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Fibroblast activation protein α (FAP) plays an important role in tissue remodeling and

helps tumor cells invade surrounding tissue. We sought to investigate FAP as a

prognostic molecular marker in colorectal cancer (CRC) using immunohistochemical and

transcriptomic data. FAP expression and clinicopathological information were obtained

from The Cancer Genome Atlas data set. The association of FAP expression and

tissue cellular heterogeneity landscape was explored using the xCell method. We

evaluated FAP protein expression in a cohort of 92 CRCs and 19 non-tumoral tissues.

We observed that FAP was upregulated in tumors both at the mRNA and protein

levels, and its expression was associated with advanced stages, poor survival, and

consensus molecular subtype 4. FAP expression was also associated with angiogenesis

and collagen degradation. We observed an enrichment in immune-cell process–related

genes associated with FAP overexpression. Colorectal cancers with high FAP expression

display an inflamed phenotype enriched for macrophages and monocytes. Those tumors

showed enrichment for regulatory T cell populations and depletion of TH1 and natural

killer T cells, pointing to an immunosuppressive environment. Colorectal cancers with

high levels of stromal FAP are associated with aggressive disease progression and

survival. Our results suggest that FAP plays additional roles in tumor progression such

as modulation of angiogenesis and immunoregulation in the tumor microenvironment.
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INTRODUCTION

Tumor-infiltrating immune cells as well as cancer-associated fibroblasts (CAFs) are important
components of the tumor microenvironment. In human cancer, the tumor microenvironment has
been suggested as a new component for the classification of malignant tumors including colorectal
cancers (CRCs) (1–3). In particular, CAFs play important roles in modulating tumor development
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and prognosis via releasing proteolytic enzymes, growth factors,
and immunomodulatory cytokines (4, 5).

Fibroblast activation protein α (FAP, also called seprase) is a
prolyl-specific serine proteinase, highly upregulated in fibroblasts
especially at sites of active tissue remodeling, including wound
healing and fibrosis (6, 7). In CRC, previous studies reported
the detection for FAP in more than 93% of the tumor. Among
those, 30% showed high intensity for FAP staining (8). High
FAP expression has been proposed as a biomarker for disease
progression in metastatic CRCs (9). Similarly in rectal cancer,
high FAP expression after preoperative chemoradiotherapy has
been associated with poor prognosis (9). Given the scientific
evidence, FAP has been considered as a candidate for targeted
therapy in CRC. So far, diverse approaches, including FAP-
targeting vaccines and immunotherapies, have been used
in preclinical studies to deplete FAP-positive cells (10–12).
Although these approaches have shown encouraging results in
preclinical studies, those tested in clinical trials have shown
limited efficacy, even in combination with chemotherapy (13–
15). Furthermore, FAP-targeting radioligands have been used for
in vivo imaging and targeted radionuclide therapy for a variety of
cancers including CRC (16, 17).

Most of the functions described for FAP are associated with
its enzymatic activity involved in tissue remodeling, which
helps tumor cells invade the surrounding tissue, penetrate the
blood vessel wall, and travel to form distant metastasis (18–
21). Recent evidence suggested that FAP in CAFs could also
play a critical role in regulating antitumor immune response
by inducing tumor-promoting inflammation (22–24). This is
particularly interesting because the majority of CRC patients are
resistant to immunotherapies, especially to immune checkpoint
blockades (25).

In our study, we sought to investigate FAP as a molecular
marker in CRC using immunohistochemical and transcriptomic
data. To investigate other potential roles of FAP in CRC,
we explored its association with the clinicopathological
characteristics of our in-house cohort. We further investigated its
association at the mRNA level with molecular features, pathways
and cell type populations in the tumor microenvironment using
The Cancer Genome Atlas (TCGA) data set.

MATERIALS AND METHODS

Patients and Specimen Characteristics
One hundred primary unselected, non-consecutive CRCs treated
at the University Hospital Basel between the years 2006 and
2012 were included in this study. A tissue microarray (TMA)
of these 100 tumors was constructed. Briefly, tissue cylinders
with a diameter of 1mm were punched from morphologically
representative areas of each donor block and brought into
one recipient paraffin block (30 × 25mm) using the TMA
GrandMaster R© (TMA-GM; 3D-Histech Ltd.; Sysmex AG,
Horgen, Switzerland) technology. Each punch was derived from
the center of the tumor in an area with no necrosis so that
each TMA spot consisted of more than 50% tumor cells. For
30 cases, non-malignant adjacent mucosa was selected from

the same donor block. The study was performed in accordance
with the Helsinki Declaration and approved by the ethics
committee (Ethics Committee of Basel, EKBB, no. EKBB 361/12).
Data were collected retrospectively in a non-stratified and non-
matchedmanner including patient age, tumor diameter, location,
pT/pN stage, grade, histologic subtype, vascular invasion, and
clinical outcome. Intratumoral and peritumoral lymphocytic
inflammationwas evaluated using the original hematoxylin-eosin
(H&E) slides of the resection specimens used as donor block.
The tumor grade was categorized as low and high (≥50, <50%
gland formation, respectively). The clinical outcome measure of
interest was overall survival time.

Immunohistochemistry
Immunohistochemistry (IHC) was performed using an anti-
FAP antibody (Vitatex, Stony Brook, NY, USA; seprase/FAPα;
dilution 1:100). Staining was performed on a Leica Bond III
IHC staining system (Muttenz, Switzerland) using DAB as
chromogen. Immunoreactivity was evaluated semiquantitatively
as the proportion of positive staining in stromal cells in 10%
increments, as well as the maximal staining intensity (0 = none,
1 = weak, 2 = intermediate, 3 = strong) by two experienced
pathologists with expertise in gastrointestinal pathology (C.E.
and L.M.T.). In terms of the percentage of FAP-positive cells,
samples containing <10% of positive cells were classified as low,
whereas samples containing at least 10% of positive cells were
classified as high as suggested by Henry et al. (8). In terms of FAP
staining intensity, samples with intensities 0 or 1 were considered
low, whereas samples with intensities 2 or 3 were considered
high (8). In addition, 20 cases positive for FAP on TMA were
reevaluated using whole sections from formalin-fixed paraffin-
embedded tissue to study FAP expression heterogeneity. FAP
immunostaining was evaluated both in stroma adjacent to the
invasive tumor front and within the tumor center.

Tumor–Stromal Ratio
For all tumors, the tumor–stromal ratio on 4µm H&E-stained
tissue sections was calculated as described previously (26), and
the stromal percentage was estimated per 10% intervals. Tumors
were divided into stroma-high (>50%) and stroma-low (≤50%)
groups according to their highest score.

Assessment of Tumor Budding
Tumor budding was evaluated according to the International
Tumor Budding Consensus Conference (ITBCC) method (27)
and was defined according to ITBCC as single tumor cells or
tumor cell clusters of up to four cells. Whole H&E-stained
tissue sections of the tumors were used. One pathologist (C.E.)
searched all tumor slides throughout at low magnification.
Densest budding area at the invasive front (hot spot) was selected
by visual estimation. Tumor buds in this area were counted at
20× magnification (field area, 0.785 mm2). Density of tumor
buds was assigned into three grades: grade 1 (BD-1): 0–4 buds;
grade 2 (BD-2): 5–9 buds; and grade 3 (BD-3): ≥10 buds.
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Microsatellite Instability
Immunohistochemical analyses of mismatch repair proteins were
performed for expression of the four mismatch repair proteins
MLH1, MSH2, MSH6, and PMS2 as previously described
(28). Tissue samples with tumor cells lacking nuclear staining
for at least one of these proteins were considered to have
a positive microsatellite instability (MSI) screening status,
hereafter referred to as MSI. Negative MSI screening status
based on immunohistochemical staining is hereafter referred to
as microsatellite-stable.

Analysis of TCGA Data Set
FPKMgene-level expression data for TCGA colorectal carcinoma
cohort (29) with 622 tumors and 51 non-tumoral tissues, defined
as “solid tissue normal,” were obtained from TCGA Genomics
Data Commons harmonized data portal using TCGAbiolinks R
package (30). The expression of FAP was compared between
tumors and normal tissues using the Student t-test. Tumor
samples were classified into FAP-high and FAP-low groups
based on the threshold of mean + 3 standard deviations of
normal tissues. Clinical information was obtained from the
Human Protein Atlas (Pathology Atlas) (31) CRC project for 596
TCGA CRCs.

Raw read counts of the TCGA CRC Project downloaded
using TCGAbiolinks package (30) were used for differential
expression analysis using the edgeR package (32). Genes with
low expression (<1 log-counts per million in ≥50 samples)
were filtered out. Normalization was performed using the
“TMM” (weighted trimmed mean) method (33), and differential
expression was assessed using the quasi-likelihood F test. Genes
with log-fold change >2 and false discovery rate (FDR) <0.05
were considered differentially expressed. Pathway enrichment
analysis of the upregulated genes from the differential analysis
between the FAP-high and FAP-low groups was performed using
clusterProfiler package (34), which supports Gene Ontology,
KEGG, and Reactome Pathways. Significantly enriched pathways
were selected based on FDR <0.05. Gene set enrichment
analysis (GSEA) of all analyzed genes ranked based on signed
p value according to the direction of the log-fold change was
performed using the fgsea package (35). Gene Ontology gene
sets from MSigDB (36) were used to identify significantly
upregulated/downregulated pathways. Molecular subtyping was
performed using CMScaller package (37), and the 622 TCGA
CRCs were classified into 97 CMS1, 170 CMS2, 95 CMS3,
195 CMS4 subtypes, and 65 unclassified. Cell type enrichment
analysis was performed with FPKM gene expression data using
xCell gene signatures-based method for cell types (38).

Statistical Analysis
Statistical comparisons between categorical variables were
performed using χ

2 test or Fisher exact test where appropriate.
Statistical comparisons between numeric variables were
performed using t-test, Mann–Whitney U-test, or paired
Wilcoxon test. Survival analysis was performed using the
Kaplan–Meier method and log-rank test. For the TCGA cohort,
stratification of FAP expression for overall survival analysis was
performed using the maxstat R package (39). Univariate Cox

regression analyses were performed to investigate the association
between overall survival and clinical variables. Variables
significant in univariate Cox regression analyses were included
in multivariate Cox regression analysis. All tests were two-sided,
and p < 0.05 was considered statistically significant. Statistical
power of statistical tests was estimated by 100 iterations of
bootstrapping. Statistical analysis was carried out with Prism
(v7.0; San Diego, CA, USA) and R (v.3.6.1; R Foundation for
Statistical Computing, Vienna, Austria. http://www.R-project.
org/).

RESULTS

Expression of FAP in Colorectal Cancers
We analyzed the expression of FAP at the protein level in stromal
cells by staining and scoring a TMA containing 100 CRC samples
and 30 non-tumoral adjacent tissues using IHC (Figure 1A).
After excluding samples for which the tissue core was absent or
had poor staining quality, 92 CRCs and 19 non-tumoral colon
samples were available for analysis. We observed a significantly
higher percentage of FAP-positive stromal cells in tumors
compared to non-tumoral tissues (p < 0.0001; Figure 1B). FAP
expression was detected in 91% (84/92) of the tumors. High
frequency (at least 10%) of FAP-positive cells was found in 78%
(72/92) of CRCs, whereas high FAP intensity was observed in 66%
(61/92, Figure 1 and Supplementary Figure 1A). Sixty-three
percent (58/92) had high frequency of FAP-positive cells with
elevated intensity (2 or 3). Although FAP staining was detectable
in 79% (15/19) of the non-tumoral tissue samples, both the
number of positive cells and the intensity were significantly lower
compared to tumoral tissue (both p< 0.0001; Figure 1B). Similar
results were observed when we considered the 19 matched pairs
of CRCs and non-tumoral colon samples (p= 0.005 for frequency
and p= 0.01 for intensity; Supplementary Figure 1B). Of the 15
non-tumoral tissue samples with detectable FAP expression, only
a single case showed a high percentage (≥10%) of FAP-positive
(intensity 2) cells.

We then investigated the association between FAP expression
(both frequency and intensity) and the clinicopathological
characteristics of our cohort (Table 1). We found that the
frequency of FAP-positive cells and that of cells with high FAP
intensity were significantly more frequently found in CRCs with
advanced stages (p= 0.01 and p < 0.05, respectively, Figure 1D).
Similarly, high FAP intensity was also associated with tumors
showing high tumor grade and lymphovascular invasion (p <

0.05 and p= 0.03, respectively, Table 1). The lymphatic invasion
was also associated with a high frequency of FAP-positive cells
(p = 0.09, Figure 1E and Table 1) and a high FAP intensity
(p < 0.01, Figure 1E and Table 1). We further observed a
stepwise increase in tumor budding according to the percentage
of FAP-positive cells (p = 0.009, Supplementary Figure 1C). No
significant association was found with age, sex, tumor location,
presence of MSI, stroma-to-tumor ratio, or venous invasion
(Table 1).

Furthermore, we determined whether there was an association
between the frequency of FAP-positive cells and overall
survival. High frequency of FAP-positive cells, but not FAP
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FIGURE 1 | FAP protein is overexpressed in CRC and is associated with worse overall survival. (A) Representative examples of FAP expression by

immunohistochemistry. FAP expression in (I) high percentage of tumor-associated stromal cells (100%); (II) tumor-associated stroma with low number of positive cells

(5%); (III) normal tissue showing negative staining for FAP; (IV) FAP high-intensity staining in tumor-associated stromal cells (high); (V) FAP low-intensity staining in

tumor-associated stromal cells (low); and (VI) normal tissue showing FAP high-intensity staining in stroma cells. Scale bar: 50µm. (B) Percentage of cells showing

positive FAP staining in normal stroma and tumor-associated stroma (above). Scoring of FAP staining based on intensity in normal and tumor-associated stroma

(below). (C) Overall survival analysis (Kaplan–Meier) of CRC patients from the TMA cohort after stratification for high and low percentage of FAP-positive cells. Number

of CRCs with high and low percentages of FAP-positive cells (above), as well as high and low FAP intensity (below) in (D) early and advanced tumor stages, and (E)

positive and negative lymphatic invasion. Statistical analyses were performed using Fisher exact test for categorical variables, Mann–Whitney U-test for numeric

variables and log-rank (Mantel–Cox) test for survival analysis. All tests were two-sided, and p < 0.05 was considered statistically significant. Data in (B) are

represented as mean ± SD. *Statistical power >70%.

intensity, was associated with worse overall survival (p = 0.02;
Figure 1C and Supplementary Figure 1D). Similarly, univariate
and multivariate Cox regression analyses showed that FAP
expression is an independent predictor of overall survival
(Supplementary Table 1).

To cross-validate our results, we retrieved the gene expression
data of 622 CRC cases from TCGA (29). In agreement with
the data obtained by IHC on the TMA (Figure 1B), tumor
samples expressed significantly higher levels of FAP compared
to normal tissues (p < 2.2e-16; Figure 2A). Association of FAP
expression with clinicopathological parameters demonstrated
that FAP overexpression was associated with more advanced
tumor stage (p = 0.02, Table 2 and Figure 2C). In terms of
outcome, we observed a trend toward worse overall survival
in patients with tumors with high FAP expression (p = 0.06;
Figure 2B and Supplementary Figure 2). Univariate analysis
found tumor stages and tumor location as predictors of overall
survival, whereas FAP expression showed a trend to it (p = 0.06;
Supplementary Table 2).

Taken together, our results suggest that FAP expression may
be prognostic in CRC.

Transcriptomic Analysis of FAP Expression
in Colorectal Tumors
To further understand the possible role of FAP in CRC,
we analyzed the transcriptomic data from the TCGA data
set (n = 622). We investigated the association of FAP
expression with the CRC molecular subtypes, and we observed
a statistically significant association with tumors classified as
CMS1 and CMS4 (p = 0.02 and p < 0.001; Figure 3A

and Table 2). CMS1 and CMS4 have been reported to
be associated with an upregulation of immune response
genes and epithelial-to-mesenchymal transition, respectively
(40). In particular, the association with CMS4 suggests a
more aggressive origin of these tumors characterized by
FAP overexpression.

Then, we performed a differential expression analysis
between CRCs with high vs. low FAP expression. The
differential expression analysis revealed 655 up- and 9
downregulated genes. Consistent with previous reports
(41, 42), we found that the upregulated genes were
enriched in functions related to collagen degradation,
extracellular organization, regulation of cell-to-cell adhesion,
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TABLE 1 | Association between FAP protein expression and clinicopathological features in the TMA cohort.

Clinical features Frequency Intensity

High FAP expression Low FAP expression p High FAP expression Low FAP expression p

Age (years)

<59 9 (82%) 2 (18%) 0.64 7 (64%) 4 (36%) 0.11

60–69 16 (73%) 6 (27%) 11 (50%) 11 (50%)

70–79 24 (86%) 4 (14%) 23 (82%) 5 (18%)

>80 23 (74%) 8 (26%) 19 (61%) 12 (39%)

Sex

Male 42 (78%) 12 (22%) 1 34 (63%) 20 (37%) 0.66

Female 30 (79%) 8 (21%) 26 (68%) 12 (32%)

Tumor location

Cecum 14 (82%) 3 (18%) 0.96 13 (76%) 4 (24%) 0.73

Ascending colon 12 (80%) 3 (20%) 8 (53%) 7 (47%)

Transverse colon 4 (80%) 1 (20%) 4 (80%) 1 (20%)

Descending colon 6 (67%) 3 (33%) 5 (56%) 4 (44%)

Sigmoid colon 20 (77%) 6 (23%) 16 (62%) 10 (38%)

Rectum 16 (80%) 4 (20%) 13 (65%) 7 (35%)

Stage

I 10 (59%) 7 (41%) 0.03 11 (65%) 6 (35%) 0.14

II 19 (70%) 8 (30%) 13 (48%) 14 (52%)

III 25 (93%) 2 (7%) 20 (74%) 7 (26%)

IV 18 (86%) 3 (14%) 16 (76%) 5 (24%)

Grade

Low 51 (75%) 17 (25%) 0.26 40 (59%) 28 (41%) <0.05

High 21 (88%) 3 (12%) 20 (83%) 4 (17%)

Tumor: stroma*

Stroma low 55 (77%) 16 (23%) 1 46 (65%) 25 (35%) 1

Stroma high 17 (68%) 4 (32%) 14 (66%) 7 (34%)

Microsatellite instability*

MSI 9 (90%) 1 (10%) 0.45 9 (90%) 1 (10%) 0.09

MSS 62 (77%) 19 (23%) 50 (62%) 31 (38%)

Lymphatic invasion

Positive 26 (90%) 3 (10%) 0.09 24 (83%) 5 (17%) <0.01**

Negative 34 (71%) 14 (29%) 24 (50%) 24 (50%)

Venous invasion*

Positive 16 (76%) 5 (24%) 1 13 (61%) 8 (38%) 1

Negative 44 (76%) 14 (24%) 35 (60%) 23 (40%)

Lymphovascular invasion*

Positive 32 (84%) 6 (16%) 0.2 29 (76%) 9 (24%) 0.03

Negative 33 (72%) 13 (28%) 24 (52%) 22 (48%)

All 2 × 2 contingency tables were analyzed with Fisher exact tests. All others by χ
2 test.

*Patients with data not available, unknown, and discrepancies.

**Statistical power estimated by bootstrapping.

and cell junction organization (Figure 3B). Additionally,
pathways involved in epithelial cell proliferation, invasion,
and immune surveillance such as regulation of Wnt
signaling, ERK1, and ERK2 cascade and angiogenesis

were also associated with FAP upregulation (Figure 3B).
We further performed a GSEA by ranking all expressed
genes based on the signed p-value from the differential
expression analysis according to the direction of the log-fold
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FIGURE 2 | FAP is upregulated in colorectal tumors. (A) FAP expression level in tumors (n = 622) compared to non-tumoral tissue (n = 51) in the TCGA data set. (B)

Overall survival analysis (Kaplan–Meier) of CRC patients from the TCGA data set stratified by FAP expression (see also Supplementary Figure 2). (C) Colorectal

cancer patient characteristics grouped by FAP expression. Statistical comparisons of clinical and molecular parameters between tumors with high vs. low FAP

expression are shown in Table 2. Statistical comparisons were performed Mann–Whitney U-test in (A) and by log-rank test in (B).

change (Supplementary Figure 3). We observed that FAP
overexpression was associated with processes related to
epithelial-to-mesenchymal transition, angiogenesis, tissue
remodeling, epithelial cell proliferation, and immune response
(Supplementary Figures 3, 4).

Because we observed that FAP overexpression was
associated with immune-related processes (Figure 3C and
Supplementary Figure 3), we sought to explore which immune
components may be involved. We observed that CRCs with
high FAP expression showed high expression of genes such
as FOXP3, CTL4, ICOS, and KLRG1 (Figure 3C), which
are usually expressed in immune cell populations such as
regulatory T cells (Tregs) or in populations showing an
immunosuppressive phenotype. To evaluate whether FAP
overexpression was associated with the enrichment of specific
immune cell populations, we used xCell, a method to perform
cell type enrichment analysis from gene expression data for
64 immune and stromal cell types, on the TCGA CRC cohort.
Overall, we found that tumors with high FAP expression
were enriched for both immune and stromal cell types
compared to tumors with low FAP expression (Figure 3D and
Supplementary Figure 5). Populations such as endothelial
cells and fibroblasts were found to be more abundant in
FAP-overexpressing CRC (p = 3.1e-13 and p = 6.9e-11,
respectively; Figures 3D,E). Similarly, macrophages, monocytes,
and Tregs were also enriched in FAP-overexpressing samples.
Interestingly, FAP-overexpressing CRCs were depleted for
populations associated with antitumoral responses such as

TH1 cells and natural killer T (NKT) cells. No significant
differences were found regarding CD8T cells, TH2 cells,
or B cells.

Taken together, our results suggest that FAP
may contribute to the poor prognosis of CRC by
modulating the tumor microenvironment not only by
driving angiogenesis but also by promoting a more
protumorigenic environment.

FAP Distribution in the Tumor Center and
Invasive Tumor Front
Given that the transcriptomic analysis suggests that FAP
may promote a protumorigenic environment, we investigated
whether the localization of FAP in the tumor could be associated
with its role in CRC invasion. We took advantage of 20 CRCs
that showed positive FAP staining in the TMA and stained
whole tissue sections to define FAP heterogeneity. Using whole
sections, we were able to visualize the tumor center and the
invasive front in 95% (19/20) of the samples. FAP staining
was visible in both tumor center and tumor front in all 19
cases (Figure 4A). Compared to the tumor center, FAP-positive
cells were more frequently found at the invasive front (p =

0.03; Figure 4B). The high frequency of FAP-positive cells at
the invasive front was associated with advanced tumor stage
(p = 0.03; Figure 4C; right), but no significant association
was found between the frequency of FAP-positive cells in the
tumor center and tumor stage (Figure 4C; left). The presence of
lymphovascular invasion was significantly associated with high
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TABLE 2 | Association between FAP mRNA expression and clinicopathological features in the TCGA cohort.

Clinical features Low FAP expression High FAP expression p

n (%) n (%)

Gender (n = 591) Female (n = 271) 133 (49.1%) 138 (50.9%) 0.81

Male (n = 320) 154 (48.1%) 166 (51.9%)

AJCC stages (n = 571)* Stage I + II (n = 316) 167 (52.8%) 149 (47.2%) 0.02

Stage III + IV (n = 255) 111 (43.5%) 144 (56.5%)

Microsatellite instability (n = 115)* MSI (n = 11) 7 (63.6%) 4 (36.4%) 0.42

MSS (n = 104) 53 (51.0%) 51 (49.0%)

CRC subtyping (n = 556)* CMS1 (n = 97) 36 (37.1%) 61 (62.9%) <0.001**

CMS2 (n = 170) 129 (75.9%) 41 (24.1%)

CMS3 (n = 94) 66 (70.2%) 28 (29.8%)

CMS4 (n = 195) 17 (8.7%) 178 (91.3%)

CRC location (n = 597)* Cecum (n = n = 106) 56 (52.8%) 50 (47.2%) 0.4

Ascending colon (n = 86) 31 (36.0%) 55 (64.0%)

Descending colon (n = 20) 9 (45.0%) 11 (55.0%)

Transverse colon (n = 38) 20 (52.6%) 18 (47.4%)

Sigmoid colon (n = 155) 75 (48.4%) 80 (51.6%)

Hepatic flexure (n = 26) 12 (46.2%) 14 (53.8%)

Splenic flexure (n = 7) 4 (57.0%) 3 (43.0%)

Rectosigmoid junction (n = 49) 24 (49.0%) 25 (51.0%)

Rectum (n = 110) 60 (55.0%) 50 (45.0%)

*Patients with data not available, unknown, and discrepancies.

**Statistical power >70% (estimated by bootstrapping).

All 2 × 2 contingency tables were analyzed with Fisher exact tests. All others by χ
2 test.

FIGURE 3 | FAP is associated with pathways involved in tumor growth, invasion, and immunosuppressive tumor microenvironment. (A) Colorectal cancers grouped

by FAP expression. Statistical comparison of molecular subtypes between tumors with high vs. low FAP expression are shown in Table 2. (B) Figure shows selected

significantly enriched pathways from pathway enrichment analysis of the upregulated genes from a differential expression analysis between FAP-high vs. FAP-low. The

size of the dots indicates the number of upregulated genes in each pathway. The color of the dot indicates FDR, and x axis represents the fraction of upregulated

genes in the pathway. (C) Gene set enrichment analysis plots of GO immune response, where x axis shows ranked list of genes (ranked by the p-values signed

according to the direction of the differential expression analysis between FAP-high and FAP-low CRCs), and the vertical bars on the x axis show the genes that belong

to gene set. The y axis shows the enrichment score of the gene set. Heatmaps below show selected genes in the GO process. (D) Representative pictures showing

the enrichment of fibroblast on high FAP expression (left) and low number of fibroblasts on low FAP expression (right). (E) Heatmap shows the enrichment of immune

and stromal cell types in the TCGA CRC cohort, as defined by the xCell method. Samples were stratified into FAP-high and FAP-low groups and then sorted based on

their xCell fibroblasts scores. Cell types that showed statistically significant difference between FAP-high and FAP-low groups are shown. Statistical comparisons were

performed using Mann–Whitney U-tests.
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FIGURE 4 | FAP expression is enriched in the tumor front area in colorectal tumor. (A) Representative micrographs of FAP distribution in the tumor center and at the

tumor front area. (I) FAP expression is higher at the tumor front compared to the tumor center; (II) FAP expression does not show significant difference between tumor

center and tumor front, whereas neighbor non-neoplastic colonic mucosal stroma is completely negative. Scale bar: 200µm. (B) Percentage of cells showing

FAP-positive staining in the tumor front and tumor center areas (n = 19). (C) Percentage of cells showing FAP-positive staining in tumor center (left) and front (right) in

early and advanced tumor stage. (D) Percentage of cells showing FAP-positive staining in tumor center (left) and front (right) with lymphovascular invasion. Statistical

analyses were performed using Fisher exact tests for categorical variables and Mann–Whitney U-tests for numeric variables. All tests were two-sided, and p < 0.05

was considered statistically significant. Data in (B–D) are represented as mean ± SD.

frequency of FAP-positive cells in tumor center (Figure 4D, p =
0.04) but not in tumor front.

These results are in line with the results we obtained by TMA,
underlying the important role of FAP in tumor invasion.

DISCUSSION

FAP has been shown to be overexpressed in tumor-associated
stromal cells in epithelial tumors (43) and its presence has been
associated with worse prognosis. Moreover, tumors showing
upregulation of FAP present a high level of microvessel density
(44), which is also a marker for poor prognosis in several
epithelial cancers (45–47). In vivo studies have shown that FAP
overexpression in breast and colonic xenograft models leads to
more rapid development of subcutaneous tumors and enhanced
tumor growth (44). By contrast, inhibition of FAP activity in
colorectal xenograft models results in tumor growth attenuation
(48). Together, there is substantial evidence supporting the role
of FAP in tumor proliferation and metastasis (49). Moreover,
little is known about the molecular role of FAP in CRC and
its potential in modulating the tumor microenvironment. This
is particularly important because immune checkpoint inhibitors
have demonstrated little or no clinical activity in the majority of
patients with metastatic CRC (50).

In the present study, we investigated the expression of FAP
both at the RNA and protein levels in two independent cohorts
of CRC and its association with clinicopathological features.
Similarly to previous reports evaluating FAP expression using
IHC (8, 9, 51, 52), FAP was found upregulated in tumors
compared to non-tumoral tissues and was associated with poor
survival in both cohorts. In line with the poor prognosis,
we found that high frequency of FAP-positive cells and high
FAP intensity at the protein and RNA levels were associated
with advanced stages. Although our results are discrepant from
previous works showing FAP expression was also elevated in
early-stage CRC (8, 51), we also found that FAP expression
was associated with lymphatic invasion and tumor budding.
Lymphatic invasion has been used to estimate the aggressiveness
of colorectal tumors (53), whereas tumor budding is a surrogate
for epithelial-to-mesenchymal transition and is associated with
poor prognosis (54). The findings related to pathological features
are thus in agreement with the association with advanced stages.
Taken together, the association of FAP expression on the mRNA
and protein levels with multiple clinicopathological features
known to be associated with poor prognosis supports our finding
that FAP is also associated with tumor aggressiveness.

Most studies on FAP have focused on its potential value as a
prognostic marker in epithelial cancers, but little is known on
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how and why FAP may be prognostic. We, therefore, analyzed
the transcriptomic data from 622 CRCs in the TCGA. We
found that the majority of tumors with high FAP expression
were classified as CMS1 and CMS4 of the consensus molecular
subtypes. CMS4 tumors have been reported to overexpress
proteins implicated in stromal invasion, mesenchymal activation,
and complement pathways. The enrichment for CMS4 tumors
among tumors with high FAP expression suggests a more
invasive tumor phenotype, which agrees with our findings from
the TMA. In fact, our analysis of the TCGA transcriptomic
data also showed that CRCs with FAP overexpression were
enriched for stromal cell types, in particular for fibroblasts and
mesenchymal stem cells. Furthermore, most of the pathways
associated with FAP overexpression were related to extracellular
matrix, junction remodeling, and collagen degradation, all of
which have previously been associated with FAP expression.
We further found that epithelial-to-mesenchymal transition,
angiogenesis, and epithelial cell proliferation were also enriched
in FAP-overexpressing CRCs. Our results are in line with
previous studies that have demonstrated the involvement of
FAP in epithelial-to-mesenchymal transition, angiogenesis, and
in tumorigenesis (44, 49, 55). Additionally, our IHC analysis
showed that the frequency of FAP-positive cells was associated
with tumor budding score, a very well-known pathological
marker associated with epithelial-to-mesenchymal transition and
tumor invasion. Overall, the findings from our analysis of the
TCGA are further supported by the observation that FAP was
preferentially found at the tumor invasive front, in agreement
with Sandberg et al. (56), suggesting a role in tissue invasion
and metastasis.

In addition to CMS4, we also found that FAP-overexpressing
CRCs were enriched in the subtype CMS1.While the most widely
described function of FAP on CAFs in CRC was extracellular
matrix remodeling (57), new evidence suggests that FAP on CAFs
also has critical roles in regulating antitumor immune response
by inducing tumor-promoting inflammation (58). Indeed, the
CMS1 subtype displays upregulation of proteins involved in
immune response pathways (40). We also found that FAP
overexpression is associated with an upregulation of genes
involved in immune cell response, suggesting that FAP may
promote an inflamed environment. Recent reports have proposed
that FAP expressionmay be associated with resistance to immune
therapies (22, 59). Using the xCell algorithm, we found that
populations such as TH1 andNKT cells were suppressed, whereas
Tregs were enriched in FAP-overexpressing CRCs, suggesting an
immunosuppressive environment in these tumors. Chen et al.
(23) reported that FAP expression promotes immunosuppression
in a CRC tumor model via the upregulation of CCL2. CCL2, a
member of the C-C chemokine family, regulates the recruitment
of myeloid cells, mostly macrophages and monocytes (60), into
inflamed sites to promote tumor growth (61, 62). In breast cancer,
Costa et al. (63) showed that CAF with high expression of FAP
was associated with increased CD25+FOXP3+ T lymphocytes
via the modulation of B7H3, DPP4, and CD73. Accordingly, we
also observed that macrophage and monocyte populations are
enriched in FAP-overexpressing CRCs.

Although the statistical power of our study is limited by
the relatively small sample size of the TMA cohort, our study
is still one of the largest cohorts evaluating FAP expression
in CRCs. Our results support the well-known role of FAP in
promoting tumor growth and invasion. Based on our results, we
speculate that one of the mechanisms by which FAP promotes
tumorigenesis is linked to its ability to recruit endothelial
cells and to induce angiogenesis, together with its enzymatic
activity. Moreover, FAP will orchestrate a broad panel of other
cells to push microenvironment toward an immunosuppressive
environment, thus providing a niche for a more aggressive
CRC phenotype.
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Supplementary Figure 1 | (A) Table displays the distribution of frequency of

FAP-positive cells and FAP intensity in the TMA cohort. (B) Frequency (left) and

intensity (right) of FAP-positive cells in 19 non-malignant tissues and paired

malignant tissues. (C) Percentage of cells showing FAP-positive staining (left) or

intensity (right) associated with tumor budding score. (D) Overall survival analysis

(Kaplan–Meier) of CRC patients from the TMA cohort after stratification (below) for

tumors with high FAP intensity vs tumors with low FAP intensity and (above) for

tumors with high frequency of FAP-positive cells and/or high FAP intensity vs

tumors with low frequency of FAP-positive cells and low FAP intensity. Data in

(B,C) are represented as mean ± SD Statistical analyses were performed using

Fisher exact tests for categorical variables in (B), ANOVA in (C) and log-rank

(Mantel–Cox) tests for survival analysis in (D). All tests were two-sided, and p <

0.05 was considered statistically significant. ∗Statistical power >70%.

Supplementary Figure 2 | The plot shows the optimal cutpoint for the

stratification of TCGA CRC cohort into two groups, FAP-high and FAP-low, for

overall survival analysis.

Supplementary Figure 3 | (A) Gene Set Enrichment Analysis plot shows

selected significantly enriched Gene Ontology gene sets from MSigDB database

in FAP-high tumors in the TCGA CRC cohort. (B) Gene Set Enrichment Analysis

plots of Gene Ontology molecular functions, where x-axis shows ranked list of

genes (ranked by the p-values signed according to the direction of the differential

expression analysis between FAP-high and FAP-low CRCs) and the vertical bars

on the x-axis show the genes that belong to gene set. The y-axis shows the

enrichment score of the gene set. Heatmaps below show selected genes in each

GO process. Pearson correlation coefficients of the expression of the genes with

FAP expression are shown to the right. NES: normalized enrichment score. P adj,

p-value adjusted for multiple testing (i.e., FDR).

Supplementary Figure 4 | Correlation of FAP expression with (A) immune

markers; (B) epithelial to mesenchymal transition (EMT) markers and (C)

angiogenesis markers. Statistical analyses were performed using Pearson

correlation tests.

Supplementary Figure 5 | Boxplots show the enrichment scores of each cell

type between FAP-high and FAP-low groups in the TCGA CRC cohort, as defined

by xCell. p-values were calculated using t-tests.

Supplementary Table 1 | Univariate and multivariate Cox regression analyses for

the effect of FAP protein expression and clinicopathological parameters on overall

survival in the TMA cohort.

Supplementary Table 2 | Univariate and multivariate Cox regression analyses for

the effect of FAP mRNA expression and clinicopathological parameters on overall

survival in the TCGA cohort.
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