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Radiotherapy (RT) has been developed with remarkable technological advances in recent

years. The accuracy of RT is dramatically improved and accordingly high dose radiation of

the tumors could be precisely projected. Stereotactic radiosurgery (SRS) and stereotactic

body radiotherapy (SBRT), also known as stereotactic ablative radiotherapy (SABR), are

rapidly becoming the accepted practice in treating solid small sized tumors. Compared

with the conventional fractionation external beam radiotherapy (EBRT), SABR with very

high dose per fraction and hypo-fractionated irradiation yields convincing and satisfied

therapeutic effects with low toxicity, since tumor cells could be directly ablated like

radiofrequency ablation (RFA). The impressive clinical efficacy of SABR is greater than

expected by the linear quadratic model and the conventional radiobiological principles,

i.e., 4 Rs of radiobiology (reoxygenation, repair, redistribution, and repopulation), which

may no longer be suitable for the explanation of SABR’s ablation effects. Based on

4 Rs of radiobiology, 5 Rs of radiobiology emphasizes the intrinsic radiosensitivity of

tumor cells, which may correlate with the responsiveness of SABR. Meanwhile, SABR

induced the radiobiological alteration including vascular endothelial injury and the immune

activation, which has been indicated by literature reported to play a crucial role in

tumor control. However, a comprehensive review involving these advances in SABR is

lacking. In this review, advances in radiobiology of SABR including the role of the 4 Rs

of radiobiology and potential radiobiological factors for SABR will be comprehensively

reviewed and discussed.
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INTRODUCTION

Radiotherapy (RT) is a fundamental therapeutic approach for all kinds of tumors which is carried
out in ∼60–70% of newly diagnosed cancer patients or adjuvant/new adjuvant for surgery and
palliative modality (1, 2). The advent of new radiation delivery technologies, for example, intensity
modulated radiation therapy (IMRT), volumetric intensity modulated arc therapy (VMAT),
and image guided radiation therapy (IGRT), has led to an evolving capability to maximize
dose conformity. Accordingly, high-dose radiation can be precisely projected to tumors (3).
The fractionation paradigm of RT shifts from the conventional multifractionated radiation to
hypo-fractionated radiation (3, 4). Hence, stereotactic radiosurgery (SRS) and stereotactic body
radiotherapy (SBRT), also known as stereotactic ablative radiotherapy (SABR), have been rapidly
becoming the established mainstream of clinical practice, especially for small sizes or early stage
cancer (5–7). Impressively, the clinical efficiency of SABR is greater than expected by the linear
quadratic model and the conventional radiobiological principles of 4 Rs, including “repair of
sublethal cellular damage,” “redistribution of cells within the cell cycle,” “reoxygenation of the
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surviving cells,” and “repopulation of cells after radiation,” which
may no longer be suitable to account for the killing effects of
SABR (8–10). Most likely, the underlying mechanisms of tumor
response to radiation might also be involved in the intrinsic
radiosensitivity and new radiobiological factors, e.g., vascular
damage (10, 11). Here, the roles of 4 Rs of radiobiology and
potential new radiobiological factors for SABR will be reviewed.

CONVENTIONAL FRACTIONATION RT AND

THE 4 RS OF RADIOBIOLOGY

After the discovery of X-rays in 1895, Roentgen et al. first
irradiated cancers with whole radiation dose delivered in single
fraction (12). However, by the 1930s, it was demonstrated that RT
with multifractionated radiation was more effective than single
fraction radiation, which created a beneficial differential effect
between cancer and normal cells (13). In 1934, Coutard et al.
proposed a fractionation scheme of 200 Rontgen per fraction
and 5 fractions per week, which was converted into the standard
contemporary 2Gy per fraction a day and 5 days a week scheme
(3, 14). These early clinical and radiobiological observations
led to the development of basic principle and fractionated
practice of conventional EBRT with 25–35 fractions in 4–6
weeks. This external beam radiotherapy (EBRT) pattern achieved
great success in treating epithelial tumors (e.g., laryngeal,
nasopharyngeal, and skin cancer), which laid the foundation of
conventional multifractionated radiotherapy (3).

However, in conventional radiation dose range (generally
1–5Gy per fraction with total doses of 60–70Gy), the
radiosensitivity of tumor varies greatly from tumor to tumor
of different tissues. Moreover, the RT for all tumors with
constant dose, fractions, and treatment cycle obviously lacked
personalization and pertinence due to the differences in
pathological types, differentiation, and biological behavior of
tumors. Consequently, the expected effect is hardly achieved
under the conventionalmultifractionated EBRT for the treatment
of radio-resistant tumors, e.g., lung adenocarcinoma, pancreatic
cancer, liver cancer, melanoma, renal cancer, and soft tissue
sarcoma. Therefore, the substantial evidence gathered over
several decades indicated that this may not be the optimal
approach for all targetable tumors (6).

Clinical and radiobiological research revealed that the
responses of tumor and normal tissues to conventional
multifractionated radiotherapy are commonly governed
by several radiobiological principles at both cellular and
histological levels. Owing to the low-dose fraction and long-term
conventional EBRT, tumor cells could not be completely killed,
and therapeutic resistance to radiation usually occurs. The 4
Rs of radiobiology aforementioned were initially described by
Withers on the radiobiological response to conventional EBRT,
which constituted the cornerstone of radiobiological theory
of conventional EBRT (8, 10). In the setting of conventional
EBRT, “reoxygenation” and “redistribution” increase the
radiosensitivity of tumor cells and thus contribute to the killing
effect of RT. “Repair” and “repopulation” of tumor cells are
associated with the occurrence of radiation resistance which

decrease the radiosensitivity of tumor cells and hence greatly
decrease the killing effects of RT (10).

SABR

The Discovery of SABR
In 1951, Leksell (15) first utilized gamma rays to focus radiation
on intracranial targets and described the concept of SRS. Then
Gamma-knife, as the first radio-surgical device, was developed
and introduced in 1967 at the Karolinska Institute (16). Although
SRS was introduced originally for functional neurosurgery, it
was soon applied in the RT for intracranial metastatic tumors,
which yielded the promising efficacy comparable to surgery (17,
18). Compared with the conventional EBRT, SRS with single
fraction/hypofractionation and total doses of 15–25Gy achieved
high local control of tumor (17–19). The implementation
of SBRT was delayed as a result of facing challenges in
both physiological motion and confidence in tumor-targeted
therapy (20). In the 1990s, CyberKnife (Accuray, Sunnyvale,
USA), the highly complex radiosurgery system, was invented at
Stanford University (21). Along with the advances in irradiation
technology, the paradigm and efficacy of RT have undergone
the radical changes. Until 2002, Timmerman et al. first used the
stereotactic ablation radiosurgery for the treatment of inoperable
early stage lung cancer, which was initially called “extracranial
stereotactic radio-ablation” (22, 23). Afterwards, SBRT was
defined by the American Society for Therapeutic Radiology and
Oncology (ASTRO) (22, 23). The concept of SABR was first
proposed in 2011 by Loo et al. (24), which included SRS and
SBRT for the treatment of solid tumors. SABR with high dose per
fraction and hypo-fractionated radiation yields the convincing
and satisfied therapeutic effects with low toxicity, since tumor
cells are directly ablated in response to high-dose radiation (7,
25). Therefore, SABR may overcome the dilemma of insensitivity
to tumors which are resistant to conventional EBRT.

Characters of SABR
SABR is delivering such large doses per fraction to tumors mainly
owing to the remarkable advances in tumor imaging, dosimetry,
and radiation delivery technology. Compared with conventional
fractionation RT, SABR yields several characteristics, described as
the following.

Focalized Conformal Irradiation
Owing to the advances of treatment planning system and multi-
leaf collimators driven by computerized algorithms, focalized 3D
conformal RT (3D-CRT) for target regions and organs at risk
could be achieved, namely dose painting or dose sculpting RT
(26). Gamma-knife achieved focalized and conformal irradiation
using collimator whereas CyberKnife used manipulator tracking
and dynamical irradiating (27, 28). At present, RT has entered the
3-dimensional/4-dimensional era with ablative efficacy that rivals
surgery, different from previous 2-dimensional conventional
EBRT (3, 4). Compared with conventional multifractionated
EBRT, the optimal iso-dose of SABR sculpting in the tumor
volume is dramatically increased with less sparing margins
surrounding normal tissues (7).
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Image Guidance
Image guidance has also evolved from ultrasound, interactive
X-ray, cone-beam CT (CB-CT), and CT to MRI guidance (4,
29). Ultrasound guidance is mainly used for RT of prostate
cancer. Interactive X-ray is used, along with the stereospecific
system, in CyberKnife for tracking fiducials previously implanted
into the tumor. CT-based simulation and planning allow better
radiation dose distributions, which are the major image guidance
in radiotherapy (IGRT) of linear accelerator (3). MRI-guided
clinical application with MRIdian (ViewRay Inc., Oakwood
Village, OH) was reported in 2012 and MRI-Linac system was
developed in 2016 (29–31). Themajor advance of image guidance
solves the shifting caused by the movement of target organ
during irradiation, greatly improves the irradiation accuracy, and
reduces the damages to surrounding normal tissues.

High Dose Per Fraction and Short Course of

Treatment
High dose per fraction and short course of treatment can be
achieved when the accuracy of irradiation is granted, while
geometrically sparing the innocent normal tissues (20). High-
dose radiation to small volume targets in a single or small number
of fractionations could be precisely projected by stereotactic focus
under image guidance (32, 33). SABR was delivered with high
dose per fraction in a relatively short course (SBRT delivers 40–
60Gy in 1–5 fractions and SRS irradiates lesions with 18–25Gy
typically in a single fraction) (10, 11). Encouraging efficacy of
SABR was achieved in the treatment of early-stage lung cancer,
liver cancer, and other previously considered “radioresistant”
tumors, such as metastasis of lung, liver, and spinal cord
(5, 34–36).

Application in Parallel Organs
Owing to the ablative property, SABR was mainly applied
in parallel organs, such as lung, liver, pancreas, kidney, and
prostate (37, 38) which are dose-volume dependent and can
tolerate the relatively high-dose radiation (39). Serial organs,
such as esophagus, stomach, and rectum, are considered to be
not suitable for large fractional radiation, since all downstream
function may be disrupted when a section of serial organs is
damaged anywhere along its length (40, 41).

Proposed Classification for SABR
Since the extended boundary for the formation of planning target
volume (PTV) is inconsistent in varied SABR technology (e.g.,
Gamma-knife, Liner-accelerator, CyberKnife, and TomoTherapy
system), the clinical efficacy and its side effects are quite variant.
Therefore, we proposed a classification for SABR based on
each equipment and technology mentioned above and classified
SABR into Gamma-knife-SABR (G-SABR), Liner-accelerator-
SABR (L-SABR), CyberKnife-SABR (C-SABR), Tomo-SABR
(T-SABR), and Proton-SABR (P-SABR), which was thought
to be convenient for communication and comparison of the
clinical outcomes among these technologies. Meanwhile, taking
advantage of the inverse-square law, Brachytherapy (BT) driven
by high-precision imaging and planning offers an intrinsically
conformal dose distribution, which facilitates dose escalation (3).

Stereotactic ablative brachytherapy (SABT) has been achieved
nowadays, including high-dose rate SABT (H-SABT) and low-
dose rate SABT (L-SABT), and may also be classified into
SABR technology.

The 4 Rs of Radiobiology in SABR
SABR and Repair
Tumor cells with lethal damage will lead to DNA breakage
and cell death under conventional EBRT. However, tumor cells
with sublethal damage/potential lethal damage will repair and
continue to proliferate after a certain period of adjustment
owing to the inadequate doses radiation, which results in
tumor recurrence and metastasis (42, 43). Repair compromises
the efficiency of radiation and reduces the radiosensitivity of
tumors, as radiosensitivity correlates with the number of residual
unrepaired DNA double strand breaks (44, 45). In the setting
of SABR, high-dose radiation per fraction is applied and total
doses are delivered in 2–5 times fractions within a relatively
short period, inducing more necroptosis than apoptosis (46, 47).
Therefore, the repair of tumor cells is almost impossible or at a
very low incidence. Accordingly, the majority of tumor cells will
suffer from lethal damage leading to cell death (10, 47).

SABR and Redistribution
After irradiation, tumor cells at G0 stage of cell cycle will
accelerate into G2/M stage for replenishment or rebalancing
(radiation-induced G2/M arrest) (48, 49). Tumor cells at G2/M
stage are highly sensitive to radiation. During conventional
EBRT, the sensitivity of radiation is potentially enhanced, as
the proportion of tumor cells at G2/M stage increases (50).
Therefore, redistribution of cell cycle improves the killing ability
of conventional multi-fractionated EBRT (50). While in the
setting of SABR, the cell cycle is completely blocked at all
stages after single higher-dose ablation radiation (e.g., >20Gy).
Therefore, it is impossible for tumor cells’ redistribution since
both sensitive and insensitive tumor cells are directly killed (48).

SABR and Reoxygenation
Given that oxygenated tumor cells are sensitive to radiation
during conventional EBRT, tumor cells in hypoxic state will
reoxygenate and be killed by radiation. Thus, reoxygenation
enhanced the killing effects in the setting of conventional
fractionated EBRT (10). Reoxygenation may be reduced owing to
the relative short duration of SABR. Furthermore, tumor hypoxia
may persist after vascular injury caused by SABR (11, 51). In
such cases, additional radiation dose boost may offer the solution
to overcome the state of hypoxic radioresistance (52). Both
oxygenated and hypoxic cells are ablated by high-dose radiation
under SABR, resulting in highly efficient tumor killing.

SABR and Repopulation
The sensitive tumor cells quickly enter the apoptosis state under
conventional EBRT, leading to cell populations’ unbalance. In
the beginning of homeostasis, tumor cells at stationary stage
will proliferate to compensate for the loss of cell populations.
Repopulation of tumor cells usually occurs in 2–3 weeks after
conventional fractionated EBRT, depending on the fractionated
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radiation doses, total doses, and pathological types with increase
of radiation resistance and decrease of killing effects (10). SABR
treatment scheme is usually within 2–5 fractions and completed
within 1 week with no time to spare the tumor cells to start the
repopulation process (53, 54).

Therefore, the 4 Rs of radiobiology contributes little to the
killing effects of SABR, as the majority of the tumor cells
are ablated. The different patterns of intrinsic radiosensitivity
among cells and tissues may play an important role in
tumor response, which was demonstrated by Bergonie and
Tribondeau in 1906 (3). Intrinsic radiosensitivity of tumor
cells represents a component attributing to the therapeutic
outcome of conventional multifractionated EBRT whereas
further investigation is needed in SABR (45). Based on the 4
Rs of radiobiology, 5 Rs of radiobiology was first proposed
by Steel et al. (55), emphasizing the intrinsic radiosensitivity
of tumor cells, which is correlated to the responsiveness of
tumors to radiation. Martin Brown et al. favored the 5 Rs of
radiobiology; however, he raised the question whether there are
any new radiobiological factors that have not been defined yet
(9, 10).

Dose-Effect Relationship Models in SABR
Linear Quadratic Model (LQ Model) is applicable to the
calculation of iso-effect doses in treating cancers with
conventional EBRT (56). The ratio of alpha to beta (α/β)
reflects the extent of biological effects on tissues and cells
affected by fractionated radiation doses (57). α/β in early-
responsive tissue/tumor is larger (about 10Gy) than that of
late-responsive tissue/tumor (about 3Gy) (58). The prerequisite
of LQ model application is complete oxygenation of tumor
cells during radiation with the fractional dose of lower than
1–6Gy (10). When fractional dose is higher than 8–10Gy,
the LQ model is inappropriate to predict the effects induced
by radiation (56, 59). Overprediction of the potency and
toxicity of SABR by LQ model made clinicians hesitate to
adopt the efficacious and well-tolerated therapeutic option
(60, 61). However, some clinical studies find that LQ model
actually underestimates tumor control by SABR (59, 61). In
2004, in order to precisely describe the biological effects of
high dose per fraction, Guerrero and Li suggested to refine
LQ model and the modified LQ model (MLQ) was proposed
(62). In 2008, Park et al. (60) introduced the Universal Survival
Curve model (USC model), which integrated LQ model with
multi-target model, and incorporated the effects by both
low dose and high dose radiation. The concept of inflection
point dose is proposed in USC model, in which RT under
inflection point dose is adapted to LQ model and radiation
above inflection point dose is adapted to USC model (60).
In 2010, Wang et al. (63) introduced the general LQ model
(gLQ model), which involves all dose range. However, the
relationship between biological effects of high dose radiation
per fraction and the actual clinical efficacy could not be
comprehensively explained by these models since indirect
effects such as radiation-induced injury of blood vessels are not
included (63).

Potential Radiobiological Factors of SABR
As a highly targeted technique, SABR delivers high-dose
radiation to ablate tumors directly (6). The latest clinical studies
have confirmed that SABR not only ablates tumor cells directly
but also induces indirect effect, including vascular endothelial
injury and immune activation. Indirect tumor cell death by SABR
may play a crucial role in the tumor killing (64).

Vascular Endothelial Injury
As a homeostatic factor, endothelial apoptosis regulates
angiogenesis-dependent tumor growth, which only occurs at
radiation doses above ∼8–11Gy (65). Other studies also found
obvious vascular injury under high-dose radiation, especially
above 10Gy, which induced hypoxia, acidification of tumor
microenvironment, and indirect death of tumor cells (66, 67).
High-dose radiation delivered by SABR increased vascular
permeability and apoptosis through the ceramide pathway (68).
Vascular endothelial injury exacerbated platelet aggregation and
thrombosis formation, which further blocked the blood vessel.
High dose radiation induced blood vessel injury and ischemia,
further leading to tumor necrosis. Consequently, anti-tumor
effect of radiotherapy was enhanced (65).

Immune Activation
RT stimulates responses not only at the treatment site but
also at the non-irradiated and remote tumor deposits, which is
called “abscopal effect” (69). RT directly or indirectly activates
inflammatory cytokine, e.g., IL-1 and TNF, recruits immune
cells, resulting in an intense CD8(+) T-cell tumor infiltrate
and a loss of myeloid-derived suppressor cells (70), tumor cells
are ablated and tumor antigens are substantially released under
high dose radiation, leading to immunogenic cell death and
further waterfall-like release of tumor necrosis antigens and
adenosine triphosphatase (ATP). The activation and release of
these substances enhance the human immune responses and
immune cells recruitment to the microenvironment (71). Based
on the elucidated immune mechanisms, the combination of
radiotherapy with immune therapy has been developed for anti-
tumor therapeutic approach (69).

DISCUSSION

Given the rapid innovative technological advances, RT entered
a new era of ablative radiotherapy with high-dose radiation per
fraction and short course, the role of 4 Rs of radiobiology is facing
challenges in the setting of SABR. In addition, along with the
directly ablative effect induced by SABR, indirect effects induced
by vascular endothelial injury and immune activation should be
noted. Moreover, the concept of radiation effect on metabolic
microenvironment is emerging (72, 73). Therefore, in the era
of ablative radiation, the study of radiobiology should cover
tumor cells, immune cells, and metabolic microenvironment
(72, 73). In the future, additional factors, e.g., the number
and proportion of differentiated immune cell, differentiation
stages, and tumor microenvironment, should be considered in
the prescription of dose and fraction of RT. New technology,
e.g., single-cell sequencing, metabolic imaging, and artificial
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intelligence (AI), will certainly accelerate the evolution in the
therapeutic modalities of RT (74–76).
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