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To date, cancer remains a worldwide leading cause of death, with a still rising incidence.

This is essentially caused by the fact, that despite the abundance of therapeutic targets

and treatment strategies, insufficient response and multidrug resistance frequently occur.

Underlying mechanisms are multifaceted and extensively studied. In recent research,

it became evident, that the lysosome is of importance in drug resistance phenotypes.

While it has long been considered just as cellular waste bag, it is now widely known that

lysosomes play an important role in important cellular signaling processes and are in the

focus of cancer research. In that regard lysosomes are now considered as so-called “drug

safe-houses” in which chemotherapeutics are trapped passively by diffusion or actively by

lysosomal P-glycoprotein activity, which prevents them from reaching their intracellular

targets. Furthermore, alterations in lysosome to nucleus signaling by the transcription

factor EB (TFEB)—mTORC1 axis are implicated in development of chemoresistance. The

identification of lysosomes as essential players in drug resistance has introduced novel

strategies to overcome chemoresistance and led to innovate therapeutic approaches.

This mini review gives an overview of the current state of research on the role of lysosomes

in chemoresistance, summarizing underlying mechanisms and treatment strategies and

critically discussing open questions and drawbacks.
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INTRODUCTION

Cancer is still the second leading cause of death worldwide. In total, the annual number of new
cancer diagnoses is 18 million with rising incidence and about 25–30% of all deaths worldwide
are connected to cancer and cancer-related diseases (1, 2). Cancer cells possess several features
distinct from healthy cells, described as the hallmarks of cancer, which enable them to survive and
constantly proliferate (3).

Lysosomes are part of the endolysosomal system (ES), which has long simply been considered
as the cell’s recycling or waste compartment. Interestingly, the ES was discovered to be also
important for sustaining several cancer hallmarks, including migration of invasive cancer cells and
neoangiogenesis of endothelial cells (4–7). The ES consists of early, late and recycling endosomes
as well as lysosomes, which are separated from the cytosol by a lipid bilayer (69). The ES
biogenesis is predominantly regulated by TFEB and mTORC1 signaling and frequently altered
upon oncogenic transformation. ES organelles are distinguished by their characteristic intraluminal
composition, acidic pH and expression of surface proteins (8, 9). In particular, the lysosome
contains various hydrolases, such as proteases and lipases, and displays a luminal pH of about
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4.5–5. Today it is recognized as important regulator of nutrient
homeostasis, apoptosis, autophagy and membrane trafficking,
processes cancer cells critically depend on (7, 69). Consequently,
targeting lysosomes gained interest in cancer therapy. Current
research is focused on several of its membrane proteins, e.g.,
the V-ATPase and lysosomal cation channels, like TRPMLs and
TPCs, for which excellent reviews are available (9–13).

A major drawback in cancer therapy is the phenomenon
of multidrug resistance (MDR), in which tumor cells become
unresponsive to treatment, despite the availability of a high
variety of targets and related treatment strategies (14–16). The
underlying mechanisms are very versatile. A prominent pathway,
however, is linked to aberrant drug efflux mediated by the
drug transporter P-glycoprotein (P-gp), an ATP-dependent efflux
pump (17). Despite intensive research, all clinical trials evaluating
P-gp inhibitors failed to date (18).

This review is divided into two parts. Firstly, we critically
discuss literature connecting lysosomes and chemoresistance and
secondly, we provide an overview of lysosome-based treatment
strategies to overcome drug resistance.

LYSOSOMES AND CHEMORESISTANCE

Notably, the lysosome recently emerged as promising target to
overcome chemoresistance, as increasing evidence suggests that
it is involved in P-gp trafficking, serves as drug safe house and
links lysosomal biogenesis, induced by transcription factor TFEB,
to chemoresistance phenotypes (19–21). Therefore, targeting
lysosomal function might improve response to chemotherapy as
explained in detail below.

Lysosomal Function Is Crucial for
P-Glycoprotein Trafficking
P-gp is a membrane-bound protein, usually embedded in
the plasma membrane, actively transporting cargo into the
extracellular space. Recently, in resistant cancer cells, lysosomal
overexpression of P-gp has been reported. Mechanistically,
it is hypothesized that P-gp is incorporated into lysosomal
membranes during trafficking and recycling events, rather than
being redistributed after de-novo synthesis (19, 20, 22).

The ES is substantially involved in protein trafficking,
a process that is dependent on proper function of ES
membrane-integrated proteins and ion channels (5, 23, 24).
Disturbance of ES membrane protein function in cancer cells
is a promising treatment strategy. For instance, V-ATPase
inhibition induces lysosomal alkalization and subsequently
disrupts receptor trafficking (24–26). Additionally, inhibiting
TPC2 and TRPML1 ion channels also impairs trafficking
and induces apoptosis (5, 27). Extensively studied players
of regulation of vesicular trafficking are the RabGTPases.
This large family of small GTPases controls membrane
identity, vesicle budding, uncoating, motility and fusion during
vesicular trafficking (28–32). Rab GTPases show a distinct
intracellular distribution pattern of different members to
the respective organelle, thereby regulating directed vesicle
trafficking. Lysosome associated Rab GTPases are e.g., Rab4,

Rab5, and Rab7 (33). Although their impacts on P-gp trafficking
are controversial and dependent on the cell type, Rab4 and
Rab5 were shown to affect intracellular localization of P-gp
(34). Nevertheless, Ferrandiz-Huertas et al. (35) were able to
demonstrate that overexpression of Rab4 leads to a decrease
in membranous P-gp abundance and subsequently to increased
intracellular daunorubicin concentrations. Furthermore, Rab4
levels seem to correlate with resistance status in this study, as
resistant cells have decreased Rab4 levels as compared to the
parental cell line (35).

Based on these studies, evidence is given that modulating
endolysosomal function impairs P-gp membrane trafficking
and recycling. Hence, targeting the ES might be a reasonable
approach to overcome multidrug resistance (Pathway A in
Figure 1). However, most of the currently available studies
remain to prove a therapeutic benefit and the effects are strongly
cell type dependent.

The Lysosome as Drug Safe House
An important lysosomal mechanism contributing to
chemoresistance is the so-called drug safe house effect. The
acidity of lysosomes facilitates luminal accumulation of
cytostatic weak bases and leads to their protonation, reducing
their ability to pass the lysosomal membrane, causing lysosomal
drug sequestration (36). Upon lysosomal trapping, cytostatics
are prevented from reaching their intracellular targets, which are
usually located in the nucleus or the cytosol and therefore fail to
exert cytotoxicity (37) (Pathway B in Figure 1). Cytostatics enter
the lysosome either by passive diffusion along the pH gradient
or may be actively transported across the membrane by inward
turned P-gp drug efflux pumps embedded in the lysosomal
membrane. Lysosomal sequestration capacity therefore greatly
depends on the physicochemical properties of the cytostatic and
on the lysosomal features like pH and lysosomal volume (19, 37).
Typically, weak bases can enter the lysosome via passive diffusion
and are trapped upon protonation, yet also hydrophilicity of
the protonated or deprotonated drug is an important factor
as it strongly correlates with membrane permeability (19). In
that regard, pKa values, which display acidity or basicity of a
compound and logP/D values, which represent hydrophilicity
of non-ionizable and ionizable molecules, respectively, can be
used to estimate lysosomal sequestration of a drug (38, 39). For
an active lysosomal trapping, the abundance of lysosomal P-gp
activity is a determining factor. As discussed above, P-gp can be
trafficked to the lysosomal membrane under stress conditions,
which has been reported to tremendously enhance resistance to
cytostatic P-gp substrates (20). In turn, stress factors like reactive
oxygen species can be induced by cytostatics, further increasing
lysosomal P-gp abundance and hence resistance.

However, the interplay between lysosomal properties, active
or passive drug accumulation and effective sequestration are
complex and cell line dependent. For instance, the weak
base doxorubicin undergoes lysosomal trapping in UMUC-3
cells, but not in KB31 cells, most likely as result of different
lysosomal properties. Interestingly, in the P-gp overexpressing
KB31-subline KBV1, doxorubicin is effectively sequestered, an
effect which is reversed by P-gp inhibition (19). Moreover,
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FIGURE 1 | Overview of lysosomal mechanisms contributing to chemoresistance. Lysosomal function is pivotal for proper trafficking of P-glycoprotein to the cell

membrane. Membranous P-gp transports cytostatics from the cytosol to the extracellular space (A). Lysosomal P-gp pumps its substrates into the lysosomal lumen,

where they are sequestered in dependence of their physicochemical properties. Passive diffusion of hydrophobic weak bases also contributes to lysosomal drug

sequestration (B). Subsequent disturbance of lysosomal function leads to TFEB activation mediated by mTORC1 inhibition and calcineurin activation. TFEB is then

released from 14-3-3 and translocates to the nucleus, transcribing genes from the CLEAR network (C). This promotes lysosomal biogenesis, increasing lysosomal

mass and thus sequestration capacity (D). Inhibiting lysosomal function by treatment with lysosomotropic or lysosome damaging agents as well as elevating lysosomal

pH, may overcome chemoresistance mediated by lysosomal drug sequestration (E). CQ, chloroquine; NH4Cl, ammonium chloride; MA, methylamine; SIR, siramesine;

Dp44mT, Di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone; P-gp, P-glycoprotein; mTORC1, mammalian target of rapamycin complex 1; TFEB, transcription

factor EB; CLEAR, coordinated lysosomal expression and regulation; P, phosphate. This figure was created using images from Servier Medical Art Commons

Attribution 3.0 Unported License. (http://smart.servier.com). Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License.

lysosomes of resistant cell lines often show a more acidic pH
than their parental cell lines, probably further enhancing drug
sequestration capability (40). Yet, the non-basic and lipophilic
P-gp substrate paclitaxel is neither sequestered in KB31 nor
KBV1 cells, owing to its ability to freely permeate the lysosomal
membrane (19).

The fate of drugs sequestered in lysosomes remains to be
clearly elucidated. It is suggested that they either stay trapped
in lysosomes or are eliminated from the cell by drug-induced
lysosomal exocytosis, preventing lysosomal damage. Supporting
the hypothesis of lysosomal exocytosis, treatment with cytostatics
leads to redistribution of basally perinuclear lysosomes to
the plasma membrane. Furthermore, lysosomal content is

increasingly released into the extracellular compartment, such as
cathepsin D and V-ATPase (41, 71). Enhanced membrane fusion
and subsequent exocytosis could be mediated by lysosomal
calcium release via activation of lysosomal cation channels, such
as TRPML1 (42). After lysosomal exocytosis, former trapped
cytostatics are again abundant in the extracellular compartment,
enabling repeated diffusion into the cell. Therefore, it is doubtful
whether this mechanism contributes to chemoresistance,
requiring further investigation. Nevertheless, the implication of
lysosomes in chemoresistance is not restricted to its role as “drug
safe house.” In fact, lysosomal abundance of cytostatics leads to
changes in lysosomal properties, including pH and lysosomal
volume, further influencing lysosomal signaling.
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TFEB Signaling Regulating
Drug Resistance
Lysosomal properties are mainly regulated by the transcription
factor EB (TFEB), the master regulator of lysosomal biogenesis,
which when activated transcribes genes belonging to the
CLEAR (coordinated lysosomal expression and regulation)
network. TFEB is usually retained inactive in the cytosol,
by binding to the regulatory protein 14-3-3, which prevents
nuclear translocation. The binding of TFEB to 14-3-3 depends
on its phosphorylation status, which is regulated by the
kinase mTORC1 and the phosphatase calcineurin. mTORC1
phosphorylates TFEB facilitating binding, while calcineurin
dephosphorylates TFEB, leading to dissociation and subsequent
nuclear translocation (43, 44).

By accumulating in the lysosomal lumen, cytostatic weak bases
act like classic lysosomotropic compounds, raising lysosomal
pH and increasing lysosomal volume. Lysosomotropism is
the propensity of a typically basic substance to specifically
accumulate in lysosomes and consequently alter lysosomal
features and induce lysosomal membrane permeabilization (45).
In particular, an increase of lysosomal volume after treatment
with the cytostatic weak base sunitinib, but not with the
non-basic cytostatics 5-fluorouracil and pemetrexed, positively
correlates with drug resistance. In detail, treatment with
cytostatic weak bases, such as trametinib, vincristine, sunitinib
and doxorubicin leads to increased lysosomal volume in several
cancer cell lines (39, 46, 71). Furthermore, a different study shows
that LAMP1, a lysosomal marker, is upregulated in breast cancer
cells upon development of resistance by continuous exposure to
doxorubicin (47).

In line with an increase in lysosomal volume, TFEB is activated
when exposed to cytostatic weak bases and upregulated upon
development of chemoresistance, as shown for doxorubicin or
mitoxantrone treatment. Further, mTORC1 activity is inhibited
upon treatment with the cytostatic weak bases sunitinib and
siramesine, while calcineurin activity is enhanced, leading to
TFEB activation (21, 39) (Pathway C in Figure 1). Causal for
mTORC1 inhibition might be a change in lysosomal properties,
especially pH. If lysosomal pH is increased, for instance
by inhibition of the V-ATPase, a proton pump maintaining
lysosomal acidity, TFEB is activated and translocated to the
nucleus (43). Weak base cytostatics accumulating in lysosomes
rise lysosomal pH in a similar manner, as shown for doxorubicin
in cardiomyocytes, for example (48). Consequently, TFEB and
lysosomes could build a bidirectional axis with lysosomal drug
accumulation activating TFEB and TFEB inducing lysosomal
biogenesis, which increases lysosomal sequestration capacity and
exerts a feedback loop (Pathway D in Figure 1). Additionally, this
feedback loop might be enhanced by the influence of lysosomal
calcium signaling. TFEB regulation is closely linked to lysosomal
calcium signaling through the TRPML1 ion channel. Upon
lysosomal stress, TRPML1 channels release calcium into the
cytosol, creating a calcium enriched microenvironment in which
the calcium-dependent phosphatase calcineurin is activated and
dephosphorylates TFEB (44, 49). Increasing evidence suggests
that TRPML1 channel function is important for cancer cells
as genetic depletion leads to decreased cell survival and it has

also been reported that TRPML1 and mTORC1 signaling are
essential for aggressive cancer cells (50–52). Thus, TFEB and its
regulators mTORC1 and calcineurin are considered as potential
target for drug resistant tumors. However, which mechanism
of those explained above contributes to the sensitization effect
remains unknown and further studies addressing this topic are
currently missing.

Furthermore, TFEB acts as transcription factor for several
proteins essential for autophagy, a complex process promoting
cell survival during stress conditions (53). Autophagy is a
physiological “self-eating” recycling process which removes
defective proteins or organelles, to maintain cellular homeostasis.
In cancer cells, autophagy is a paradox which is on the
one hand able to prevent tumor initiation by preventing
cell damage, but on the other driving tumor progression
by facilitating adaptations to stress conditions like nutrient
deprivation and hypoxia (54). There is furthermore growing
evidence that autophagy is a driving factor for chemoresistance.
Autophagic signaling is also altered upon treatment with
cytostatics, namely vincristine and doxorubicin, indicated by
enhanced LC3-II and p62 levels, protein markers used for
visualizing inhibited autophagy. Subsequent promotion of cell
survival can be inhibited by knockdown of Atg5, an important
regulator of autophagosome formation (46, 47, 55). Evidence
further suggests a protective role for autophagy regulators
ATG3, 5, 6, 7, and 12 in resistant cells, however, detailed
mechanisms are not yet fully understood and hence require
further studies (56–60). Interestingly, besides TFEB-regulated
lysosomal alterations upon treatment with cytostatics, TFEB
also contributes to cell survival by mechanisms independent of
the aforementioned. For instance, TFEB influences DNA repair,
leading to inhibition of apoptosis. Therefore, knockdown of
TFEB prevents DNA repair and thus sensitizes MDA-MB-231
cells to doxorubicin treatment, promoting cell death induction
(70). Brady et al. hypothesize that this TFEB-dependent DNA
repair mechanism is mediated by p53-related signaling and is,
besides TFEB, also activated by TFE3, a transcription factor
closely related to TFEB (61). Therefore, lysosomal proteins not
only favor resistance by drug sequestration being the “final
destination” for cytostatics, but they also serve as signaling hub,
activating cell survival pathways.

LYSOSOME-BASED TREATMENT
STRATEGIES

Contribution of lysosomes to chemoresistance raised interest
in lysosome-targeting strategies to sensitize tumor cells to
chemotherapy. These strategies mainly focus on lysosomotropic
compounds, which act by accumulating in the lysosomal
lumen, thereby elevating lysosomal pH because of their
weak base characteristics and usually inducing lysosomal
membrane permeabilization (45). Lysosomotropic compounds
commonly used in in vitro experiments are chloroquine,
ammonium chloride, methylamine and siramesine (19, 62).
By inhibiting lysosomal drug sequestration as consequence
of pH elevation, lysosomotropic adjuvants cause intracellular
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redistribution of cytostatics from the lysosomal lumen to the
cytosol and subsequently to their sites of action (Pathway
E in Figure 1). This opens the possibility for combination
therapies to overcome resistance. Indeed, combination of
chloroquine, ammonium chloride or methylamine strikingly
sensitizes resistant KBV1 cells to treatment with vincristine
and doxorubicin. Additionally, combining vincristine with
siramesine is superior to monotherapy in vitro and in vivo in
breast cancer (19, 46).

As these data suggest a synergistic effect of cytostatics and
inhibition of lysosomal function, also the V-ATPase might
be considered as reasonable target due to its implication
in sustaining lysosomal acidity. Evidence suggests that V-
ATPase overexpression is associated with chemoresistance and
V-ATPase knockdown sensitizes doxorubicin-resistant MCF-
7 cells to doxorubicin and vincristine (63). Yet, studies
addressing pharmacological V-ATPase inhibition regarding
chemoresistance are scarce, requiring further research.

Another interesting approach focuses on the experimental
metal chelator Di-2-pyridylketone-4,4-dimethyl-3-
thiosemicarbazone (Dp44mT). By accumulating within
lysosomes and forming redox-active copper complexes,
Dp44mT potently induces lysosomal damage and subsequently
lysosomal cell death (64), which is characterized by cathepsin
D release from the lysosome into the cytosol and subsequent
mitochondrial release of cytochrome c, initiating apoptosis (65).
Therefore, Dp44mT toxicity is dependent on its lysosomal
trapping. As Dp44mT is a weak base P-gp substrate, it
accumulates stronger in P-gp expressing, resistant cells,
enabling specific killing of resistant cells, while sensitive cells
are less affected (66). Furthermore, Dp44mT could be used in
combination with basic cytostatics due to its inhibitory effect
on lysosomal drug sequestration. In this context, targeting acid
sphingomyelinase, a lipase responsible for lysosomal hydrolysis
of sphingomyelin, was proven to be another effective strategy
to successfully treat multidrug resistant tumors. Siramesine and
numerous approved basic amphiphilic drugs, including tricyclic
antidepressants and antihistamines, can disrupt lysosomal
membrane integrity by inhibiting acid sphingomyelinase
and thereby achieve cancer-specific cytotoxicity (62). Thus,
introducing lysosomal membrane permeabilization exemplarily
emphasizes the potential of lysosome-targeted approaches to
overcome chemoresistance.

CONCLUSION

Despite high efforts to improve chemotherapy, treatment
failure and resistance mechanisms remain a major challenge.
Exemplarily, for the efflux pump P-gp, which can limit efficacy
of cytostatic drugs, no clinically approved treatment options
are available to date. As summarized in this review, the
contribution of lysosomes to drug resistance opened a new
research field in the context of multidrug resistance to overcome
chemoresistance. This implication is not restricted to direct
lysosomal mechanisms, but also includes lysosome-associated
signaling pathways. Evidence suggests that interfering with
lysosomal function might be a promising approach enabling
sensitization to chemotherapy, influencing several survival-
promoting mechanisms, such as trafficking of efflux transporters,
drug sequestration and pathways regulated by TFEB, including
autophagy and DNA repair. Additionally, inhibition of lysosomal
function could target P-glycoprotein-driven chemoresistance,
giving hope for lysosome-targeted adjuvants in the future.

However, also lysosome-based strategies have their
drawbacks. Targeting lysosomal function in general is not a
cancer-specific approach, suggesting that it could lead to severe
side effects, as lysosomal function is pivotal for virtually all types
of cells, especially for immune cells (67, 68). Cancer-specific or
cancer-enriched targets in this concern are still rare, but there
is a high variety of lysosomal proteins, e.g., Rab GTPases, ion
channels, lipases or the V-ATPase, which could serve as specific
targets to disturb lysosomal function and thus drug resistance
phenotypes of cancer cells more selectively. Therefore, further
studies addressing the drawbacks and therapeutic potential of
lysosome-based combination strategies are needed.
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