,

Ellis IO, et al. Impact of tissue sampling on accuracy of Ki67

immunohistochemistry evaluation in breast cancer. Diagn Pathol. (2016)

11:82. doi: 10.1186/s13000-016-0525-z

34. Laurinavicius A, Plancoulaine B, Rasmusson A, Besusparis J,

Augulis R, Meskauskas R, et al. Bimodality of intratumor Ki67

expression is an independent prognostic factor of overall survival

in patients with invasive breast carcinoma. Virchows Arch. (2016)

468:493–502. doi: 10.1007/s00428-016-1907-z

35. Plancoulaine B, Laurinaviciene A, Herlin P, Besusparis J, Meskauskas R,

Baltrusaityte I, et al. A methodology for comprehensive breast cancer

Ki67 labeling index with intra-tumor heterogeneity appraisal based on

hexagonal tiling of digital image analysis data. Virchows Arch. (2015)

467:711–22. doi: 10.1007/s00428-015-1865-x

36. Jang MH, Kim HJ, Chung YR, Lee Y, Park SY. A comparison

of Ki-67 counting methods in luminal breast cancer: the

average method vs. the hot spot method. PLoS ONE. (2017)

12:e0172031. doi: 10.1371/journal.pone.0172031

37. Dowsett M, Nielsen TO, A’Hern R, Bartlett J, Coombes RC, Cuzick J,

et al. Assessment of Ki67 in breast cancer: recommendations from the

international Ki67 in breast cancer working group. J Natl Cancer Inst. (2011)

103:1656–64. doi: 10.1093/jnci/djr393

38. van Dijk N, Funt SA, Blank CU, Powles T, Rosenberg JE, van

der Heijden MS. The cancer immunogram as a framework for

personalized immunotherapy in urothelial cancer. Eur Urol. (2019)

75:435–44. doi: 10.1016/j.eururo.2018.09.022

39. Blank CU, Haanen JB, Ribas A, Schumacher TN. Cancer

immunology. The “cancer immunogram”. Science. (2016)

352:658–60. doi: 10.1126/science.aaf2834

40. Karasaki T, Nagayama K, Kuwano H, Nitadori JI, Sato M, Anraku

M, et al. An immunogram for the cancer-immunity cycle: towards

personalized immunotherapy of lung cancer. J Thorac Oncol. (2017) 12:791–

803. doi: 10.1016/j.jtho.2017.01.005

41. Galon J, Pages F, Marincola FM, Angell HK, Thurin M, Lugli A, et al. Cancer

classification using the immunoscore: a worldwide task force. J Transl Med.

(2012) 10:205. doi: 10.1186/1479-5876-10-205

42. Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C, et al. Towards

the introduction of the ’Immunoscore’ in the classification of malignant

tumours. J Pathol. (2014) 232:199–209. doi: 10.1002/path.4287

43. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell.

(2011) 144:646–74. doi: 10.1016/j.cell.2011.02.013

44. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-

induced cancer: crosstalk between tumours, immune cells and

microorganisms. Nat Rev Cancer. (2013) 13:759–71. doi: 10.1038/nrc3611

45. Palucka AK, Coussens LM. The basis of oncoimmunology. Cell. (2016)

164:1233–47. doi: 10.1016/j.cell.2016.01.049

46. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al.

Understanding the tumor immune microenvironment (TIME) for effective

therapy. Nat Med. (2018) 24:541–50. doi: 10.1038/s41591-018-0014-x

47. Coussens LM, Werb Z. Inflammation and cancer. Nature. (2002) 420:860–

7. doi: 10.1038/nature01322

48. Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture

in human tumours: impact on clinical outcome. Nat Rev Cancer. (2012)

12:298–306. doi: 10.1038/nrc3245

49. Taube JM, Galon J, Sholl LM, Rodig SJ, Cottrell TR, Giraldo

NA, et al. Implications of the tumor immune microenvironment

for staging and therapeutics. Modern Pathol. (2018) 31:214–

34. doi: 10.1038/modpathol.2017.156

50. Chraa D, Naim A, Olive D, Badou A. T lymphocyte subsets in

cancer immunity: friends or foes. J Leukoc Biol. (2019) 105:243–

55. doi: 10.1002/JLB.MR0318-097R

51. Pages F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea

G, et al. In situ cytotoxic and memory T cells predict outcome in

patients with early-stage colorectal cancer. J Clin Oncol. (2009) 27:5944–

51. doi: 10.1200/JCO.2008.19.6147

52. Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner

BI, Weber KE, et al. Tumour-infiltrating lymphocytes and prognosis

in different subtypes of breast cancer: a pooled analysis of 3771

patients treated with neoadjuvant therapy. Lancet Oncol. (2018) 19:40–

50. doi: 10.1016/S1470-2045(17)30904-X

53. Castaneda CA, Mittendorf E, Casavilca S, Wu Y, Castillo M, Arboleda

P, et al. Tumor infiltrating lymphocytes in triple negative breast cancer

receiving neoadjuvant chemotherapy. World J Clin Oncol. (2016) 7:387–

94. doi: 10.5306/wjco.v7.i5.387

54. Li J, Wang J, Chen R, Bai Y, Lu X. The prognostic value of tumor-

infiltrating T lymphocytes in ovarian cancer. Oncotarget. (2017) 8:15621–

31. doi: 10.18632/oncotarget.14919

55. Kim PS, Ahmed R. Features of responding T cells in cancer

and chronic infection. Curr Opin Immunol. (2010) 22:223–

30. doi: 10.1016/j.coi.2010.02.005

56. Kmiecik J, Poli A, Brons NH, Waha A, Eide GE, Enger PO, et al. Elevated

CD3+ and CD8+ tumor-infiltrating immune cells correlate with prolonged

survival in glioblastoma patients despite integrated immunosuppressive

mechanisms in the tumor microenvironment and at the systemic level. J

Neuroimmunol. (2013) 264:71–83. doi: 10.1016/j.jneuroim.2013.08.013

57. Piersma SJ, Jordanova ES, van Poelgeest MI, Kwappenberg KM, van der

Hulst JM, Drijfhout JW, et al. High number of intraepithelial CD8+ tumor-

infiltrating lymphocytes is associated with the absence of lymph node

metastases in patients with large early-stage cervical cancer. Cancer Res.

(2007) 67:354–61. doi: 10.1158/0008-5472.CAN-06-3388

58. Chen Z, Chen X, Zhou E, Chen G, Qian K, Wu X, et al.

Intratumoral CD8+ cytotoxic lymphocyte is a favorable prognostic

marker in node-negative breast cancer. PLoS ONE. (2014)

9:e95475. doi: 10.1371/journal.pone.0095475

59. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-

Pages C, et al. Type, density, and location of immune cells within human

colorectal tumors predict clinical outcome. Science. (2006) 313:1960–

4. doi: 10.1126/science.1129139

60. Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME,

White DE, et al. Tumor antigen-specific CD8T cells infiltrating the tumor

express high levels of PD-1 and are functionally impaired. Blood. (2009)

114:1537–44. doi: 10.1182/blood-2008-12-195792

61. Golden-Mason L, Palmer B, Klarquist J, Mengshol JA, Castelblanco N,

Rosen HR. Upregulation of PD-1 expression on circulating and intrahepatic

hepatitis C virus-specific CD8+ T cells associated with reversible

immune dysfunction. J Virol. (2007) 81:9249–58. doi: 10.1128/JVI.00

409-07

62. Sun S, Fei X, Mao Y, Wang X, Garfield DH, Huang O, et al. PD-

1(+) immune cell infiltration inversely correlates with survival of operable

Frontiers in Oncology | www.frontiersin.org 11 June 2020 | Volume 10 | Article 950

https://doi.org/10.1038/nm791
https://doi.org/10.1016/j.prp.2018.10.015
https://doi.org/10.1038/modpathol.2016.34
https://doi.org/10.1186/1746-1596-7-27
https://doi.org/10.18632/oncotarget.5838
https://doi.org/10.1038/s41379-019-0270-4
https://doi.org/10.1186/s13000-016-0525-z
https://doi.org/10.1007/s00428-016-1907-z
https://doi.org/10.1007/s00428-015-1865-x
https://doi.org/10.1371/journal.pone.0172031
https://doi.org/10.1093/jnci/djr393
https://doi.org/10.1016/j.eururo.2018.09.022
https://doi.org/10.1126/science.aaf2834
https://doi.org/10.1016/j.jtho.2017.01.005
https://doi.org/10.1186/1479-5876-10-205
https://doi.org/10.1002/path.4287
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1038/nrc3611
https://doi.org/10.1016/j.cell.2016.01.049
https://doi.org/10.1038/s41591-018-0014-x
https://doi.org/10.1038/nature01322
https://doi.org/10.1038/nrc3245
https://doi.org/10.1038/modpathol.2017.156
https://doi.org/10.1002/JLB.MR0318-097R
https://doi.org/10.1200/JCO.2008.19.6147
https://doi.org/10.1016/S1470-2045(17)30904-X
https://doi.org/10.5306/wjco.v7.i5.387
https://doi.org/10.18632/oncotarget.14919
https://doi.org/10.1016/j.coi.2010.02.005
https://doi.org/10.1016/j.jneuroim.2013.08.013
https://doi.org/10.1158/0008-5472.CAN-06-3388
https://doi.org/10.1371/journal.pone.0095475
https://doi.org/10.1126/science.1129139
https://doi.org/10.1182/blood-2008-12-195792
https://doi.org/10.1128/JVI.00409-07
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zilenaite et al. Heterogeneity and Immune Response Model

breast cancer patients. Cancer Immunol Immunother. (2014) 63:395–

406. doi: 10.1007/s00262-014-1519-x

63. Shindo Y, Hazama S, Tsunedomi R, Suzuki N, Nagano H. Novel

biomarkers for personalized cancer immunotherapy. Cancers. (2019)

11:1223. doi: 10.3390/cancers11091223

64. Baptista MZ, Sarian LO, Derchain SF, Pinto GA, Vassallo J. Prognostic

significance of PD-L1 and PD-L2 in breast cancer. Hum Pathol. (2016)

47:78–84. doi: 10.1016/j.humpath.2015.09.006

65. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T,

Fulop A, et al. Pembrolizumab versus chemotherapy for PD-

L1-positive non-small-cell lung cancer. N Engl J Med. (2016)

375:1823–33. doi: 10.1056/NEJMoa1606774

66. Beckers RK, Selinger CI, Vilain R, Madore J, Wilmott JS, Harvey K, et al.

Programmed death ligand 1 expression in triple-negative breast cancer is

associated with tumour-infiltrating lymphocytes and improved outcome.

Histopathology. (2016) 69:25–34. doi: 10.1111/his.12904

67. Shin J, Chung JH, Kim SH, Lee KS, Suh KJ, Lee JY, et al. Effect of Platinum-

based chemotherapy on PD-L1 expression on tumor cells in non-small cell

lung cancer. Cancer Res Treat. (2019) 51:1086–97. doi: 10.4143/crt.2018.537

68. Chen Q, Li T, Yue W. Drug response to PD-1/PD-L1 blockade:

based on biomarkers. Onco Targets Ther. (2018) 11:4673–

83. doi: 10.2147/OTT.S168313

69. Sun WY, Lee YK, Koo JS. Expression of PD-L1 in triple-negative breast

cancer based on different immunohistochemical antibodies. J Transl Med.

(2016) 14:173. doi: 10.1186/s12967-016-0925-6

70. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al.

Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung

cancer. N Engl J Med. (2015) 373:1627–39. doi: 10.1056/NEJMoa1507643

71. Santini FC, HellmannMD. PD-1/PD-L1 axis in lung cancer. Cancer J. (2018)

24:15–9. doi: 10.1097/PPO.0000000000000300

72. Egelston CA, Avalos C, Tu TY, Simons DL, Jimenez G, Jung JY, et al. Human

breast tumor-infiltrating CD8(+) T cells retain polyfunctionality despite PD-

1 expression. Nat Commun. (2018) 9:4297. doi: 10.1038/s41467-018-06653-9

73. Nixon BG, Li MO. Satb1: restraining PD1 and T cell exhaustion. Immunity.

(2017) 46:3–5. doi: 10.1016/j.immuni.2017.01.002

74. Stephen TL, Payne KK, Chaurio RA, Allegrezza MJ, Zhu

H, Perez-Sanz J, et al. SATB1 expression governs epigenetic

repression of PD-1 in tumor-reactive T cells. Immunity. (2017)

46:51–64. doi: 10.1016/j.immuni.2016.12.015

75. Rushing C, Bulusu A, Hurwitz HI, Nixon AB, Pang H. A

leave-one-out cross-validation SAS macro for the identification

of markers associated with survival. Comput Biol Med. (2015)

57:123–9. doi: 10.1016/j.compbiomed.2014.11.015

76. Budczies J, Klauschen F, Sinn BV, Gyorffy B, Schmitt WD, Darb-

Esfahani S, et al. Cutoff Finder: a comprehensive and straightforward web

application enabling rapid biomarker cutoff optimization. PLoS ONE. (2012)

7:e51862. doi: 10.1371/journal.pone.0051862

77. Cai S, Han HJ, Kohwi-Shigematsu T. Tissue-specific nuclear architecture

and gene expression regulated by SATB1. Nat Genet. (2003) 34:42–

51. doi: 10.1038/ng1146

78. Han HJ, Russo J, Kohwi Y, Kohwi-Shigematsu T. SATB1 reprogrammes gene

expression to promote breast tumour growth and metastasis. Nature. (2008)

452:187–93. doi: 10.1038/nature06781

79. Iorns E, Hnatyszyn HJ, Seo P, Clarke J, Ward T, Lippman M. The role of

SATB1 in breast cancer pathogenesis. J Natl Cancer Inst. (2010) 102:1284–

96. doi: 10.1093/jnci/djq243

80. Selinger CI, Cooper WA, Al-Sohaily S, Mladenova DN, Pangon L, Kennedy

CW, et al. Loss of special AT-rich binding protein 1 expression is a

marker of poor survival in lung cancer. J Thorac Oncol. (2011) 6:1179–

89. doi: 10.1097/JTO.0b013e31821b4ce0

81. Ahlfors H, Limaye A, Elo LL, Tuomela S, Burute M, Gottimukkala

KV, et al. SATB1 dictates expression of multiple genes including IL-5

involved in human T helper cell differentiation. Blood. (2010) 116:1443–

53. doi: 10.1182/blood-2009-11-252205

82. Satoh Y, Yokota T, Sudo T, Kondo M, Lai A, Kincade PW, et al. The Satb1

protein directs hematopoietic stem cell differentiation toward lymphoid

lineages. Immunity. (2013) 38:1105–15. doi: 10.1016/j.immuni.2013.05.014

83. Alvarez JD, Yasui DH, Niida H, Joh T, Loh DY, Kohwi-Shigematsu T. The

MAR-binding protein SATB1 orchestrates temporal and spatial expression

of multiple genes during T-cell development. Genes Dev. (2000) 14:521–35.

doi: 10.1101/gad.14.5.521

84. Nussing S, Koay HF, Sant S, Loudovaris T, Mannering SI,

Lappas M, et al. Divergent SATB1 expression across human

life span and tissue compartments. Immunol Cell Biol. (2019)

97:498–511. doi: 10.1111/imcb.12233

85. Stanton SE, Adams S, Disis ML. Variation in the incidence and magnitude

of tumor-infiltrating lymphocytes in breast cancer subtypes: a systematic

review. JAMA Oncol. (2016) 2:1354–60. doi: 10.1001/jamaoncol.2016.1061

86. Savas P, Salgado R, Denkert C, Sotiriou C, Darcy PK, SmythMJ, et al. Clinical

relevance of host immunity in breast cancer: from TILs to the clinic. Nat Rev

Clin Oncol. (2016) 13:228–41. doi: 10.1038/nrclinonc.2015.215

87. Kurozumi S, Matsumoto H, Kurosumi M, Inoue K, Fujii T, Horiguchi J, et

al. Prognostic significance of tumour-infiltrating lymphocytes for oestrogen

receptor-negative breast cancer without lymph node metastasis. Oncol Lett.

(2019) 17:2647–56. doi: 10.3892/ol.2019.9938

88. Salgado R, Denkert C, Campbell C, Savas P, Nuciforo P, Aura C, et

al. Tumor-infiltrating lymphocytes and associations with pathological

complete response and event-free survival in HER2-positive early-

stage breast cancer treated with lapatinib and trastuzumab: a

secondary analysis of the NeoALTTO trial. JAMA Oncol. (2015)

1:448–55. doi: 10.1001/jamaoncol.2015.0830

89. Ali HR, Provenzano E, Dawson SJ, Blows FM, Liu B, Shah

M, et al. Association between CD8+ T-cell infiltration and

breast cancer survival in 12,439 patients. Ann Oncol. (2014)

25:1536–43. doi: 10.1093/annonc/mdu191

90. Baker K, Lachapelle J, Zlobec I, Bismar TA, Terracciano L, Foulkes WD.

Prognostic significance of CD8+ T lymphocytes in breast cancer depends

upon both oestrogen receptor status and histological grade. Histopathology.

(2011) 58:1107–16. doi: 10.1111/j.1365-2559.2011.03846.x

91. Ahn SG, Cha YJ, Bae SJ, Yoon C, Lee HW, Jeong J. Comparisons

of tumor-infiltrating lymphocyte levels and the 21-gene recurrence

score in ER-positive/HER2-negative breast cancer. BMC Cancer. (2018)

18:320. doi: 10.1186/s12885-018-4228-6

92. Sobral-Leite M, Salomon I, Opdam M, Kruger DT, Beelen KJ, van der Noort

V, et al. Cancer-immune interactions in ER-positive breast cancers: PI3K

pathway alterations and tumor-infiltrating lymphocytes. Breast Cancer Res.

(2019) 21:90. doi: 10.1186/s13058-019-1176-2

93. Lee KH, Kim EY, Yun JS, Park YL, Do SI, Chae SW, et al. The

prognostic and predictive value of tumor-infiltrating lymphocytes and

hematologic parameters in patients with breast cancer. BMC Cancer. (2018)

18:938. doi: 10.1186/s12885-018-4832-5

94. Noordhoek I, de Groot AF, Cohen D, Liefers GJ, Portielje JEA, Kroep

JR. Higher ER load is not associated with better outcome in stage

1-3 breast cancer: a descriptive overview of quantitative HR analysis

in operable breast cancer. Breast Cancer Res Treat. (2019) 176:27–

36. doi: 10.1007/s10549-019-05233-9

95. Bartlett JM, Brookes CL, Robson T, van de Velde CJ, Billingham LJ, Campbell

FM, et al. Estrogen receptor and progesterone receptor as predictive

biomarkers of response to endocrine therapy: a prospectively powered

pathology study in the tamoxifen and exemestane adjuvant multinational

trial. J Clin Oncol. (2011) 29:1531–8. doi: 10.1200/JCO.2010.30.3677

96. Lamy PJ, Pujol P, Thezenas S, Kramar A, Rouanet P, Guilleux F,

et al. Progesterone receptor quantification as a strong prognostic

determinant in postmenopausal breast cancer women under tamoxifen

therapy. Breast Cancer Res Treat. (2002) 76:65–71. doi: 10.1023/A:1020228

620173

97. Raghav KP, Hernandez-Aya LF, Lei X, Chavez-Macgregor M, Meric-

Bernstam F, Buchholz TA, et al. Impact of low estrogen/progesterone

receptor expression on survival outcomes in breast cancers previously

classified as triple negative breast cancers. Cancer. (2012) 118:1498–

506. doi: 10.1002/cncr.26431

98. Chen T, Zhang N, Moran MS, Su P, Haffty BG, Yang Q. Borderline

ER-positive primary breast cancer gains no significant survival

benefit from endocrine therapy: a systematic review and meta-

analysis. Clin Breast Cancer. (2018) 18:1–8. doi: 10.1016/j.clbc.2017.

06.005

99. Balduzzi A, Bagnardi V, Rotmensz N, Dellapasqua S, Montagna E,

Cardillo A, et al. Survival outcomes in breast cancer patients with low

Frontiers in Oncology | www.frontiersin.org 12 June 2020 | Volume 10 | Article 950

https://doi.org/10.1007/s00262-014-1519-x
https://doi.org/10.3390/cancers11091223
https://doi.org/10.1016/j.humpath.2015.09.006
https://doi.org/10.1056/NEJMoa1606774
https://doi.org/10.1111/his.12904
https://doi.org/10.4143/crt.2018.537
https://doi.org/10.2147/OTT.S168313
https://doi.org/10.1186/s12967-016-0925-6
https://doi.org/10.1056/NEJMoa1507643
https://doi.org/10.1097/PPO.0000000000000300
https://doi.org/10.1038/s41467-018-06653-9
https://doi.org/10.1016/j.immuni.2017.01.002
https://doi.org/10.1016/j.immuni.2016.12.015
https://doi.org/10.1016/j.compbiomed.2014.11.015
https://doi.org/10.1371/journal.pone.0051862
https://doi.org/10.1038/ng1146
https://doi.org/10.1038/nature06781
https://doi.org/10.1093/jnci/djq243
https://doi.org/10.1097/JTO.0b013e31821b4ce0
https://doi.org/10.1182/blood-2009-11-252205
https://doi.org/10.1016/j.immuni.2013.05.014
https://doi.org/10.1101/gad.14.5.521
https://doi.org/10.1111/imcb.12233
https://doi.org/10.1001/jamaoncol.2016.1061
https://doi.org/10.1038/nrclinonc.2015.215
https://doi.org/10.3892/ol.2019.9938
https://doi.org/10.1001/jamaoncol.2015.0830
https://doi.org/10.1093/annonc/mdu191
https://doi.org/10.1111/j.1365-2559.2011.03846.x
https://doi.org/10.1186/s12885-018-4228-6
https://doi.org/10.1186/s13058-019-1176-2
https://doi.org/10.1186/s12885-018-4832-5
https://doi.org/10.1007/s10549-019-05233-9
https://doi.org/10.1200/JCO.2010.30.3677
https://doi.org/10.1023/A:1020228620173
https://doi.org/10.1002/cncr.26431
https://doi.org/10.1016/j.clbc.2017.06.005
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zilenaite et al. Heterogeneity and Immune Response Model

estrogen/progesterone receptor expression. Clin Breast Cancer. (2014)

14:258–64. doi: 10.1016/j.clbc.2013.10.019

100. Gloyeske NC, Dabbs DJ, Bhargava R. Low ER+ breast cancer:

Is this a distinct group? Am J Clin Pathol. (2014) 141:697–

701. doi: 10.1309/AJCP34CYSATWFDPQ

101. Iwamoto T, Booser D, Valero V, Murray JL, Koenig K, Esteva FJ, et al.

Estrogen receptor (ER) mRNA and ER-related gene expression in breast

cancers that are 1% to 10% ER-positive by immunohistochemistry. J Clin

Oncol. (2012) 30:729–34. doi: 10.1200/JCO.2011.36.2574

102. Andor N, Graham TA, Jansen M, Xia LC, Aktipis CA, Petritsch C, et al. Pan-

cancer analysis of the extent and consequences of intratumor heterogeneity.

Nat Med. (2016) 22:105–13. doi: 10.1038/nm.3984

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Zilenaite, Rasmusson, Augulis, Besusparis, Laurinaviciene,

Plancoulaine, Ostapenko and Laurinavicius. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Oncology | www.frontiersin.org 13 June 2020 | Volume 10 | Article 950

https://doi.org/10.1016/j.clbc.2013.10.019
https://doi.org/10.1309/AJCP34CYSATWFDPQ
https://doi.org/10.1200/JCO.2011.36.2574
https://doi.org/10.1038/nm.3984
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

	Independent Prognostic Value of Intratumoral Heterogeneity and Immune Response Features by Automated Digital Immunohistochemistry Analysis in Early Hormone Receptor-Positive Breast Carcinoma
	Introduction
	Materials and Methods
	Study Population and Tumor Characteristics
	Immunohistochemistry
	Digital Image Acquisition and Analysis
	Computation of IHC Indicators
	Statistical Methods

	Results
	Summary Statistics
	Factor Analysis of IHC Indicators
	Prognostic Value of IHC and Clinicopathologic Indicators in Univariate Analyses
	Independent Predictors of OS
	Nonlinear Relationship Between PR Expression and Its Intratumoral Heterogeneity
	Prognostic Value of PR Expression Rates Revealed by Its Heterogeneity Property

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


