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Despite advances in our understanding of the molecular biology of the disease and

improved therapeutics, lung cancer remains the most common cause of cancer-related

deaths worldwide. Therefore, an unmet need remains for improved treatments, especially

in advanced stage disease. Genomic instability is a universal hallmark of all cancers.

Many of the most commonly prescribed chemotherapeutics, including platinum-based

compounds such as cisplatin, target the characteristic genomic instability of tumors

by directly damaging the DNA. Chemotherapies are designed to selectively target

rapidly dividing cells, where they cause critical DNA damage and subsequent cell death

(1, 2). Despite the initial efficacy of these drugs, the development of chemotherapy

resistant tumors remains the primary concern for treatment of all lung cancer patients.

The correct functioning of the DNA damage repair machinery is essential to ensure

the maintenance of normal cycling cells. Dysregulation of these pathways promotes

the accumulation of mutations which increase the potential of malignancy. Following

the development of the initial malignancy, the continued disruption of the DNA repair

machinery may result in the further progression of metastatic disease. Lung cancer is

recognized as one of the most genomically unstable cancers (3). In this review, we

present an overview of the DNA damage repair pathways and their contributions to lung

cancer disease occurrence and progression. We conclude with an overview of current

targeted lung cancer treatments and their evolution toward combination therapies,

including chemotherapy with immunotherapies and antibody-drug conjugates and the

mechanisms by which they target DNA damage repair pathways.
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DNA DAMAGE REPAIR AND GENOMIC INSTABILITY IN LUNG
CANCER

The integrity of cellular DNA is under continual stress, receiving over 30,000 damaging events per
day (4). Damaged DNA bases and DNA single-strand breaks are the most abundant types of DNA
damage. Although DNA double-strand breaks are less common, they are considered as the most
deleterious types of DNA damage (5). Maintaining DNA integrity is essential to prevent cancer
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development, which is accelerated by the accumulation of
mutations. DNA breaks can arise from both endogenous
and exogenous insults (6). Endogenous DNA damage can be
induced by cellular processes, including somatic and meiotic
recombination, and reactive oxygen species (ROS) that arise
from normal cellular metabolism. Exogenous insults include
cellular exposure to radiation, chemotherapeutic agents, and
environmental carcinogenic compounds (7).

Lung cancers generally exhibit a unique genomic profile
in contrast with other tumor types, with a high rate somatic
mutation burden, second only to melanoma (8). The somatic
lung cancer mutation rate was found to be much higher in
smokers, 8–10 mutations/Mb, compared to <1 mutation/Mb
in non-smokers, strongly supporting the causality of tobacco
carcinogens (9). Highlighting the high genome instability in lung
cancers, aneuploidy, (an abnormal number of chromosomes)
is detected in over 60% of NSCLC cases (10) and genome
duplication is observed in 30–50% of lung cancers (11).

The development of lung cancer is primarily thought to
result from environmental provocation; however, there is data
supporting that germlinemutations inDNA repair genes increase
the predisposition to the disease (12). Supporting this it has been
shown that in∼2.5% of all cancer, a germline mutation in a DNA
repair gene was associated with cancer development (12).

DNA repair pathways are crucial to prevent the accumulation
of DNA lesions and mutations that may promote tumorigenesis
through the dysregulation of cell growth and death pathways.
However, the gradual loss of genomic integrity can be
accelerated by environmental factors such as carcinogens from
cigarette smoke promoting the development of driver mutations,
including oncogene activation and/or loss of tumor suppressor
function, further increasing the likelihood of tumorigenesis.

Specifically, genomic instability promotes lung cancer
pathogenesis by the constitutive activation of proto-oncogenes,
including the members of the EGFR (ERBB), MYC, and RAS
families, along with PIK3CA, NKX2-1, and ALK. Mutations
(KRAS, EGFR, and PIK3CA) and amplifications (MYC, EGFR,
HER2, PIK3CA, and NKX2-1) commonly activate these proto-
oncogenes. In addition, translocations and inversions can also
occur, positioning these genes under the control of constitutively
active genes such as MYC or create chimeric proteins, such as the
ALK-EML4 fusion commonly observed in lung cancers (13, 14).

Probably the most significant exogenous factor contributing
to lung cancer is the exposure of lung cells to cigarette smoke,
which is well-known to significantly increase an individual’s
risk of developing lung cancer. Cigarette smoke is recognized
as a major carcinogen, identified to contain 98 individual
carcinogenic compounds (15). Many of these are predicted
to be mutagenic via direct interaction with the DNA (16). If
cells are unable to effectively repair these lesions, mutations
may arise as a result of the carcinogenic exposure, potentially
promoting tumorigenesis.

Once a DNA damage event is detected, it can be repaired
by one or several of the DNA repair pathways: broadly defined
as base excision repair (BER); direct repair (DR); homologous
recombination (HR); mismatch repair (MMR); nucleotide
excision repair (NER); or non-homologous end joining (NHEJ;

as shown in Figure 2). Defective DNA repair mechanisms in
cancer cells are often associated with poor patient prognosis
due to enhanced disease progression. However, defects in DNA
repair machinery may also provide an avenue to specifically
target cancer cells due to increased sensitivity to anti-cancer
therapies (17).

DNA REPAIR PATHWAYS

Nucleotide Excision Repair
Bulky DNA adducts caused by UV light and chemotherapeutic
agents, such as Cisplatin, are repaired primarily through the
nucleotide excision repair pathway (NER). This pathway is
composed of a series of enzymatic reactions which are facilitated
by over 30 proteins. Cisplatin and other platinum compounds
bind to the DNA and form adducts, which lead to intrastrand
or interstrand crosslinks (Figure 1A). These bulky adducts
cause distortion of the DNA helix, blocking the replicative
DNA polymerases and subsequently DNA replication and
require the NER pathway (or the MMR pathway) for repair.
These chemotherapeutic agents exploit differences in cellular
proliferation and DNA repair pathways in cancerous cells to
specifically target tumors.

As with the other DNA repair pathways, NER is a stepwise
process initiated by DNA damage recognition; followed by
recruitment of the pre-incision protein complex and DNA
unwinding. This allows for excision of the damaged fragment and
subsequent DNA repair and ligation [reviewed in (7)].

Depending on the DNA damage recognition step, the NER
pathway is divided into two sub-pathways. Transcription coupled
NER (TCR) is initiated by the stalling of transcription by RNA
polymerase II promoting the subsequent recruitment of the
Cockayne syndrome (CS) complementation group A and B to
initiate repair (18, 19). During global genome NER (GGR), the
XPC/hHR23B, DDB1, and DDB2/XPE complexes recognize the
DNA lesions. Following damage recognition, TCR and GGR
follow the same mechanism. The DNA helix is unwound by
the TFIIH complex to enable access to the pre-incision complex
(XPD, XPB, XPA, and XPG) (20, 21), opening the DNA double
strand for the recruitment of RPA The damaged DNA is then
excised, leading to removal of a patch of 24–32 base pairs,
facilitated by XPG and the CPF-ERCC1 (excision repair cross-
complementing enzyme group 1) endonucleases. DNA synthesis
replaces the excised DNA in conjunction with PCNA and RPC,
followed by the repair of the backbone through DNA ligase I (18).

Single nucleotide polymorphisms (SNPs) in NER associated
proteins have been shown to have clear links to lung cancer
patient survival and responsiveness to treatments. SNPs in NER
proteins including ERCC1, ERCC6, POLD2, POLE, and XPA are
associated with progression free survival. SNPs in other NER
proteins, including ERCC6, GTF2H4, GTF2HA, MAT1, POLD1
are associated with overall survival (22, 23). Furthermore,
decreased expression of XPG/ERCC5 and CSB/ERCC6 has been
demonstrated to increase the risk of lung cancer (24).

Cisplatin sensitivity has been associated with SNPs and
gene expression within the NER pathway. ERCC1 (excision
repair cross-complementing enzyme group 1) is one such
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FIGURE 1 | A summary of lung cancer treatments, including chemotherapy, radiotherapy, immunotherapies, and antibody-drug conjugates and the mechanisms by

which they target DNA damage repair pathways. Figure created with Biorender.

protein and functionally associates with XPF (xeroderma
pigmentosum complementation group F) to incise damaged
DNA (25).

ERCC2, another NER repair protein, is a helicase that
unwinds DNA strands in the vicinity of a damaged site. ERCC2
mRNA expression has been shown to significantly correlate with
cisplatin resistance in preclinical studies (26, 27). Cumulative
evidence indicates that polymorphisms of the NER repair gene,
ERCC5, could serve as pharmacogenomics biomarkers (28). In
addition, a polymorphism in RRM1, a large regulatory subunit of
ribonucleotide reductase, involved in the NER pathway, has been
identified as a promising prognostic biomarker (29).

Mismatch Repair
DNAmismatch repair (MMR) is a conserved process responsible
for the recognition and repair of mispaired bases generated
during DNA replication and other DNA damage repair pathways.
In addition to base mismatch, MMR can recognize other DNA
lesions including DNA crosslinks induced by chemotherapeutic
agents (30, 31).

The MMR process consists first of the damage recognition
by the sliding clamp MutSα (MSH2/MSH6 heterodimer, for
base mismatch) or MutSβ (MSH2/MSH3 heterodimer, for base
insertion/deletion), followed recruitment of the MutLα complex
(formed byMLH1 and PMS2) for the incision step. Exonuclease 1
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FIGURE 2 | DNA repair pathways. (A) Repair of bulky adducts via the Nucleotide excision repair pathway. (B) Repair of mismatches via the mismatch repair pathway.

(C) Repair of DNA double-strand breaks via the homologous recombination and non-homologous end-joining pathways. (D) Repair of DNA single strand breaks and

damaged and oxidized bases via the base excision repair pathway. Figure created with Biorender.

(EXO1) is then recruited to excise the damage, leaving a gap filled
by DNA polymerase δ (Polδ). Finally, DNA ligase I closes the
remaining nick on the newly synthesized strand [see for review
(32), Figure 2B].

Inactivation ofMMR can have wide ranging consequences due
to its involvement in the repair of base substitution mismatches
and insertion–deletion mismatches that escape DNA polymerase
proofreading during replication (33). MMR proteins function in
the activation of cell cycle checkpoints, supressing DNA lesions,
and the initiation of apoptosis (34).

MMR proteins can be inactivated without causing cell
lethality; however, this can lead to a significantly increased rate of
genome-wide point mutations, resulting from unrepaired DNA
synthesis errors. The mutator phenotype conferred by this loss
of MMR activity contributes to the initiation and promotion
of multi-stage carcinogenesis (35). MMR is dysregulated in
non-small cell lung cancer, most frequently from mutations
in the MSH2 and MLH1 genes, which are responsible for

recognition of the mispaired nucleotides, deletions/insertions,
and cisplatin-induced interstrand cross-links (36, 37). Decreased
expression of MSH2 has been associated with increased cisplatin
sensitivity (38).

In addition to mutations, mismatch repair may also
be downregulated through epigenetic changes including
hypermethylation of the MLH1 promoter, a defect occurring
in 69% of non-small cell lung cancers, although it should be
noted that this has also been disputed (39, 40). The prognostic
significance of expression and methylation changes in these
genes in non-small cell lung cancers is not well-understood and
requires further study (41).

Base Excision Repair and Single-Strand
Break Repair
Oxidative DNA damage has been shown to be a driver of
carcinogenesis (42). Damage to bases within DNA requires the
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base excision repair (BER) pathway for the effective repair of
these lesions (Figure 2D). The BER pathway removes small
covalent modifications such as those generated from reactive
oxygen species (ROS) as a result of cellular metabolism
or endogenous damage (43). Guanine, due to its chemical
composition, is the most frequently oxidized base and following
oxidation forms 8-oxo-7, 8-dihydro-guanine (8-oxoG) (44, 45).
These lesions may result in G:C to A:T transversion during
replication, due to the mis-pairing of 8-oxoG with cytosine
of adenine nucleotides. Significantly these transversions are
suggested to be one of the most common mutagenic features
observed inmany cancers (46, 47). Other types of damage involve
alkylation or deamination (48).

The repair of these lesions involves the recognition and
removal of the adduct by a specific DNA glycosylase (mono-
or bi-functional), such as OGG1, NTH1, UNG, SMUG1,
TDG, NEIL1, NEIL2, or NEIL3 [see for review (49)]. An
AP-endonuclease, most commonly APE1, then catalyzes the
hydrolysis of the site to generate a DNA single-strand break.
This then activates the single-strand break repair pathway, which
stimulates the poly-ADP ribose activity of PARP1. PARP1 uses
NAD+ to catalyze the addition of long, branched PAR chains
to onto serine, tyrosine and glutamic acid residues in the
PARP1 automodification domain, in a process known as auto-
ADP-ribosylation (50–54). This leads to further activation of
PARP1 and thereby stimulates the PARP1-mediated poly-ADP-
ribosylation of other repair proteins such as XRCC1 (X-ray repair
cross-complementing protein 1). The nucleotide is then replaced
by a DNA polymerase β and finally DNA ligase III repairs the
DNA backbone (55). This process replaces a single nucleotide;
however, long-patch BER is also possible where DNA polymerase
δ/ε with PCNA replace a short sequence containing the damage
(∼5 nucleotide). The endonuclease FEN1 resects the generated
flap before final nick ligation by DNA ligase I. The reconstitution
of long-patch-BER has demonstrated an absolute requirement for
the endonuclease activity of FEN1, which, is often upregulated in
cancers (56).

The reliance of tumor cells on BER pathways makes an
attractive target for cancer therapy. Supporting this, elimination
of N-Methylpurine DNA glycosylase (MPG) or inhibition of
APE1 has been shown to increase sensitivity of cancer cells
to alkylating chemotherapeutics (57). Several APE1 and Pol β

inhibitors have also been developed and proved to be effective
in cell line and mouse models; however, these have not yet
progressed to human trials (58). PARP1 inhibitors have been
approved as a human cancer therapy andwill be discussed further
in this review.

Mutations in key BER genes have been associated with an
increased risk of lung cancer and decreased patient survival
(59). Variants in the BER glycolyase and AP-endonuclease OGG1
and APEX1, respectively, have been shown to be associated
with an increased risk of lung cancer (60–62). Variants in BER
proteins have also been shown to associate with decreased patient
survival, including; MDB4, a DNA binding protein, APE1,
the primary endonuclease, OGG1, XRCC1 and Polymerase β

variants (60–64).

DNA Double-Strand Break Repair
Regarded as potentially the most severe form of DNA damage,
DNA double-strand breaks (DSBs) are induced by a variety of
mechanisms. These include exogenous factors such as ionizing
radiation and chemotherapeutic agents, or endogenous sources
such as faulty DNA replication and oxidative stress induced by
reactive oxygen species (ROS) during normal cellular metabolism
(65). It is predicted that over 10 DSBs are induced per cell, per day
and this can have severe consequences for cells, as failure to repair
dsDNA breaks can lead to senescence or apoptosis. Furthermore,
incorrect repair can result in genomic instability or mutation of
critical regulatory genes and subsequently, tumorigenesis (66).
Non-small cell lung cancers frequently exhibit mutations or loss
of essential components of the DSB repair pathways (67, 68). Two
main pathways are involved in the repair of DSBs; Homologous
Recombination (HR) andNon-Homologous End Joining (NHEJ)
[Figure 1C, (69)].

The two pathways are generally distinct from each other,
however some of the repair machinery is involved in both
pathways. NHEJ does not require a homologous template and
involves the ligation of the two free DNA ends, without extensive
resection, in contrast to HR. This ligation is initiated by the tight
binding of the ring-shaped Ku70/Ku80 heterodimer to the two
DSB ends to promote recruitment of DNA-dependent protein
kinase (DNA-PK) and form an active catalytic complex (69). The
bridging of the dsDNA break by the complex may initially enable
DNA digestion or gap-filling by recruitment of the proteins
Artemis (70), XLF (71), and PAXX (72), followed by induction of
the Ligase IV/XRCC4 complex’s DNA end ligation activity (66).
The configuration of the DSB ends can lead to alternative NHEJ
pathways [see for review (73)]. This process, which functions
in all stages of the cell cycle, can result in the joining of cut
DNA fragments from either a single gene or entirely separate
chromosomes. Therefore, NHEJ is generally regarded as a more
error prone method of DSB repair. NHEJ has been implicated in
DNA translocation from one region or chromosome to another,
having the potential to result in uncontrolled cell growth.

In late S and G2 phase, mammalian cells can repair dsDNA
breaks by HR due to the availability of a homologous sister
chromatid in close proximity to use as a template. HR requires
the high fidelity matching of individual sequence bases to allow
more accurate DNA repair than NHEJ, and without loss of bases
(1, 74, 75). HR is initiated by the ATM-dependent recruitment of
the Mre11-Rad50-NBS (MRN) complex. This serves to further
activate ATM and promotes the further recruitment of other
repair proteins, including MDC1, to the site of the break (76, 77).
TheMRN complex then resects DNA up to 3 kb from the dsDNA
break site and in conjunction with Exo1 and Dna2, digests the
DNA strand between the nick and DSB (78–80), exposing a
section of single-stranded DNA (ssDNA) to which replication
protein A (RPA) rapidly binds, promoting the recruitment of
BRCA1 (81). Under the control of the BRCA1 and BRCA2
proteins (82), Rad51 then facilitates the search for a homologous
DNA sequence and promotes the strand invasion to generate a
D-loop. The resynthesis of the damaged strand is then completed
by DNA polymerase eta, using the homologous sister chromatid
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as template (83). The resulting Holliday junction is then resolved,

by the 3
′
-flap endonucleaseMUS81-EME1 or Gen1 resolvase (84,

85). Extensive degradation has also been observed at some DSBs,
resulting from other mechanisms of repair called alternative-
non-homologous end joining and single-strand annealing, both
of which have the potential to cause mutagenic deletions (86, 87).
However, it remains to be determined whether these alternative
mechanisms of repair contribute toward lung tumorigenesis.

Similarly to many other cancer types, lung cancers display
a high level of mutations in the tumor suppressor gene, TP53.
TP53 has multiple faucets to its role in the maintenance of
genome stability, including responding directly to DNA damage
to promote repair and cell cycle arrest, the transcriptional
regulation of DNA repair genes and the induction of apoptosis.
In the absence of TP53 cells accumulate DNA damage and resist
cell death. TP53 has been shown to be mutated in around 50% of
all non-small-cell lung cancers (NSCLCs) and over 90% of small
cell lung cancers (SCLCs). Since the presence of TP53 mutations
have been detected in preneoplastic lesions in the lung, it has been
hypothesized that the mutation of TP53 is likely to be an early
event in the development of lung cancer (88).

In addition to TP53 mutations, mutations in the DSB repair
kinase ATM, were identified in 6.12% of NSCLC. Mutations
were also prevalent in other key DNA repair proteins including,
TP53, BRCA2, EGFR, and PARK2 (12). There was an increased
incidence of familial cancer syndromes associated with these
mutations (89). Germline mutations in DNA repair pathway
genes, similar to other solid tumors, are the most common
subclass of genes associated with an increase in NSCLC
predisposition (12).

Mutations in several DNA damage response genes, including
PARP1, BRCA1, ATM, and TP53 have been shown to be
associated with cancer progression and metastasis. The presence
of DDR gene mutations has been linked with an increased
tumor mutational burden in NSCLC. This study also showed
that mutations in DNA repair genes were not mutually exclusive
as 77% had a mutation in two or more genes associated with
DNA repair. PARP1 and ATM mutations increase metastatic
potential, likely due to their association with SNAIL-1, a master
regulator of the epithelial-mesenchymal transition required for
metastasis. Mutations in BRCA1 disrupt DSB repair via HR,
increasing themutation rate, and subsequently increasing the risk
of tumorigenesis (90–92).

Mutations in DNA repair genes have been associated with
a differential tumor response to cancer therapy. Mutations
or changes in expression of genes that have been associated
with chemotherapy sensitivity of NSCLC include TP73, MDM2,
PTWN, PIK3, DNPK1, and DNA-PKcs (93). The treatment
of NSCLC tumors possessing DNA-PK, TP53, and PTEN
mutations with radiation similarly alters sensitivity in a mutant
dependent manner (93). Mutations of MDM2 and TP53 have
been associated with an increase in patient survival in lung
adenocarcinoma (93).

Lung cancer has been well-characterized as possessing one
of the most aggressive mutation rates of all cancers. Supporting
this an average mutation rate of 4.21 mutations per megabase

was identified in a screen of somatic mutations in protein kinase
genes from 210 cancer cell lines (46). Sequencing of 188 primary
lung adenocarcinomas identified 26 mutated genes, including
several known tumor suppressor genes including TP53, KRAS,
CDKN2A, and STK11 (LKB protein). High mutation rates in
DNA repair genes, including CDNK2 (p16) and RB were also
shown via whole-genome and transcriptome sequencing of lung
cancers (9, 40). As mentioned above mutations in STK11/LKB1
and consequential disruption of AMPK signaling pathways are
amongst the most frequent aberrations in lung cancers [reviewed
in (94)]. Both LKB1 and AMPK have been suggested to have roles
in DNA repair pathways, however the full extent of the influence
of LKB1 downregulation on DNA repair pathways in lung cancer
has not yet been explored (95, 96).

Translocations, which can result from errors in repairing
DSBs, are also common in lung cancers, with gene fusions
in the tyrosine kinases ALK and ROS1 being the first
identified, targetable driver rearrangements in NSCLC.
Fusions in other kinases have also been established as
targetable, oncogenic drivers, including RET, NTRK, EGFR, and
BRAF (97).

DNA REPAIR PATHWAYS AS
THERAPEUTIC TARGETS

The recommended frontline treatment for patients with stage
I–III NSCLC is surgery. For inoperable locally advanced
tumors, the current standard of care involves concurrent
radiotherapy and doublet chemotherapy followed by 1 year
of adjuvant immunotherapy, Durvalumab. Therapies for the
treatment of advanced lung cancer have become more targeted
to the individual tumor, utilizing advances in molecular
target technologies based on genomic abnormalities detected
in the tumor tissue. It is estimated that up to 69% of
patients with advanced NSCLC could have alterations in one
or more molecular targets that could guide their treatment
(98). These include EGFR activating mutations, KRAS, BRAF,
HER2, and MET mutations, ROS1, ALK, RET, and NTRK
rearrangements. EGFR, ALK, ROS-1, and BRAF positive
tumors now have clinically applicable targeted specific therapies
[reviewed in (99)] which offers superior patient outcomes and an
improved toxicity profile compared to standard platinum doublet
based chemotherapy. Clinical trials are currently underway
investigating compounds that specifically target KRAS, HER2,
MET, RET, and NTRX alterations in NSCLC. These compounds,
if proven efficacious, will dramatically expand the treatment
landscape for these patients. Single agent pembrolizumab,
platinum-based doublet therapy with or without immunotherapy
are current options in the first line for patients that do not
fit an identified targeted therapy. Treatment decisions on the
most appropriate choice will have to be balanced across a
number of factors including assessment on the extent of tumor
PD-L1 expression, patient co-morbidities, patient performance
status, extent of disease as well as patient preference. This,
together with other agents targeting DNA repair and/or genome

Frontiers in Oncology | www.frontiersin.org 6 July 2020 | Volume 10 | Article 1256

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Burgess et al. DNA Repair and Lung Cancer

instability, along with the emerging immunotherapies are
discussed further, below.

CHEMOTHERAPIES—DNA DAMAGING
AGENTS

Platinum Therapy
Platinum doublet therapy has been a frontline therapy for
lung cancer since the 1990’s. This therapy consists of platinum
compounds in combination with several third generation
chemotherapeutic drugs, including; cisplatin/carboplatin in
combination with gemcitabine, pemetrexed, docetaxel, or
paclitaxel (100). It has been generally accepted that the main
mechanism of action of platinum compounds as a cancer
therapy is by crosslinking the purine bases within DNA, causing
DNA damage. In rapidly growing cancer cells this leads to
inhibition of DNA replication, cell division, and eventual cell
death. Other suggested contributions of platinum compounds
to cellular toxicity also include; oxidative stress, modulation
of calcium signaling, and activation of several other kinases
and signaling pathways [reviewed in (101)]. The emergence of
personalized therapies and the toxicity and subsequent side-
effects of platinum therapy have led to a reduction in their use.
However, until a more effective treatment is found for tumors
without an identified biomarker mutation or translocation,
platinum treatment is likely to remain a mainstay of lung
cancer treatment.

Topoisomerase Inhibitors
Topoisomerase inhibitors are commonly used in combination
with platinum agents for treatment of small cell lung cancer
(SCLC). First line treatment for SCLC widely involves the
topoisomerase II inhibitor, etoposide in combination with
platinum therapy. The topoisomerase II enzyme functions to
cleave double-stranded DNA and topoisomerase II inhibitors
such as etoposide inhibit this activity leading to stable protein-
linked DSBs in DNA and subsequent cell death in rapidly
dividing cancer cells (102). Topoisomerase I functions to induce
single-strand breaks in the DNA to reduce torsional stain
on the DNA helix. Relapsed refractory SCLC is commonly
treated with the topoisomerase I inhibitors topotecan or
irinotecan, following resistance to platinum and topoisomerase
II targeting therapies. Inhibition of topoisomerase I, by
topotecan or irinotecan prevents repair of these single-
strand breaks that are then converted into double-strand
breaks in the S-phase of the cell cycle leading to tumor
cell death.

DNA-Damage Targeted Therapies
Despite the advances made in “personalized medicine” for
the treatment of lung cancers, new treatments have generally
not been suitable for the majority of patients, due to a
lack of mutations identified in targetable genes. Of further
concern, patients inevitably develop resistance to these targeted
therapies through an additional mutation in the target gene or
initiation of a downstream signaling pathway that stimulates
tumor growth. Therefore, although significant progress has

been made in lung cancer treatment in recent years, new
treatment strategies are urgently required. Several proteins
involved in the DNA damage response have been identified as
emerging targets for cancer treatment, including; PARP1, ATR,
and Chk1.

PARP Inhibitors
The term “synthetic lethality” describes how perturbation
of one gene is compatible with cell viability; however,
simultaneous disruption of two genes results in cell
death (103). In cancer treatments, synthetic lethality can
be used to exploit tumor-driven mutations and protein
expression alterations to induce cancer-specific cell death
[reviewed in (104)]. This treatment specifically targets
the tumor cells over the normal cells, which reduces
toxic side-effects for patients and improves quality of life
during treatment.

The most recognized example of synthetic lethality used in
cancer therapy is the use of PARP inhibitors in homologous
recombination deficient tumors (105, 106). Inhibition of the
PARP enzymes results in PARP immobilization at DNA single-
strand breaks and homologous recombination repair is required
for replication forks to bypass this lesion. Diminished capacity
to complete functional homologous recombination confers
cell death following treatment with PARP inhibitors. The
breast cancer associated proteins BRCA1/2 function in the
repair of DNA via homologous recombination; therefore, PARP
inhibitors are approved for treatment of BRCA1/2 mutated
breast, ovarian, and pancreas cancer (107). The first PARP
inhibitor to be approved by the European Medicines Agency
in 2014 was Olaparib (Lynparza; AstraZeneca, London, UK),
which is currently used as maintenance therapy for patients
with BRCA1/2 mutated ovarian cancer following platinum-
based chemotherapy. Subsequently, Niraparib and Talazoparib
were also approved for use in a maintenance therapy setting.
Several other potent PARP inhibitors are in late clinical
trial development including, Veliparib. There are 416 PARP
inhibitor clinical trials currently listed on clinicaltrials.gov,
including 40 in lung cancer, indicating the potential of
this treatment.

Although PARP inhibitor treatment in patients with a range
of tumor types with germline BRCA1/2 mutations have shown to
be effective, such mutations are only found in ∼5% of patients
with lung cancer (108). It is now clear that clinical efficacy would
be beneficial beyond this niche population of patients. The need
for a definitive biomarker for PARP inhibitor sensitivity has
been well-documented (109) and a number of strategies have
been explored to predict tumor sensitivity to PARP inhibitors,
including unsuccessful attempts to identify predictive biomarkers
for homologous recombination-deficient tumors (110). In terms
of lung cancer, it has been suggested that high levels of DNA
repair inhibiting proteins, such as SLFN11, and low levels of DNA
repair promoting proteins, including ATM, may be a superior
predictive biomarkers to BRCA1/2 mutations in small cell lung
cancer (111, 112).

Significantly, tumors with mutations in the DNA repair
protein PTEN account for 4–8% of all NSCLCs and it has been
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shown that PTEN mutant tumor cells are sensitive to PARP
inhibitors, expanding the number of lung cancer patients this
therapy may benefit (113, 114). While PARP inhibitors use
in BRCA1/2 mutated tumors remains the best characterized
treatment based on synthetically lethality, numerous other
synthetic lethal interactions have been identified using RNAi
screens, based on other mutations found in lung cancer,
including mKRAS and EGFR mutations [summarized in (115)].

Although several combination treatment lung cancer clinical
trials, with PARP inhibitors are underway, these trials are still
in their early stages and the majority data or trial outcomes are
not publically available. However, a recent trial published data,
showing the safety and activity of a combination treatment of
the PARP inhibitor Olaparib with the DNA damaging alkylating
agent temozolomide in patients with relapsed SCLC. The
combination was confirmed as safe and active, with an overall
response (defined as >30% decrease in the sum of the longest
diameter of target legions) in 41.7% of patients and median
overall survival of 8.5 months (116). It has also been suggested
that a combination of PARP1 inhibitors with immunotherapies
may also be an effective combination treatment for lung cancers,
particularly in tumors with other DNA repair defects, such as
ERCC1 deficiency (117).

PARP inhibitors have also been implicated as a radiosensitizer
in NSCLC. Since radiation therapy is the first-line treatment in
patients with locally advanced NSCLC, this could have significant
implications for their treatment (118, 119).

THE DNA DAMAGE RESPONSE AND
IMMUNOTHERAPIES

Immune-Checkpoint Inhibitors
The treatment of lung cancer through immunotherapies,
including immune checkpoint inhibitors, and targeted
antibodies, has dramatically expanded over recent years.
Checkpoint inhibitors which target PD-1 and PDL-1 are
considered a standard first and second-line treatment in lung
cancer. These immunotherapies block the PD-1 checkpoint
to enable the immune system to recognize and target cancer
cells. There are now multiple antibodies that are raised against
anti-PD1 or anti-PD-L1, including Atezolizumab, Avelumab,
Durvalumab, Pembrolizumab, and Nivolumab (120).

Although immunotherapies do not directly target DNA
damage repair, DNA damage, and genome instability has been
shown to induce changes in the tumor microenvironment
and stimulate the generation of neoantigens on cancer cells,
increasing the tumor response to immunotherapies. This has led
to the hypothesis that DNA damaging agents, such as cisplatin,
may increase the efficacy of immunotherapies. Indeed, clinical
and preclinical data have shown that chemotherapy can induce
PD-L1 expression on tumor cells (121–123).

Testing of PD-L1 expression has rapidly become standard
for newly diagnosed patients with advanced NSCLC. A high
number of mutations in a tumor, known as the tumor mutation
burden, is also associated with an increased response rate
to immunotherapy. Similarly, microsatellite instability, also

associated with genome instability, is also linked with a better
response to immunotherapy. Many commercial laboratories now
offer a comprehensive gene sequencing report comprising of the
PD-L1 expression, tumor mutation burden, and microsatellite
instability status of tumors (124).

In light of the above, the treatment of lung cancer patients with
immunotherapies in combination with chemotherapy has shown
improvement in patient survival and tumor response rate as such
it has now become the standard of care for first-line treatment
in several lung cancer subtypes (125–128). Pembrolizumab as
a single agent was compared to standard platinum doublet
chemotherapy in the first line setting in patient with advanced
NSCLC in those with a tumor PD-L1 expression >50%. Updated
analysis revealed a median overall survival improvement of
15.8 months in favor of pembrolizumab reported in this group.
Based on this study single agent pembrolizumab is favored
over platinum based chemotherapy in those with a PD-L1
>50%. A phase 2 randomized study using the combination of
pembrolizumab plus carboplatin and pemetrexed demonstrated
an objective response rate of 55% in the combination compared
to 29% in chemotherapy alone, p:0.0016, supporting the use of
a DNA damaging agent in combination with immunotherapy
(129). A later phase III randomized placebo controlled trial
confirmed the addition of pembrolizumab to chemotherapy led
to a significant improvement in median progression free survival
(8.8 vs. 4.9 months) and overall survival (12 months overall
survival: 69.2 vs. 49.4%) in advanced non-squamous NSCLC.
Similar findings have also been observed in another double-
blind phase III trial in treatment-naive patients with metastatic
squamous NSCLC. In this study, pembrolizumab was combined
with carboplatin and either paclitaxel or nab-paclitaxel. In the
total population median overall survival was 15.9 months in the
combination (chemo-immunotherapy) vs. 11.3 months in the
standard arm (130). This constitutes level one evidence for the
use of combination chemo-immunotherapy and is considered as
an option for the first-line treatment of patients in squamous
and non-squamous advanced NSCLC, irrespective of the tumor
PD-L1 status (131).

Antibody Drug Conjugates
Antibody-drug conjugates (ADCs) are a rapidly developing area
of targeted therapy in lung cancers [reviewed in (132)]. ADCs
consist of monoclonal antibodies that are covalently bound to
a cytotoxic chemical. These immuno-conjugates are designed to
have greater cancer cells toxicity whilst minimizing off target
effects on normal cells. The ADCs are now in their third
generation through linker optimization, which allows for lower
de-conjugation rate in circulation whilst still having a potent
impact on cancer cells.

The development of ADCs is limited by the identification
of a specific target antigen on the cell surface which has high
expression in tumors and low or no expression in normal
tissue. The toxic warhead is still a limiting factor based
on a small number of cytotoxic drug families, similarly to
other cancer therapies, inducing DNA damage or inhibiting
microtubule formation. Difficulties arise with the selection
of drugs with requirements for retaining potency following
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linkage whilst maintaining solubility. Compounds that target
DNA include Calicheamicins which induce DNA double-strand
breaks, Duocarmycins which alkylate DNA, Benzodiazepines
which bind DNA to induce crosslinks and Camptothecin analogs
inhibiting DNA topoisomerase I (119, 133, 134). Other ADC
warheads include Auristatins, Maytansinoids, and Tubulysins
which aim to prevent cancer cell proliferation by inhibiting
tubulin assembly (135–138).

Several ADC have been developed that contain compounds
that induce DNA damage, as discussed below. These ADC
have shown promise for potential treatment of lung cancer,
however it should be noted that none of these are currently
licensed for use. For example, Sacituzumab Govitecan (IMMU-
132) which utilizes an antibody against the transmembrane
glycoprotein, Trop-2 (which is highly expressed in epithelial
malignancies), conjugated with SN-38, the active metabolite of
the topisomerase I inhibitor, irinotecan. In preclinical models,
IMMU-132 was shown to deliver 136 fold more SN-38 than
irinotecan (139). Clinical trials have shown an overall response
rate of between 14 and 31% with IMMU-132 in NSCLC and
SCLC (139).

SGN-15 is an ADC targeting topoisomerase II, using the
drug Doxorubicin linked to a monoclonal antibody against the
carbohydrate antigen Lewis-Y. In a phase II trial comparing
SGN-15 in combination with docetaxel to docetaxol treatment
alone in NSCLC patients, the overall response rate was 6% for the
combination vs. 21% for docetaxol alone. However, the overall
survival was greater in the combination treatment (140).

Rovalpituzumab Tesirine (Rova-T) consists of an antibody
against delta-like ligand DLL-3 conjugated to pyrrolo-
benzodiazepine dimer toxin (a DNA damaging agent). In a
phase I trial, SCLC patients had a 18% overall response rate to
Rova-T. An improved response rate of 38% was also observed in
patients with high DLL3 expression (141). Another phase II trial
showed a 14% overall response rate in SCLC patients with DLL3
high expression and 12% overall (142).

Although DNA damage inducing ADCs are not currently
approved for treatment of lung cancer, the combination of
ADCs with other therapies is under investigation. The treatment
of patients with immunotherapy through the targeting of
programmed cell death 1 ligand 1 (PDL1) or cytotoxic T
lymphocyte antigen 4 (CTLA4) along with ADCs, has shown
potential in several tumor types. ADC targeted therapy is
rapidly advancing but there is still much to learn in terms
of resistance and toxicity before this class of therapy can be
fully utilized.

Radiotherapy
Radiation therapy is an effective anti-cancer therapy which
induces DNA damage by targeting the DNA to induce
multiple forms of damage, including double and single-strand
breaks and oxidative lesions. Furthermore, indirect ionization
involves interaction with water molecules surrounding DNA to
produce radical oxygen species (ROS). These ROS also generate
further DNA single-strand breaks, DNA DSBs, and oxidized
DNA bases, this leads to cell death in genomically unstable
tumors (143).

Radiation therapy is commonly utilized in the treatment of
several cancers, including lung cancer. It is still considered a
first-line therapy in the treatment of non-small cell lung cancer
(NSCLC). However, small cell lung cancer is primarily treated
with chemotherapy, although combination radiotherapy and
chemotherapy is used as a second line therapy (144). Radiation
therapy for lung cancer has evolved over time to increase the
accuracy of the X-ray dose delivered to the tumor, subsequently
decreasing toxicity to adjacent tissues (145).

Dose fractionation and 3-Dimensional conformal radiation
therapy (3DCRT, using CT images) significantly improved
radiation treatment (146). The development of multileaf
collimators allowing modulation of the X-ray beam dose-
rate led to intensity-modulated radiation therapy (IMRT,
characterized by a static delivery) and volumetric-modulated
arc therapy (VMAT, with a dynamic delivery), which
improved the target volume accuracy and led to less organ
toxicity (147, 148).

Potential mechanisms of radiation resistance include
mutations in EGFR and RAS, increased expression of MDM2
and Livin α, or decreased TP54I3 expression (149, 150).
Various XRCC1 mutations have been identified to increase
and decrease radio sensitivity in NSCLC (43, 151, 152).
Blood-based microRNAs (miRNAs) have been identified
as potential biomarkers to elucidate the tumor response to
radiotherapy (153).

The field of radiation therapy is still evolving, notably with the
development of stereotactic ablative radiation therapy [SBRT or
SABR, used by the CyberKnife system (154)], where a very high
dose is locally delivered using 3DCRT or IMRT (155). Radiation
therapy can also be used in combination with sensitizing drugs
(156). The molecules used target DNA [such as Cisplatin (157)
or Paclitaxel (158)], DNA repair (PARP inhibitor) (159), or
growth factors receptors (e.g., Epidermal Growth Factor Receptor
blockade by the drug Cetuximab) (160).

Radioimmunoconjugates
Similarly to some ADCs, radioimmunoconjugates (RICs) are
designed to induce DNA-damage specifically in tumor cells,
in order to induce cell death. In this case, radionuclides are
conjugated via a linker to a monoclonal antibody in order to
deliver a dose of radiation specifically to tumor cells expressing
a specific cell-surface antigen [reviewed in (161)]. Although
a promising area of tumor therapy, RIC therapy has several
limitations, due to the radioactive conjugates involved. The
pharmacokinetic biodistribution is dependent on the conjugated
antibody and this leads to a dose rate two orders of magnitude
below conventional external beam radiation therapy, which may
limit the use of RICs (162). Although this type of therapy has
shown promise in several cancer types, there are no published
studies in lung cancer thus far.

CONCLUSIONS

Lung cancer is a highly unstable cancer with genomic instability
being a primary driver of the disease. The highly genetically
diverse lung cancers are driven by the exposure to DNA damage

Frontiers in Oncology | www.frontiersin.org 9 July 2020 | Volume 10 | Article 1256

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Burgess et al. DNA Repair and Lung Cancer

from both exogenous and endogenous sources. Although the
loss of the normal DNA repair machinery and accumulation of
mutations initially drives the tumor progression, it also provides
a targetable defect for therapeutic intervention. Such agents that
target these defects have been shown to be effective against
lung cancer, including combining traditional therapies, such
as platinum agents and radiotherapy, and more recently with
targeted therapies, such as immunotherapies. Future research
efforts are likely to involve refining these combination treatments
to overcome the development of tumor resistance to treatments
and to improve survival outcomes for patients. Further study
of agents that target DNA damage and repair pathways, such
as PARP1 inhibitors and ADCs linked to DNA damaging
agents are vital to determine their regulatory and subsequent
approval for use in the clinic. It is also likely that the further
characterization of DNA repair proteins and pathways will

drive the quest for new lung cancer therapeutics targets in
subsequent years.
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