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Purpose: Ensuring high-quality data for clinical trials in radiotherapy requires the

generation of contours that comply with protocol definitions. The current workflow

includes a manual review of the submitted contours, which is time-consuming and

subjective. In this study, we developed an automated quality assurance (QA) system

for lung cancer based on a segmentation model trained with deep active learning.

Methods: The data included a gold atlas with 36 cases and 110 cases from the “NRG

Oncology/RTOG 1308 Trial”. The first 70 cases enrolled to the RTOG 1308 formed the

candidate set, and the remaining 40 cases were randomly assigned to validation and

test sets (each with 20 cases). The organs-at-risk included the heart, esophagus, spinal

cord, and lungs. A preliminary convolutional neural network segmentation model was

trained with the gold standard atlas. To address the deficiency of the limited training

data, we selected quality images from the candidate set to be added to the training set

for fine-tuning of the model with deep active learning. The trained robust segmentation

models were used for QA purposes. The segmentation evaluation metrics derived from

the validation set, including the Dice and Hausdorff distance, were used to develop the

criteria for QA decision making. The performance of the strategy was assessed using the

test set.

Results: The QA method achieved promising contouring error detection, with the

following metrics for the heart, esophagus, spinal cord, left lung, and right lung: balanced

accuracy, 0.96, 0.95, 0.96, 0.97, and 0.97, respectively; sensitivity, 0.95, 0.98, 0.96,

1.0, and 1.0, respectively; specificity, 0.98, 0.92, 0.97, 0.94, and 0.94, respectively;

and area under the receiving operator characteristic curve, 0.96, 0.95, 0.96, 0.97, and

0.94, respectively.

Conclusions: The proposed system automatically detected contour errors for QA.

It could provide consistent and objective evaluations with much reduced investigator

intervention in multicenter clinical trials.
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INTRODUCTION

Precise radiotherapy for optimal treatment requires the organs
at risk (OARs) to be accurately delineated. Specific guidelines
(1–3) that describe how OARs can be delineated reproducibly
for routine clinical practice and for research purposes have
been developed. Nevertheless, considerable inter- and intra-
observer variations in the delineation of OARs have been
reported (4–6). Such variations can result in inconsistent
evaluations of the doses to the OARs, potentially hampering
the efficacy of the radiotherapy and the analysis of its toxicity.
Lo et al. (7) reported that 23% of contours submitted to a
multicenter peer-reviewed lung stereotactic radiation therapy
study needed a major revision. It is therefore essential to
undertake quality assurance (QA) of OAR contouring for
multicenter clinical trials because the cases come from different
medical centers and so are susceptible to inconsistent contouring.
This QA procedure is usually performed manually by physician
investigators, which is both time-consuming and subjective.
There is, therefore, a need for an automated and objective
QA method.

Various approaches have been proposed for identifying
contour outliners for QA purposes. Some studies (8, 9) have
used statistical metrics derived from geometric distributions to
determine the accuracy of the contouring; however, these metrics
are not always good indicators of organ contouring. The ultimate
test is to compare the contours with those that are known to
be precise and accurate. The basis of such a QA method is an
accurate segmentation process.

Recently, convolutional neural network (CNNs) (10, 11),

a deep learning method, have proved effective for semantic
segmentation, hence becoming a state-of-the-art method for

this. Many studies have applied CNN to the segmentation of
targets and OARs in radiotherapy for various disease sites

(12–15). However, as a fully supervised deep learning method,

a CNN needs a sufficiently large set of manually annotated
instances to achieve good performance, and these manual
annotations must be accurate enough to avoid misleading the
model training. Although gold standard atlases are available (16–
21), they contain few annotated cases: for example, the Lung
CT Segmentation Challenge (17) includes 36 cases and the Head
and Neck CT Segmentation Challenge (19) includes 48 cases.
They are therefore insufficient for optimally tuning the many free
parameters of the deep network. In addition, the cases submitted
to the clinical trials came from different centers and contained
considerable variations, and the gold standard atlases do not
encompass a wide spectrum of the population. We have collected
a substantial number of annotated cases in the clinical trial, with
a large variation in accuracy.

In this study, we have developed a fully automated method for
the QA of OAR contouring for lung cancer based on deep active
learning (22–24). This uses a novel strategy that improves on
the traditional CNN through an interaction between the learning
algorithm and the selected noisy annotations. To the best of our
knowledge, this is the first automated process for the QA of OAR
contouring for multicenter clinical trials based on deep learning

and the first to train a segmentation model using both active
learning and large-scale noisy samples.

MATERIALS AND METHODS

Patient Data
The patient data used in this study were a small gold standard
atlas from the Lung CT Segmentation Challenge 2017 (16,
17), which included 36 cases, and 110 cases from the NRG
Oncology/RTOG-1308 Trial (3). The OARs included were the
heart, esophagus, spinal cord, left lung, and right lung. The
manual contours of the gold standard atlas were drawn according
to the RTOG-1106 contouring atlas guidelines (2), which were
the same as those used for RTOG-1308 (3).

The CT scans from the Lung CT Segmentation Challenge 2017
had a reconstructionmatrix of 512× 512, with a slice thickness of
1.25–3.0mm (median, 2.5mm) and a pixel size of 0.98–1.37mm
(median, 0.98mm). One of the Challenge organizers checked all
the clinical contours for quality and edited them to ensure that
there were no major deviations from the RTOG-1106 contouring
guidelines. The CT images from RTOG-1308 were reconstructed
with a matrix size of 512 × 512, a slice thickness of 1.5–3.0mm
(median, 3mm), and a pixel size of 0.98–1.37mm (median,
1.17mm). The radiotherapy contours were directly drawn on the
CT by radiation oncologists, but the contours from amulti-center
were not all reasonable and were used for QA in this study. The
data were submitted for analysis in DICOM format.

The Automated Quality Assurance System
Strategy Overview
Figure 1 outlines the main concepts and the steps of our
automated method for the QA of OAR delineation. The method
was based on automated segmentation with deep active learning
and comprised five steps: (1) We prepared a gold standard atlas
for the disease site, and we divided the cases from the clinical
trial into candidate, validation, and test sets. (2) We trained the
CNN segmentation model with the gold standard atlas, even
though this did not represent a large population. (3) To address
the deficiency of the limited training data, we selected quality
images from the candidate set to be added to the training set
for fine-tuning of the model. The strategy for selecting these
images was based on their representativeness, defined using
a parameter that combined uncertainty and accuracy. (4) We
evaluated the accuracy of the fine-tuned model by applying
it to the validation set, which included contours with verified
accuracy. The evaluation metrics included the Dice similarity
coefficient (DSC) (25) and the Hausdorff distance (HD) (26).
These metrics were then used to establish the QA criteria. (5)
Finally, we applied the fine-tuned CNN model and the decision
criteria to the test set to detect any inaccurate contours.

The QA strategy consisted of four major components: (1)
a high-performance CNN for segmentation, (2) an uncertainty

Abbreviations: QA, quality assurance; OARs, organs at risk; CNN, convolutional

neural networks; DSC, Dice similarity coefficient; HD, Hausdorff distance; BA,

balanced accuracy; AUC, area under the receiving operator characteristic curve;

TP, true positive; FP, false positive; TN, true negative; FN, false negative.
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FIGURE 1 | Flowchart of the contouring quality assurance strategy.

estimation strategy, (3) a strategy for selecting noisy annotations
for fine-tuning the CNN, and (4) decision criteria. The
following sections describe the active learning process in detail,
focusing on the uncertainty estimation and the noisy annotation
selection strategies.

Segmentation Model
There are many different deep neural network strategies available
for segmentation. In this QA system, we used a CNN that had
been demonstrated to have a state-of-the-art performance (27).
The network improved the segmentation accuracy with cascaded
atrous convolution and spatial pyramid pooling module. The
input to the CNN was the set of original CT images, and its
output was the corresponding segmentation probability maps
for the OARs. To avoid overfitting, we applied general methods
for data augmentation, including random scaling (from 0.5 to
1.5), random cropping, and random rotation (-5◦ to 5◦). The
optimization algorithm of training used backpropagation with
stochastic gradient descent. We use the “poly” learning rate
policy. We set the base learning rate to 0.001 and the power to
0.9. The batch size was set to 1 due to the limitation of physical
memory on the GPU card. Every model was trained using 40
epochs. The momentum and the weight decay were set to 0.9 and
0.0005, respectively.

Uncertainty Estimation
A CNN model trained with only a small gold standard atlas
sample will not be representative of the whole population. A
straightforward strategy to improve the model was to add more
images from the clinical trial. However, instead of randomly
adding images to the training set, it was important to choose the
most valuable images for further training. These images usually
are the most confusing instances of the current model. We used
an uncertainty parameter to select the images for which the CNN
model had the lowest confidence so that the learning would be
more effective. These images were those that lay closest to the
decision boundary of the model. The uncertainty was calculated
as follows:

Un =
1

m

m∑

1

(1−max(pi, 1− pi)) (1)

where Un denotes the uncertainty of the n-th image, m denotes
the pixel number of the n-th image, and pi denotes the probability
that the i-th pixel belongs to the OAR to be segmented.

Selection of Images With Noisy Annotation
The manually drawn contours in the clinical trial showed a
considerable variation, so it was not appropriate to include all
of the images in the new training set. The selected images and
contours should be those with higher uncertainty parameters,
and the images should have accurate annotations to avoid
misleading the model training. The segmentation accuracy
was usually quantified using the DSC and/or the HD. The
representativeness of the candidate images was assessed using
a representativeness parameter (Rn) that combined uncertainty
and accuracy, which is defined as follows:

Rn =
Un × DSCn

HDn
(2)

whereUn, DSCn, and HDn denote the uncertainty, DSC, and HD
of the n-th image, respectively. We set DSCn = 1 and HDn =

1 for the images without any contours (manual or predicted by
the model).

After calculating the representativeness of each image, we
selected the top 30% of images from the candidate set with
contours and the top 30% without contours and added them
to the training set for further fine-tuning. To increase the
sample diversity, we set the number of iterations to two in our
experiments, which added about 50% of the candidate set into
the training set.

Decision Criteria
The accuracy of the segmentation model was evaluated on the
validation set. These contours had good quality scores and
were rechecked by the investigators. The slices with errors were
excluded from the validation set. We used DSC and HD as the
two metrics to describe the accuracy of a contour. An analysis
of the contours in the validation set was performed slice by
slice. Images with manual contours were used to calculate the
mean and the standard deviation (σ ) of both metrics for each
OAR. Pass criteria were applied to all the test structures using
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thresholds for DSC and HD, determined as the mean either
minus or plus 1.96σ , as follows:

DSCtest > meanDSC − 1.96σDSC (3)

HDtest < meanHD + 1.96σHD (4)

Small contours usually have lower DSC values but better HDs.
We therefore assumed that the contours that passed either
criterion were “correct.”

Experiment and Quantitative Evaluation
This study used the 36 cases from the Lung CT Segmentation
Challenge 2017 as the gold standard atlas. The 110 cases from
RTOG-1308 were divided into three groups: the first 70 cases
enrolled were used as the candidate set, and the remaining 40
cases were randomly assigned to validation and test sets (each
with 20 cases). The gold standard atlas was used to train an initial
model with reasonable performance. The candidate set was then
used to enrich the training data. The accurate contours in the
validation set were used to create the pass criteria. Finally, the
test set was used to assess the performance of the automated QA
system quantitatively using the metrics (28) balanced accuracy
(BA), sensitivity, specificity, and the area under the receiving
operator characteristic curve. BA quantifies a system’s ability to
avoid false classification and is defined as follows:

BA =
1

2
(

TP

TP + FN
+

TN

TN + FP
) (5)

where TP is the number of true positives, representing error-
containing contours that were correctly identified, FP is the
number of false positives, representing error-free contours that
were mistakenly identified as having errors, TN is the number
of true negatives, representing error-free contours that were
correctly identified as not having errors, and FN is the number of
false negatives, representing error-containing contours that were
mistakenly identified as being correct.

Sensitivity evaluates the ability to identify positive labels.
Specificity reflects the ability to identify negative samples. These
are defined as:

Sensitivity =
TP

TP + FN
(6)

Specificity =
TN

TN + FP
(7)

RESULTS

Segmentation Accuracy
The accuracy of automated segmentation was evaluated using
cases in the validation set with good quality. Values of DSC
and HD are shown in Table 1, with the QA pass criterion for
each organ of the mean minus or plus 1.96σ . These results

were at the same level with the best results of the segmentation
challenge at AAPM 2017 (17). In this thoracic segmentation
competition, the best DSC values were 0.93 ± 0.02 for the
heart, 0.71 ± 0.12 for the esophagus, 0.89 ± 0.04 for the spinal
cord, 0.98 ± 0.02 for the left lung, and 0.97 ± 0.02 for the
right lung.

Performance for Quality Assurance
Table 2 presents a list of the results of contour error detection
using the test set. The BA for all the OARs was greater than 0.95,
indicating that more than 95% of the contours were recognized
correctly and no future manual rechecking was required. The
QA for the esophagus showed lower specificity than for the
other organs, but with high sensitivity. Figure 2 presents images
with examples of inappropriate contours as detected by the QA
system. From the first column to the fifth column are the detected
errors of the heart (A), esophagus (B), spinal cord (C), left lung
(D), and right lung (E), respectively. The system was able to
identify slices with missing contours, contours drawn in error,
and inappropriate contours.

DISCUSSION

QA of OAR contouring is essential for clinical trials to

reduce variability in dose evaluations and improve the outcome
analysis. However, the currently used manual procedure is

time-consuming and subjective, relying on the physicians’
knowledge and experience, and the evaluation of the delineation

is qualitative rather than based on quantitative metrics. In this

TABLE 1 | Quantitative metrics for the organ-at-risk segmentation.

OAR DSC HD (pixel)

Mean ± SD Pass criterion Mean ± SD Pass criterion

Heart 0.95 ± 0.03 >0.89 7.2 ± 4.1 <15.2

Esophagus 0.69 ± 0.13 >0.44 4.6 ± 2.4 <9.3

Spinal cord 0.86 ± 0.06 >0.75 2.0 ± 0.7 <3.4

Lung, left 0.96 ± 0.04 >0.88 7.3 ± 6.1 <19.3

Lung, right 0.96 ± 0.04 >0.88 7.3 ± 4.7 <16.5

OAR, organ at risk; DSC, Dice similarity coefficient; HD, Hausdorff distance.

TABLE 2 | Quantitative evaluation of the contouring error detection.

OAR Number of

samples

Number of

correct

samples

Number of

incorrect

samples

BA SEN SPE AUC

Heart 4,121 3,979 142 0.96 0.95 0.98 0.96

Esophagus 4,121 4,079 42 0.95 0.98 0.92 0.95

Spinal cord 4,121 3,894 227 0.96 0.96 0.97 0.96

Lung, left 4,121 4,098 23 0.97 1 0.94 0.97

Lung, right 4,121 4,094 27 0.97 1 0.94 0.97

OAR, organ at risk; BA, balanced accuracy; SEN, sensitivity; SPE, specificity; AUC, area

under the receiver operating characteristic curve.
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FIGURE 2 | Examples of errors detected by the quality assurance system. The manual contours are in red and the automatically generated contours are in other

colors. The organs at risk from the first column to the fifth column are the heart (A), esophagus (B), spinal cord (C), right lung (D), and left lung (E), respectively.

study, we developed an automated contouring QA process for

lung cancer based on a segmentation model trained with a deep
active learning strategy. To the best of our knowledge, no similar
work has previously been reported. The results of our evaluation
illustrated that our QA method can efficiently differentiate
correct and incorrect contours, allowing the incorrect contours
to be identified automatically for further verification and
revision. This could greatly improve the accuracy, efficiency, and
consistency of the current process.

This new approach makes two main contributions. First, it
was an active learning method that made good use of a gold
standard atlas as well as information samples with uncertainties
from clinical trials. Second, the CNN fine-tuning used an
uncertainty estimation and a selection strategy for images with
noisy annotation. The segmentation model was initially trained
with the gold standard atlas. Selected high-confidence and high-
uncertainty samples were then added to the training set to
increase the diversity as well as the accuracy of the sample. This
improved the robustness of the model, avoided biased results
due to incorrect contour samples, and incorporated a larger
population distribution.

Take the RTOG 1308, for example; it takes at least 5 s for a
manual check of each slice, while for the proposed method it
can be reduced to 0.75 s per slice (0.15 s for each OAR) with the
NVIDIA Tesla K80GPU. Compared to the conventional method,
the proposed method not only saves 85% of time but also makes

the evaluation more objective. For the RTOG-1308, 178 cases
have been reviewed so far. The average slices of each case were
about 200, so the total time saved would be about 42 h. This
method is universal and can be applied to other disease sites as
well. The segmentation method proposed here can be modeled
using small standard samples and can also be used for automatic
delineation of OARs at each center. Physicians can make
minor modifications based on these automatic delineations. It
is expected to improve the consistency and the efficiency of
contouring for clinical trials.

There is a main limitation in this preliminary study. We
did not investigate specific decision criteria for each OAR.
The decision criteria were broad for some OARs and some
passed contours may still need human intervention. However,
the proposed method has been able to greatly improve the work
efficiency compared with the manual review method. We are
working on organ-specific QA criteria and hope it could further
improve the evaluation accuracy.

In this study, we used the OAR contours of lung cancer
to demonstrate the effectiveness of the QA strategy. Future
research will include broader experiments covering all disease
sites, as well as tumor targets. One potential problem may
be the lack of a gold standard atlas similar to that from
the Lung CT Segmentation Challenge 2017, in which case a
small standard database would need to be prepared manually.
Although this might be time-consuming, it would be worthwhile

Frontiers in Oncology | www.frontiersin.org 5 July 2020 | Volume 10 | Article 986

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Men et al. Contouring QA With Deep Learning

as great efficiency can be gained with the QA of thousands of
submitted cases.

CONCLUSIONS

The automated evaluation of contouring quality is a challenging
task in radiotherapy. In this study, we described a fully automated
QA system for lung cancer based on a segmentation model
trained with a deep active learning strategy. This system was able
to automatically detect contour errors in multicenter clinical trial
data. The implementation of such a system in clinical trials could
provide consistent and objective quantitative evaluations while
greatly reducing investigator intervention.
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