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Purpose: The purpose of the current study was to evaluate the ability of

magnetic resonance (MR) radiomics-based machine-learning algorithms in differentiating

glioblastoma (GBM) from primary central nervous system lymphoma (PCNSL).

Method: One-hundred and thirty-eight patients were enrolled in this study. Radiomics

features were extracted from contrast-enhanced MR images, and the machine-learning

models were established using five selection methods (distance correlation, random

forest, least absolute shrinkage and selection operator (LASSO), eXtreme gradient

boosting (Xgboost), and Gradient Boosting Decision Tree) and three radiomics-based

machine-learning classifiers [linear discriminant analysis (LDA), support vector machine

(SVM), and logistic regression (LR)]. Sensitivity, specificity, accuracy, and areas under

curves (AUC) of models were calculated, with which the performances of classifiers were

evaluated and compared with each other.

Result: Brilliant discriminative performance would be observed among all classifiers

when combined with the suitable selection method. For LDA-based models, the optimal

one was Distance Correlation + LDA with AUC of 0.978. For SVM-based models,

Distance Correlation + SVM was the one with highest AUC of 0.959, while for LR-based

models, the highest AUC was 0.966 established with LASSO + LR.

Conclusion: Radiomics-based machine-learning algorithms potentially have promising

performances in differentiating GBM from PCNSL.

Keywords: glioblastoma, primary central nervous system lymphoma, magnetic resonance imaging, radiomics,

machine learning

INTRODUCTION

Glioblastoma (GBM) and primary central nervous system lymphoma (PCNSL) are considered as
the common primary brain tumors, which share similar radiological characteristics but diverse
in therapeutic strategies (1–3). The standard of treatment for a GBM is total resection, followed
by daily radiation and chemotherapy (like temozolomide) for 6.5 weeks, then a 6-month regimen
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of oral chemotherapy given 5 days a month, while the first-
line treatment for PCNSL is systemic chemotherapy (like
high-dose methotrexate regimen) (4). In most cases, the
morphological description of two types of tumors on MRI
is characteristic enough for adequate discrimination (5, 6).
However, misdiagnosis could still incur in some cases because
the images of atypical GBM and atypical PCNSL could mimic
each other (7). Advanced MRI technology could be useful in
the differentiation. However, the urgency of novel radiological
methods focused on conventional MR sequences has still been
highlighted given that the advanced MRI cannot be performed as
the routine examination for every patient.

Texture analysis (TA) refers to a number of a set of
mathematical methods describing the features of images,
with which non-visual information could be represented with
analyzable pixel intensities and the spatial distributions (8, 9).
It has been applied as the radiological imaging biomarkers to
evaluate tumor heterogeneity, and showed promising ability in
as tumor diagnosis, presurgical grading, as well as gene mutation
prediction (10–12). Moreover, with quantified analyses of images,
it has also been incorporated with various novel computer
technologies, such as machine learning (13–16).

The purpose of the present study is to discriminate GBM
from PCNSL with radiomics-based machine-learning algorithms
in contrast-enhanced T1-weighted (T1C) imaging. In addition,
we evaluated different combinations of selection methods and
classifiers, trying to make comparison of models’ performances.

METHOD

Patient Selection
The patients were selected from neurosurgery department by
reviewing the electronic medical records between 2015 and
2018. The including criteria of patients were as follows: (1)
pathologically confirmed on GBM or PCNSL; (2) undertook MR
scan before any tumor biopsy or surgery; (3) newly diagnosed
GBM or PCNSL. Some patients were excluded because of the
history of intracranial surgery or irrelevant intracranial diseases.
In total, 138 patients (72 men, median age 48 years; and 66
women, median age 54 years) were enrolled from the institution
database, including 76 patients diagnosed with GBM and 62
diagnosed with PCNSL.

The MR images were collected from the PACS system
in the radiological department. We focused on conventional
MR sequences, including T1-weighted image (T1WI), contrast-
enhanced T1-weighted (T1C) imaging, T2-weighted image
(T2WI), and fluid-attenuated inversion recovery, considering
that the advanced MR sequences were not commonly used in
our institution. After the initial evaluation of images, T1C was
selected as the study sequences with rather clear description
of the boundary between the tumor tissues and normal brain
tissue (Figure 1).

MRI Protocol
The preoperative MR scan was conducted with 3-T GE MRI
system with an eight-channel phase-array head coil. The
protocols of the contrast-enhanced T1-weighted imaging were

time repetition = 2,000ms, field of view = 240 × 240 mm2,
time echo = 30ms, 30 axial slices, slice thickness = 5mm (no
slice gap), flip angle = 90◦, and 200 volumes in each run.
Gadopentetate dimeglumine (0.1 mmol/kg) were taken as the
contrast agent. The multi-directional data of contrast-enhanced
MRIwere collected with the continuous interval time of 90–250 s.

All procedures involving human participants were in
accordance with the ethical standards of the institutional and/or
national research committee. The Ethics Committee of Sichuan
University approved this retrospective study. Written informed
consent was necessary before radiological examination (written
informed consent for patients <16 years old was signed by
parents or guardians) for all patients. They agreed to undertake
the examination if needed and were informed that the statistics
(including MR image) might be used for academic purposes in
the future.

Texture Feature Extraction
Two neurosurgeons participated in the extraction of texture
features by using lifeX software (http://www.lifexsoft.org) under
the supervisions of senior radiologists. By manually drawing
along the tumor tissue slice by slice, the software automatically
retrieved 3D-based texture features from two sets of orders with
default settings (17). In the first order, statistics from shape-
and histogram-based matrix were retrieved. In the second order,
statistics from gray-level co-occurrence matrix (GLCM), gray-
level zone length matrix (GLZLM), neighborhood gray-level
dependence matrix (NGLDM), and gray-level run length matrix
(GLRLM) were retrieved. The images were excluded of which
the volume of interest did not reach 64 voxels to avoid the
interference of the lower image matrix resolution.

Mann–Whitney U-test was employed to explore if there
is significant statistical difference between the data extracted
by two researchers. The results suggested that none of the
features were significantly different, implying that the results
could be considered reliable and reproducible (shown in
Supplementary Material 1).

Classification Algorithm Application
The patients were randomly divided into the training group and
the validation group on the proportion of 4:1. For machine-
learning classifiers, the optimal texture features were selected
first for classifiers to reduce the number of input variables to
improve the performance of the model and to both reduce the
computational cost. Considering the optimal selection method
was controversial for different classifiers, five methods were
conducted separately, including distance correlation, random
forest (RF), least absolute shrinkage and selection operator
(LASSO), eXtreme gradient boosting (Xgboost), and Gradient
Boosting Decision Tree (GBDT).

The purpose of machine learning was to establish and train
the models to discriminate GBM from PCNSL with radiomics
features extracted from T1C imaging. Three classifiers were
tested, including linear discriminant analysis (LDA), support
vector machine (SVM), and logistic regression (LR). Thus, 15
diagnostic models were evaluated with different combinations of
selection methods and classifiers. The models were trained with
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FIGURE 1 | The magnetic resonance images (T1C) of patients with (A) primary central nervous system lymphoma (PCNSL) or (B) glioblastoma (GBM).

the statistics of the training group and tested in the validation
group. Sensitivity, specificity, area under the receiver operating
characteristic curve (AUC), and accuracy of each model were
recorded for evaluation. On application of each model, the cycle
of training-validation was performed 100 times to obtain the
realistic distribution of classification accuracies. The flow chart
of the study is represented in Figure 2.

The models were programmed using Python Programming
Language in this study. Themodels were directly established with
default hyperparameter settings of scikit-learn packages (https://
scikit-learn.org/stable/).

RESULT

The selected features with different methods are represented
in Table 1. Four features, GLRLM_LGRE, GLRLM_HGRE,
GLRLM_SRHGE, and GLZLM_HGZE, were almost selected
even using different methods, suggesting that they were the most
significant features in discrimination compared with the others.
The other selected features should be reasonably considered as
relevant in discrimination, but was hard to tell how much they
influenced the algorithms’ performances.

The performances of models are listed in Table 2. As
mentioned previously, the models were established with different
combinations of selection methods and classifiers. The results

indicated that all three classifiers represented impressive
differential ability when using suitable selected features, and
the LDA classifier showed much better compatibility compared
with other classifiers. Over-fitting was observed in six models,
including RF + SVM, Xgboost + SVM, GBDT + SVM, and RF
+ LR, Xgboost + LR, and GBDT + LR. For LDA-based models,
the AUCs in the validation group were 0.978, 0.964, 0.977, 0.750,
and 0.956; for the SVM-based models, the AUCs were 0.959 and
0.822; and for LR-based models, the AUCs were 0.933 and 0.975.

In the current study, the optimal model was Distance
Correlation + LDA. In the training group, the predictive model
showed the discriminative ability with AUC of 0.992, accuracy
of 0.993, sensitivity of 0.996, and specificity of 0.990. In the
validation group, the performance of the model was rather
good, with AUC of 0.978, accuracy of 0.979, sensitivity of 0.982,
and specificity of 0.976. The association between discriminative
functions from models is represented in Figure 3. Figure 4

represents the examples of distribution of the direct LDA
function diagnosis of GBM and PCNSL for one cycle.

DISCUSSION

In the current study, we performed research in differentiating
GBM from PCNSL with the radiomics-based machine-learning
technology. Radiomics parameters were extracted from T1C
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FIGURE 2 | Flow chart of image processing and machine learning.

TABLE 1 | The features selected with different methods.

Selection method Selected features

Distance correlation GLRLM_LGRE; GLRLM_HGRE; GLRLM_SRLGE; GLRLM_SRHGE; GLRLM_LRLGE; GLZLM_LGZE;

GLZLM_HGZE; GLZLM_SZLGE

RF GLRLM_LGRE; GLRLM_HGRE; GLRLM_SRLGE; GLRLM_SRHGE; GLRLM_LRHGE; GLZLM_HGZE

LASSO minValue; meanValue; stdValue; SHAPE_Volume; GLCM_Contrast; GLRLM_HGRE; GLRLM_SRHGE;

GLRLM_LRHGE; GLRLM_GLNU; GLRLM_RLNU; GLZLM_LZE; GLZLM_HGZE; GLZLM_SZHGE;

GLZLM_LZHGE; GLZLM_GLNU; GLZLM_ZLNU

XgBoost GLRLM_LGRE

GBDT GLRLM_LGRE; GLRLM_HGRE; GLRLM_SRLGE; GLRLM_SRHGE; GLRLM_LRHGE; GLZLM_LGZE;

GLZLM_HGZE; GLZLM_SZLGE; GLZLM_SZHGE

RF, random forest; LASSO, least absolute shrinkage and selection operator; Xgboost, eXtreme gradient boosting; GBDT, Gradient Boosting Decision Tree.

TABLE 2 | Results of the discriminative model in distinguishing GBM from PCNSL in the training and validation group.

Classifier Selection method Training group Validation group

AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity

LDA Distance correlation 0.992 0.993 0.996 0.990 0.978 0.979 0.982 0.976

RF 0.970 0.968 0.935 0.990 0.964 0.957 0.906 0.990

LASSO 0.997 0.996 0.992 0.995 0.977 0.971 0.955 0.989

Xgboost 0.791 0.810 0.995 0.740 0.750 0.789 0.995 0.735

GBDT 0.972 0.970 0.939 0.996 0.956 0.950 0.892 0.995

SVM Distance correlation 0.957 0.962 0.998 0.934 0.959 0.964 0.997 0.943

RF (over-fitting) 1 1 1 1 0.5 0.585 1 0.943

LASSO 0.843 0.835 0.747 0.966 0.822 0.789 0.671 0.965

Xgboost (over-fitting) 0.5 0.541 0.747 0.967 0.5 0.586 0.671 0.965

GBDT (over-fitting) 1 1 1 1 0.5 0.586 0.670 0.965

LR Distance correlation 0.977 0.956 0.961 0.949 0.933 0.927 0.941 0.911

RF (over-fitting) 1 0.547 1 0.592 0.511 0.515 0.551 0.596

LASSO 0.959 0.988 0..942 0.981 0.975 0.966 0.975 0.964

Xgboost (over-fitting) 0.959 0.988 0.942 0.981 0.5 0.5 0.542 0.586

GBDT (over-fitting) 0.951 0.562 0.954 0.592 0.538 0.515 0.577 0.596

AUC, area under curve; RF, random forest; LASSO, least absolute shrinkage and selection operator; Xgboost, eXtreme gradient boosting; GBDT, Gradient Boosting Decision Tree; LDA,

linear discriminant analysis; SVM, support vector machine; LR, logistic regression.
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images to detect non-visual information of two types of tumors.
The models were established with five selection methods and
three classifiers and tested to find the optimal model. The result
showed that the radiomics-based machine-learning classifier
represented excellent performance in all classifiers with AUC
more than 0.900. The optimal model was the combination of
Distance Correlation + LDA with AUC of 0.978, accuracy of
0.979, sensitivity of 0.982, and specificity of 0.976. Given that the
T1C image was routine examination for GBM and PCNSL, our
results suggested that radiomics was a feasible solution for clinical
application without requiring additional fees or platform.

Generally, contrast-enhanced T1imaging is a routine
radiological examination for patients with GBM or PCSNL. A
previous study indicated that at the time of initial presentation
for many cases, routine morphological MRI is capable enough
in differentiating between GBM and PCNSL lesions. The image
patterns are correlated with the tumor characteristics, such as
intratumoral hemorrhage, angiogenesis, and necrotic or cystic

FIGURE 3 | Relationship between the discriminant functions for discriminating

GBM from PCNSL.

components. Specifically, heterogeneous enhancement was
present in 98.1% of GBM cases and homogenous enhancement
in 64.8% of PCNSL cases; necrosis was observed in 88.9% of
GBM lesions and 5.6% of PCNSL lesions; multiple lesions were
shown in 51.9% of PCNSL cases and 35.2% of GBM cases. Signs
of bleeding were uncommon in PCNSL (5.6%) and frequent
in GBM (44.4%) (18). Advanced imaging techniques, such as
apparent diffusion coefficient (ADC), diffusion-tensor imaging
(DTI), dynamic susceptibility-weighted contrast-enhanced
MRI, and perfusion weighted imaging, were also additionally
performed in discriminating GBM and PCNSL if necessary (19–
21). Surgeons could obtain the information on characteristics of
tumors to make diagnostic and treatment decisions. However,
even with these researches, the differential diagnosis between
GBM and PCNSL was still a challenge in some cases, especially
given that the conventional MR sequence could only make
limited discrimination between two types of tumors and that
advanced imaging techniques were not available for all patients.

Comparing with GBM, permeable neovascularization and
higher degree of cellularity were more likely to be observed in
PCNSL, which theoretically provide the mechanism of TA-based
image discrimination (22–24). In our study, radiomics of T1C
imaging were used to detect the microscopic differences between
GBM and PCNSL, and the results suggested TA was the feasible
solution in discriminating GBM and PCNSL radiologically.
Radiomics has been reported to distinguish GBM from PCNSL in
a previous study, and machine-learning classification model was
reported to improve the performance in discrimination (6, 25).
Researchers made comparison on diagnostic accuracy between
radiologists and machine-learning classifiers, and they suggested
that classifiers yielded better diagnostic performance than human
radiologists (25). However, the sample sizes of these studies were
not large enough and only a few models were tested. Our study
enrolled 138 patients with rational proportion of each group
and made an evaluation on 15 combinations. In a previous
study, RF-based classifier represented perfect performance in
discriminating atypical glioblastoma from PCNSL with AUC of
0.98 (6), and SVM-based classifier also represented non-inferior

FIGURE 4 | Example of distributions of the LDA function determined for the lesions for one cycle.
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performance to expert human with AUC of 0.877 (25). In our
study, the results showed that all three classifiers represented
perfect performance when combined with a suitable selection
method. It is worth noting that the result of the optimal SVM-
based model in our study was with AUC of 0.96, demonstrating
much better diagnostic performance than the previous study.

The possible explanation for the improvement was the
performance improvement in selection method. Radiomics
analysis involved large amounts of features, but machine learning
required the most suitable parameters. Previous researchers
selected parameters with F-statistic approach into SVM classifier,
while we selected with distance correlation, RF, LASSO, Xgboost,
or GBDT approach. The combination of LASSO + SVM
represented similar discriminative performance such as in the
previous study with AUC of 0.822. Besides performances, we can
also find that the selection methods were also important to the
model stability. Over-fitting is a problem that should be avoided
in designing the machine-learning models, which happens when
the models catch inaccurate values in the data and the noisy data.
Our results suggested that over-fitting probably occurred when
using RF, Xgboost, and GBDT as selection methods. Perhaps the
features selected with these methods contained too much noise
and led to the over-fitting of models.

As for the classifier selection, the purpose of enrollment of
three classifiers was to choose the suitable one in discriminating
GBM from PCNSL. The results suggested that with suitable
features, all of them could represent discriminative ability. It
is worthy to note that although we chose Distance Correlation
+ LDA as the optimal model, some models (like LASSO
+ LDA and LASSO + LR) also represented pretty similar
discriminative performances. The model Distance Correlation
+ LDA was chosen as the optimal one because it has the
minimal difference between sensitivity and specificity compared
with LASSO + LDA and LASSO + LR. However, given that
all classifier/feature selection methods investigated seem to
perform quite comparably and variance in AUC may be partially
attributed to small statistical group, the additional gain in
information by comparing machine-learning models was quite
limited and carefully interpreted. Future investigations with
larger sample sizes are required to address this problem and verify
our results.

There were several limitations to our study. First, the isolated
evaluation of T1C image is not representative of the real
clinical work given other sequences (such as ADC, perfusion,
DTI, and T2 gradient-echo) could also be useful. Second, the
diagnostic performance of radiomics-based machine learning

was not compared with other advanced MRI technology. Third,
the study cohort is not large enough, requiring study with a large
population to verify our results. Forth, the machine-learning
classifier was not validated in the other dataset. Considering
the considerable variability in images acquired with various
MR scanner at different institutions, we cannot guarantee the
diagnostic ability of our machine-learning classifier for external
datasets. However, the image processing and analysis protocol
were open-source packages, meaning they should be validated
and reproduced with other datasets.

CONCLUSION

Radiomics with machine-learning algorithm technology
represented promising ability in differentiating GBM
from PCNSL.
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