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Background: Kimura disease may be easily misdiagnosed as malignant tumors such as

lymph node metastases based on imaging and clinical symptoms. The aim of this article

is to investigate whether the radiomic features and the model based on the features

on venous-phase contrast-enhanced CT (CECT) images can distinguish Kimura disease

from lymph node metastases in the head and neck.

Methods: A retrospective analysis of 14 patients of head and neck Kimura disease

(a total of 38 enlarged lymph nodes) and 39 patients with head and neck lymph node

metastases (a total of 39 enlarged lymph nodes), confirmed by biopsy or surgery

resection, was conducted. All patients accepted CECT within 10 days before biopsy

or surgery resection. Radiomic features based on venous-phase CECT were generated

automatically from Artificial-Intelligence Kit (AK) software. All lymph nodes were randomly

divided into the training set (n = 54) and testing set (n = 23) in a ratio of 7:3. ANOVA +

Mann–Whitney, Spearman correlation, least absolute shrinkage and selection operator,

and Gradient Descent were introduced for the reduction of the highly redundant features.

Binary logistic regression model was constructed based on the selected features.

Receiver operating characteristic was used to evaluate the diagnostic performance of

the features and the model. Finally, a nomogram was established for model application.

Results : Seven features were screened out at the end. Significant difference was found

between the two groups for all the features with area under the curves (AUCs) ranging

from 0.759 to 0.915. The AUC of the model’s identification performance was 0.970 in

the training group and 0.977 in the testing group. The disease discrimination efficiency

of the model was better than that of any single feature.

Conclusions : The radiomic features and the model based on these features on

venous-phase CECT images had very good performance for the discrimination between

Kimura disease and lymph node metastases in the head and neck.

Keywords: Kimura disease, lymph node, metastases, radiomics, nomogram, texture analysis, differential

diagnosis, CT
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INTRODUCTION

Kimura disease, also known as eosinophilic lymphogranuloma, is
a rare lymphoproliferative disease, which occurs in the head and
neck with unknown origin and expounded systemically in 1948
by Kimura (1). The clinical symptoms of Kimura disease include
a painless soft tissue mass, with peripheral lymphadenopathy
or lymphadenectasis in the neck and submandibular region (2).
The imaging findings of Kimura disease are non-specific; even
though the lesions may have some features such as well-defined
boundaries, lack of liquefaction necrosis, and calcification or
fusion trend, it is still difficult to be distinguished from other
lymphadenectasis for some cancer patients with lymph node
metastases without symptoms of primary tumors (3–5). The
main treatment of Kimura disease is radiotherapy instead of
radical surgery, which is preferred for some kind of lymph
node metastases in the head and neck. So, it is essential to
make an accurate differential diagnosis for clinical intervention.
Currently, the diagnosis of Kimura disease is mainly based
on the judgment of clinical features and the histopathological
examination. However, the clinical judgment is inaccurate, and
it is uneconomical and uncomfortable for patients to undergo
non-comprehensive sampling and time-consuming and invasive
surgical resection or biopsy. An accurate, non-invasive, and
efficient method of disease identification is urgently needed.

Radiomics is a newly emerging form of imaging analysis using
a series of data mining algorithms or statistical analysis tools on
high-throughput imaging features extracted from radiographic
data to obtain diagnostic or prognostic information (6–8). By
building appropriate models with refined features, successful
assessment, and prediction abilities in various challenging clinical
tasks can be achieved (9–13). Recent studies of radiomics have
provided insights in precision medicine in oncologic practice
related to tumor detection, subtype classification, lymph node
metastases, survival, and therapeutic response evaluation (14).
A review walking through several steps necessary for radiomic
analysis in brain tumor in detail showed how it is able to
use radiomics in diseases (15). As far as we have known, the
application of radiomics for differential lymph node lesions of
Kimura disease from lymph node metastases in the head and
neck has not been reported in the literature yet.

The purpose of this study was to investigate whether radiomic
features extracted from contrast-enhanced CT (CECT) images
and the model build on the features could be used for
differentiating Kimura disease from metastases.

MATERIALS AND METHODS

General Information
This retrospective study was approved by the ethics committee
of Cangzhou Central Hospital, and the informed consent
requirement was waived. The researchmethod was in accordance
with the standard guidelines and regulations. The clinical
histopathologic and radiological data were collected from July
2011 to August 2018. The cohort inclusion criteria were as
follows: (a) lymph nodes with histopathologically confirmed
Kimura disease and lymph node metastases in head and neck

by means of biopsy or surgery resection, (b) patients with CECT
performed within 10 days before the pathological examination,
and (c) lymph nodes without liquefaction necrosis or calcification
with the minimum diameter not <1.0 cm (4, 16). The exclusion
criteria were (a) poor image quality with artifacts and (b) patients
who had previously received related therapy. Eventually, a total of
77 lymph nodes were included in our study—among them were
14 patients (12 males and two females; mean age, 36.5 years old;
range, 16–51 years) with a total of 38 lymph nodes diagnosed
as Kimura disease in head and neck. Eight lymph nodes were
located in level I, 10 in level II, one in level III, two in level V, and
17 in level VIII. There were 39 patients (20 males and 19 females;
mean age, 59.2 years old; range, 30–77 years) with 39 lesions
diagnosed as lymph node metastases. Ten lymph nodes were
located in level II, eight in level III, 14 in level IV, five in level V,
and two in level VI. The level of lymph nodes is defined according
to the method described by Gregoire et al. (17). The lymph node
metastases were derived from variously sourced cancerous foci
(see Table S1 for detailed information).

CT Image Acquisition
All enrolled patients underwent CECT examination (Light Speed
64, Waukesha, WI, USA). All patients took the supine position.
The range of the scan was from the skull base to the sternal notch.
The scan parameters were as follows: tube of voltage of 120 KV,
tube current of auto Am, slice thickness 2.5mm, interval 2.5mm,
and pitch 1.375. Ultravist (350mg I/Ml, 1.5 ml/kg) was injected
with a rate of 3.5 ml/s through the elbow vein by a high-pressure
injection. Axial arterial-phase and venous-phase CT images were
obtained at 25–30 and 60–70 s after injection and were exported
in DICOM format.

Radiomic Features
VOI Segmentation and Radiomic Feature Acquisition
The venous-phase images were used for image feature extraction
as the distribution of the contrast agent in the lesions was
more homogeneous, and the image quality was better for
distinguishing the lesions from the adjacent tissue (18–20). The
technical process of the entire study is shown in Figure 1.
The lesions were delineated on the venous-phase CECT images
using the ITK-SNAP software (available at www.itksnap.org)
in soft-tissue window (window width, 35; window level, 400).
Two experienced radiologists (ZY, reader #1, radiology resident;
ZL, reader #2; both doctors have 10 years of experience in
imaging) blinded to the clinical outcomes were involved in
ROI segmentation. The whole-tumor volume was determined
by manually drawing a region of interest along the border of
the tumor on each consecutive slice covering the whole lesion.
Therefore, a three-dimensional (3D) volume of interest (VOI)
was finally obtained. The radiomic features were automatically
calculated by AK software (Artificial Intelligence Kit, GE
Healthcare, Shanghai, China). The features extracted by the AK
software comply with the standards set by the Image Biomarker
Standardization Initiative. In total, 396 imaging features were
extracted in each lesion, including (1) histogram features, such
as mean, uniformity, skewness, kurtosis, energy, and entropy;
(2) form factor features, such as volume CC, surface, surface
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FIGURE 1 | Illustration of the process of data analysis. First, each layer of the lesion was manually segmented and automatically merged into a three-dimensional

volume of interest (VOI) in the software. Then, upon extraction of the VOI radiomic features, relevant statistical methods were carried out for feature dimensionality

reduction, and finally a statistical analysis on the selected features was performed and a model classifier was established.

volume ratio, compactness, and maximum 3D diameter; and
(3) texture features including Gray level co-occurrence matrix
(GLCM), Gray level run length matrix (GLRLM), Gray level size
zone matrix, and Haralick parameters. The offset of GLCM and
GLRLM were 1, 4, and 7. Features pre-processing was conducted
in two steps: step 1—outliers and null values were replaced by
mean values, and step 2—values standardization was carried out
to eliminate the influence of the dimension. Feature dimension
reduction was performed as follows: First, analysis of variance
(ANOVA) and Mann–Whitney U-test were performed. Second,
Spearman correlation test was conducted to remove the highly
correlated variables. Third, in the LASSO model, the value of
the minimum error rate among the 10-fold cross-validation
was selected to construct the penalty function to compress the
unimportant variable coefficients to zero (Figure 2). Gradient
Descent algorithm for further feature screening was performed
when the features were still redundant. In the study, the
morphological features of the lesions were excluded. An analysis
was made only about the texture features of the lesions (21).

Radiomic Modeling and Validation
All lymph nodes were randomly divided into training set (n
= 54) and testing set (n = 23) with a ratio of 7:3. A total
of 27 of the 38 lymph nodes of Kimura disease and 27 of 39
lymph nodes of metastases were included in the training set and
11 other lymph nodes of Kimura disease and 12 lymph nodes
of metastases were in the testing set. Then, the binary logistic

regression model was constructed based on the training set data
to validate the model with the testing set data. The features and
model identification performance were quantified by the area
under the receiver operating characteristic (ROC) curve (AUC)
in the training and the testing sets. Radiomic nomogramwas then
constructed on the basis of the binary logistic regression model.
Radscore was calculated for each lesion and then converted into
the risking probability of lymph node metastasis. A decision
curve analysis was performed to evaluate the clinical benefit of
the nomogrammodel developed in the testing dataset. The x axis
of the curve is the threshold of the predicted probability outcome
by the nomogram model. The y axis is the clinical decision net
benefit for patients based on the discrimination result under
this threshold.

Statistical Analysis
Statistical analysis was performed by R studio (1.1.463, packages:
“verification,” “pROC,” “rms,” “glmnet,” “caret,” and “rmda”) and
IBM SPSS Statistics 22. With regard to the reproducibility of
volumetric and texture analysis, inter-observer reliability was
assessed by intra-class correlation coefficient (ICC) test. Delong
test was used for significant difference test among AUCs (22).
Hosmer–Lemeshow test was used for evaluating model fit-
goodness. The normal distribution test was performed using
Shapiro–Wilk on continuous quantitative variables. Levene’s test
was used for equality of variances. P > 0.05 was considered to be
normal distribution and variance is equal. Independent-sample
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FIGURE 2 | Feature selection in the LASSO model. (A) LASSO error graph tuning parameter (λ) selection in the LASSO model used 10-fold cross-validation via

minimum criteria. The error value was plotted vs. log(λ). Seven features with the smallest error value were selected. (B) LASSO coefficient profiles of the texture

features. The red vertical line is drawn at the value selected using 10-fold cross-validation in log(λ) sequence and coefficients with non-zero values are indicated.

t-test was used for significant difference in variable distribution
if normally distributed; otherwise, the non-parametric Mann–
Whitney U-test was used. The qualitative variables were
compared with chi-square or Fisher’s exact test. P < 0.05 was
considered as statistically significant.

RESULTS

The ICC values of the inter-observer of our research were 0.76–
0.97, which suggest great accordance between two readers and the
reliability of VOI sketching (22, 23). Three hundred ninety-six
radiomic features were extracted automatically by AK software.
The morphological features of the lesions were excluded and
seven features were left after the redundancy reduction step,
including one histogram feature, four GLCM features, and two
GLRLM features. The seven features were significantly different
between the two groups (all P < 0.05) (Figure 3, Figure S1). In
the histogram feature of variance, the first quantile of the lymph
nodes of the metastases group was significantly higher than
the maximum value of the lymph nodes of the Kimura disease
group. The variance value of metastases is generally greater
than that of Kimura disease, which suggests that the image-
brightness-changing gradient of metastases was steeper than that
of Kimura disease. In the GLCM feature cluster, the first quantile
of the Inertia_AllDirection_offset1 and HaraVariance of the
metastases group is slightly larger than the fourth quantile of the
Kimura group. The greater the value, the greater is the difference
in the lesions. While the first quantile of the Kimura group of
InverseDifferenceMoment_angle90_offset7 and sumAverage
was greater than the fourth quantile of the metastases group,
the larger the value of these two features, the smaller is the
lesion difference. In the GLRLM cluster, the first quantile of
the LongRunHighGreyLevelEmphasis_AllDirection_offset4
feature of the Kimura group was significantly higher than
the fourth quantile of the metastases group, while in the
ShortRunEmphasis_angle90_offset7 feature, the median of
the metastases group was greater than the fourth quantile of

the Kimura group. The first quantile of the metastases group
is slightly lower than that of the Kimura group. The larger
the value, the greater is the difference in gray value between
adjacent pixels in the lesion (Figure 3). Two sets of mapped
images of CECT and radiomic features of patients with Kimura
disease and lymph node metastases are shown, respectively, in
Figure 4, wherein the histogram is the gray scale distribution
of the entire lesion. The gray distribution of the Kimura disease
patient is more concentrated than that of the metastases patient.
The variation of the run length matrix of metastases patients is
greater than that of the Kimura patients, and the GLCM shows
that the lesion complexity of the Kimura disease patient is less
than that of the metastases patient.

Radiomic Model Building and Validation
A binary logistic regression model was established using the
seven distinctive features. The radscore value of each lesion
(Formula 1) was obtained, and the predicting risking probability
of lymph nodes of metastases was obtained (Formula 2).

Radscore = 4.290+ 8.476A+ 2.587B− 2.232C

+ 7.690D+ 1.142E+ 0.092F − 10.934G (1)

Probability positive prediction probability =
1

1+ e(−radscore)

(2)

(A: Variance, B: Inertia_AllDirection_offset1, C:
HaraVariance, D: LongRunHighGreyLevelEmphasis_
AllDirection_offset4, E: ShortRunEmphasis_angle90_
offset7, F: InverseDifferenceMoment_angle90_offset7, and
G: sumAverage).

If the coefficient of the variable is negative, the smaller the
value, the greater the risk probability will be. If the coefficient of
the variable is positive, the smaller the value, the smaller the risk
of developing lymph nodes of metastases will be.
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FIGURE 3 | The distribution of positive prediction probability and the selected feature values between the two groups (A–H). Label 0 represents the Kimura disease

group and the label 1 represents the lymph node metastases group. There was a significant difference in the distribution of values between the two groups, and all

P-values were <0.05.

FIGURE 4 | Two sets of mapped images of radiomic features of patients with Kimura disease (A–E) and lymph node metastases (F–J). (A,F) CECT images. (B,G)

Volumes of interest. (C,H) Grayscale distribution histogram of the lesions. The distribution of (H) was more dispersed than the distribution of (C). (D,I) Run length

matrix features. The frequency of changing of the gray scale of (D) was smaller than that of (I). (E,J) Gray level co-occurrence matrix features. The heterogeneity of

lesions in (J) was greater than that of (E).

The radiomic signature showed favorable predictive efficacy.
The risking probability according to radscore shows a significant
difference between the two groups (P < 0.001) (Figure 3). As can
be seen from the figure, the prediction probability of the lymph
nodes of the Kimura disease group is much lower than that of the

lymph nodes of the metastases group [cutoff value: 0.490—this
cutoff value is taking into account disease prevalence (50.9%);
the value larger than 0.490 is considered to be the metastasis
group, while the value smaller than 0.490 is thought to be the
Kimura disease group]. The positive and negative predictive
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FIGURE 5 | Receiver operating characteristic plots of the selected seven

features and the model’s prediction probability based on them. According to

the area under the curve index, the identification effectiveness of the binary

logistic regression model based on the seven features is greater than the

discrimination performance of any single feature.

values of prediction were higher than the performance values
of the other seven features. According to the OR values of the
seven features, the importance of the features can be ranked,
where extreme values <1 or >1 indicate that the feature is more
important, and the values of sumAverage and variance are more
extreme, so the contribution of these two features to the model
was greater, which is consistent with their AUC value trend
(Table 1). The ROC curves of seven features and the predicted
probabilities are established to evaluate the performance of each
feature and model (Figure 5). From the figure, we can see that
the model prediction probability (AUC: 0.970) is optimal for
disease detection, followed by sumAverage (AUC: 0.915) and
variance (AUC: 0.910). The AUC value of each variable was
significantly different from the AUC of 0.5 (all P < 0.0001),
indicating that each variable is reliable for the prediction and
the identification of the disease. According to the AUC DeLong
test between prediction and the other seven features, except for
sumAverage and variance, the predictive power of prediction was
significantly different from the other five features (all P < 0.05).
All the information above can be seen in Table 2. In general, the
eight variables in the figure have a good distinguishing effect on
the disease. Sensitivity and specificity are obtained according to
the most approximate Youden index. The optimal criterion value
indicates the cutoff value which was assigned to the metastatic
tumor group.

We further tested the fit-goodness of the established binary
logistic regression model. The results show that the model is

Frontiers in Oncology | www.frontiersin.org 6 July 2020 | Volume 10 | Article 1121

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Radiomics in Differentiating Kimura Disease

TABLE 2 | Significant difference test between area under the curve values of the model and the seven features.

Comparison of variables Difference

between areas

Standard

error

95% confidence

interval

z statistic Significance

level

Prediction ∼ HaraVariance 0.0912 0.0417 0.00945 to 0.173 2.187 P = 0.0288

Prediction ∼ LongRunHighGreyLevelEmphasis_AllDirection_offset4 0.101 0.05 0.00306 to 0.199 2.021 P = 0.0433

Prediction ∼ Inertia_AllDirection_offset1 0.142 0.0521 0.0403 to 0.245 2.733 P = 0.0063

Prediction ∼ ShortRunEmphasis_angle90_offset7 0.211 0.0623 0.0887 to 0.333 3.384 P = 0.0007

Prediction ∼ InverseDifferenceMoment_angle90_offset7 0.147 0.0563 0.0363 to 0.257 2.604 P = 0.0092

Prediction ∼ sumAverage 0.0556 0.0361 −0.0152 to 0.126 1.54 P = 0.1236

Prediction ∼ Variance 0.0598 0.0313 −0.00152 to 0.121 1.911 P = 0.0560

FIGURE 6 | Receiver operating characteristic curve (A) and classification effect diagram (B) for verifying the model with testing data. (A) The area under the curve is

0.977, the sensitivity is 1.0, and the specificity is 0.909 in testing data. (B) Pink and blue represent label 0 and label 1 according to the gold standard, respectively. The

model uses 0 as the classification threshold, with blues <0 and pinks >0 being cases of model misclassification. It can be seen that the classification effect of the

model in the testing group is generally good.

in good agreement with the actual model (χ2
= 2.127, P =

0.977, Hosmer–Lemeshow test). The model was validated in the
testing group and found to have good generalization ability. The
AUC of the testing set was 0.977, the sensitivity was 1, and the
specificity was 0.909 (Figure 6A). The model performed to be a
good classifier on the testing set data (Figure 6B). The decision
curve of the model shows that the net benefit of making decisions
based on the established model is much greater than treating
all patients or not treating all patients between the probability
threshold of 0.08–1.0 (Figure 7).

We have constructed a nomogram of the predictive model
for model application. After we get the patient’s image feature
data, normalize the feature, then get the corresponding points
according to the values of these seven features, and finally add
these seven points to get the total point, the total point is vertically
corresponding to the probability scale line. The probability of
having a metastatic tumor in this patient is available (Figure 8).

FIGURE 7 | Decision curve analysis for radiomic discrimination model. The

Y-axis represents the standardized net benefit. All: assuming that all patients

will be treated. None: assuming that no patient will be treated. Red line: the

nomogram prediction performance based on model. When making a decision

based on a nomogram, the standard net benefit obtained is greater than the

treatment of all patients or none in the range of threshold probability 0.08–1.0.
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FIGURE 8 | Radiomic nomogram to detect lymph node lesion. The radiomic nomogram was developed in the training set with the seven features. In the nomogram,

first, make a vertical line according to the value of the selected seven features to determine the corresponding value of points. Then, the total points are the sum of the

seven points above. Finally, make a vertical line according to the value of the total points to determine the probability of lymph node metastases.

DISCUSSION

The present study is the first to distinguish Kimura disease from
lymph node metastases in the head and neck using radiomic
features and the model based on the features on venous-
phase CECT images. In our study, seven features and predicted
probabilities have a good distinguishing effect on the disease. The
predicted probabilities are optimal for disease detection.

The morbidity of Kimura disease is low, and the majority of
reports about Kimura disease focus on clinical findings, with a
few of the imaging findings reported (24–26). There are three
types of CT manifestations of Kimura disease in the head and
neck: (1) multiple nodular type, showing multiple nodules, with
clear borders and uniform enhancement, (2) diffuse mass type,
characterized by ill-defined diffuse subcutaneous soft tissue mass,
with thickening of the adjacent skin and mild to moderate
heterogeneous enhancement, mainly located in the subcutaneous
fat space of the maxillofacial region, and (3) mixed type, with
characteristics of both of the above types.

Most patients having subcutaneous tumor-like nodules with
large parotid gland and local lymph node involvement are
easy to be misdiagnosed as malignant tumors, which make a

differential diagnosis difficult even using CT and MRI. Lymph

node metastasis is a high-risk factor for the prognosis (27);
more than one metastatic lymph node will increase the risk of
recurrence (28). Metastasis of tumors to sentinel lymph nodes
can predict disease progression and often guides a treatment
scheme (29). In clinical practice, many patients are required
for further CT or MRI to detect whether primary tumors exist.
There are different treatment modalities for Kimura disease,
and the postoperative recurrence rate is high (2, 26). The
main treatment of Kimura disease is different from malignant
tumors. There is no need to do radical surgery. Therefore, it

is necessary to make a clear diagnosis before surgery. Although
some scholars have summarized some imaging features of
Kimura disease in the head and neck, it is necessary to combine
clinical and laboratory examinations to improve the diagnostic
accuracy for lacking image characteristics and the pretty low
diagnostic accuracy.

In the recent years, radiomics increasingly draws attention
and has demonstrated that it may be a tool that can obtain high-
fidelity target information to comprehensively evaluate lesions,
especially the texture features in the image that are not recognized
by the naked eye and reveal the inherent heterogeneity of the
tissue, reflecting the subtle differences between different tissues.
Radiomics can be combined with the imaging appearance to
further improve the differential diagnosis ability of the lesion
(30, 31). The AK, an imaging analytic software used in this study,
has been used in many research reports (32, 33). A previous study
showed that radiomic feature-based CT imaging signatures allow
the prediction of lymph node metastasis in cancer and could
facilitate the preoperative individualized prediction of lymph
node status (20).

Kimura disease is a rare disease; the lymph nodes involved
in the case are often multiple. Therefore, the diseased lymph
nodes were selected as the research object, and the AK software
was used for feature extraction and dimensionality reduction. A
total of 396 features were extracted and seven texture features
were selected to identify Kimura disease from lymph node
metastases, and a logistic regression model was established. In
order to avoid model over-fitting, we adopted 10-fold cross-
validation using training set data and testing set data for the
established model. The mean AUCs of models in the two sets
were 0.7812 and 0.7628. The AUC of the testing set was 0.977,
which is a strong validation of the good performance index of
the logistic regression model established in the study. In this
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study, the seven screened out features showed a significantly
different distribution between the two groups, and from the
point of view of the features themselves, the results showed that
the heterogeneity of metastatic tumors was greater than that of
Kimura disease on CECT. This conclusion may be explained
by a previous basic study. Lee et al. (29), by using comparative
transcriptomics and metabolomics analyses of primary and
lymph node metastasis tumors in mice, found that lymph node
metastasis requires that tumor cells undergo a metabolic shift
toward fatty acid oxidation (FAO). Transcriptional coactivator
yes-associated protein (YAP) is selectively activated in lymph
node metastatic tumors, leading to the up-regulation of genes
in the FAO signaling pathway. Several bioactive bile acids
accumulated to high levels in metastatic lymph node metastasis,
and these bile acids activated YAP in tumor cells, likely through
the nuclear vitamin D receptor. The study showed that lymph
node metastases are complex.

It is also obvious that both the CECT image and the radiomic
features image of the lymph nodes in a metastatic tumor patient
have a greater changing rate and more complexity than that of
the Kimura disease (Figure 8). The discriminated efficiency of
the model is better than any single feature for the two diseases,
and the disease identification ability of the model, in addition
to variance and sumAverage, is significantly different from the
other five features. The results show that the model has a higher
identification accuracy; the decision curve of the model shows a
greater standard net benefit within a wide threshold probability
(0.08–1.0) than treating all patients or treating no patient. So,
we prefer using this model as a basis for decision making to
identify these two kinds of diseases. The nomogram is one of the
important applications of the model. Through the nomogram,
the risk of each patient can be predicted (20, 34, 35). Using
the model to classify the data of the testing set, it is found
that the correctness of the classification is good, which may
be due to the small amount of sample data in the testing set.
This study demonstrates that radiomics can help identify Kimura
disease in the head and neck and lymph node metastases, and
the established nomogram can predict the risk of lymph node
metastases in patients. Radiomics can be used as an intelligent-
aided tech to diagnose diseases.

There are some limitations in our study. First, this is a single-
institution retrospective analysis. The sample size is rather small
because of the low morbidity of Kimura disease. Second, because
of lack of data, we did not integrate clinical features and genetic
and immunohistochemical data into a statistically predictive

model. Third, this study lacks an external validation. Therefore,
the sample should be expanded and multi-center independent
samples are needed to further improve the accuracy of the
model. In the future, some clinical data will be integrated into
a statistically predictive model.

In summary, our results showed that CECT images contain
much useful information which could be used to differentiate
Kimura disease from lymph node metastases, but which could
not be seen through naked eyes. Radiomic technology can deeply
explore the image heterogeneity information, which may be an
effective and non-invasive way for differential diagnosis between
Kimura disease and lymph node metastases.
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