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Colorectal cancer (CRC) is one of the most fatal types of cancers that is seen in both

men and women. CRC is the third most common type of cancer worldwide. Over the

years, several drugs are developed for the treatment of CRC; however, patients with

advanced CRC can be resistant to some drugs. P-glycoprotein (P-gp) (also known

as Multidrug Resistance 1, MDR1) is a well-identified membrane transporter protein

expressed by ABCB1 gene. The high expression of MDR1 protein found in several cancer

types causes chemotherapy failure owing to efflux drug molecules out of the cancer

cell, decreases the drug concentration, and causes drug resistance. As same as other

cancers, drug-resistant CRC is one of the major obstacles for effective therapy and

novel therapeutic strategies are urgently needed. Network-based approaches can be

used to determine specific biomarkers, potential drug targets, or repurposing approved

drugs in drug-resistant cancers. Drug repositioning is the approach for using existing

drugs for a new therapeutic purpose; it is a highly efficient and low-cost process.

To improve current understanding of the MDR-1-related drug resistance in CRC, we

explored gene co-expression networks around ABCB1 gene with different network

sizes (50, 100, 150, 200 edges) and repurposed candidate drugs targeting the ABCB1

gene and its co-expression network by using drug repositioning approach for the

treatment of CRC. The candidate drugs were also assessed by using molecular docking

for determining the potential of physical interactions between the drug and MDR1

protein as a drug target. We also evaluated these four networks whether they are

diagnostic or prognostic features in CRC besides biological function determined by

functional enrichment analysis. Lastly, differentially expressed genes of drug-resistant

(i.e., oxaliplatin, methotrexate, SN38) HT29 cell lines were found and used for repurposing

drugs with reversal gene expressions. As a result, it is shown that all networks exhibited

high diagnostic and prognostic performance besides the identification of various drug

candidates for drug-resistant patients with CRC. All these results can shed light on

the development of effective diagnosis, prognosis, and treatment strategies for drug

resistance in CRC.
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INTRODUCTION

Colorectal cancer (CRC) is one of the most lethal types of
cancers commonly seen in both men and women. This cancer
affects the large intestine in the digestive tract. It is also known
as bowel cancer, rectal cancer, and colon cancer. According
to the American Cancer Society research, one out of every
23 women in the USA and one out of every 21 men is
exposed to this disease (1). According to the database published
by the International Agency for Research on Cancer, CRC
is the third most common type of cancer found in Turkey
and worldwide (GLOBOCAN, 2018) (2). Approximately three-
quarters of patients are diagnosed with limited diseases on the
intestinal wall or surrounding lymph nodes. Moreover, survival
rates and treatment options for CRC may vary depending on a
variety of factors including tumor size, location of tumor, and
stage of cancer (3).

Over the years, several drugs are developed for the treatment
of CRC such as 5-flurouracil, monoclonal antibodies (i.e.,
bevacizumab, cetuximab) (4), and also combination with 5-
fluorouracil/leucovorin with either oxaliplatin (FOLFOX) or
irinotecan (FOLFIRI) (5). However, the patients who have
advanced CRC are resistant to 5-flurouracil (6). Meanwhile, the
development of drug resistance is assumed as one of the major
obstacles for cancer therapy. P-glycoprotein (P-gp) (also known
as MDR1) is a well-identified membrane transporter protein
expressed by the ABCB1 gene. The expression of Multidrug
Resistance 1 (MDR1) protein causes chemotherapy failure owing
to the efflux of drug molecules out of the cancer cell. MDR1
decreases the drug concentration and causes drug resistance in
in vitro experiments (7), and high-levelMDR1 protein expression
was found in several cancer types such as liver, kidney, and
colon (8).

Cancer cells upregulate P-gp expression as an adaptive
response to evade chemotherapy-mediated cell death. Not all
discovered P-gp inhibitors have passed all phases of the clinical
trials (9). Therefore, there is a crucial need for efficient treatment
strategies to deliver the best possible medical treatment.
Network-based approaches can be used to determine specific
biomarkers, potential drug targets, or repurposing approved
drugs in drug-resistant cancers (10).

Drug repositioning (DR) is the most promising method for
all major problems. DR is the approach for using existing drugs
for a new therapeutic purpose; it is a highly efficient and low-cost
process (11). Existing drugs have already been approved and have
been successful in clinical trials, thus potentially reducing the risk
of failure in new cases. Recent reviews mentioned repositioning
efforts for drug-resistant CRC (12). Drugs such as citalopram,
amantadine, and captopril are repurposed for disease prevention
or treatment (13–15). Among them, there are also computational
efforts to repurpose drugs for CRC, such as the employment of
Functional Module Connectivity Map that repurposes GW-8510,
etacrynic acid, ginkgolide A, and 6-azathymine (16).

The aim of this research is to repurpose candidate drugs
targeting the MDR1 protein and its co-expression network
by using a drug repositioning approach for the treatment
of CRC. We first constructed co-expression networks around

ABCB1 gene within different network sizes consisting of 50,
100, 150, and 200 edges. We performed drug repositioning
by using the reversal of co-expression signatures in CRC for
all four co-expression networks. The candidate drugs were
also assessed by using molecular docking for determining
the potential of physical interactions between the drug and
MDR1 protein as a drug target. We also evaluated these four
networks whether they show diagnostic or prognostic features in
CRC. Lastly, the gene expression profiles of drug-resistant (i.e.,
oxaliplatin, methotrexate, and SN38) HT29 cell lines were used
for repurposing drugs with reversal gene expressions.We showed
common drug candidates among the candidates found by using
co-expression networks around ABCB1 and the candidates that
have reversal gene expression profile in the drug-resistant HT29
cell lines.

METHOD

Construction of Co-expression Networks
Four co-expression networks including different degrees (edges
50, 100, 150, and 200) of CRC-specific genes which had co-
expression with ABCB1 gene were constructed through the data
from TCSBN database (17). The parameters for the minimum
and the maximum number of nodes (min-1 max-200) were
taken as 50 and 200, respectively; the edge pruning parameter
(–log10 P) (min-0 max-50) was set to 2. Genes in the networks
were classified as downregulated (negative correlation) and
upregulated (positive correlation) groups based on the score
obtained from the database. In addition, transcription factors
(TFs) were determined on the co-expression network. The
visualization of networks was constructed using Cytoscape,
version 3.7.0 (18).

Gene Set Over-Representation Analyses
The over-representation analyses were performed through
the ConsensusPathDB database (19) to identify functional
annotations of molecular pathways significantly associated with
four gene groups co-expressed with ABCB1 gene. For this
analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG)
(20), Reactome (21), and BioCarta (22) were preferred as the
primary pathway sources. P-values for the pathway analysis were
calculated with Fisher’s exact test and adjusted p-values were
obtained using Benjamini–Hochberg correction (23). The results
having adjusted p < 0.05 were considered statistically significant.

Identification of Drug Candidates Through
Signature-Based Drug Repositioning
Drug repositioning analysis was performed by targeting genes
within the co-expression networks via L1000CDS2 (24) search
tool including the Library of Integrated Network-based Cellular
Signatures (LINCS) L1000 data (25) by using the knowledge
about downregulation and upregulation of genes. Negative
correlations (score <0) of genes in networks were used as
downregulated genes, whereas positive correlations (score>0) of
genes were used as upregulated genes (Supplementary Table 1).
The genes within co-expression with p < 10−5 were considered
as significant to investigate the drugs. Drug candidates indicating
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FIGURE 1 | Networks of ABCB1 co-expressed genes. Negatively correlated genes have green edges, whereas positively correlated genes have blue edges.

Transcription factors are represented as blue diamonds and edge thickness varies according to the score of the correlation between genes, whereas node size varies

based on the p-value of the correlated genes. Transcription factors are represented as blue diamond, and edge thickness varies according to the score of the

correlation between genes whereas node size varies according to the statistical significance (i.e., p-value of the correlated genes).

potentially reverse effects for genes in the co-expression network
were determined to the treatment of CRC.

Molecular Docking Protocol
The structure of ABCB1 protein was obtained from Protein Data
Bank (PDB) (26) with a PDB code of 6QEX and the structures
of candidate drugs were obtained from the PubChem database
(27). Binding residues including 11 phenylalanine (F72, F303,
F314, F336, F732, F759, F770, F938, F942, F983, F994), two
leucine (L339, L975), one isoleucine (I306), and one methionine
(M949) in the transmembrane domain (TMD) of ABCB1 were
taken into account for molecular docking analyses (28), which
were carried out through AutoDock Vina software (29) to bind
the structures of candidate drugs to binding residues of ABCB1
(TMD). In addition, ligands were also docked to two nuclear-
binding domains (NBD) of ABCB1 (30). Binding affinities were
detected to determine the significance of the binding after
molecular docking.

Collection and Evaluation of
Drug-Resistant Data Sets
Data sets related to the drug resistance in CRC were scanned
within literature, and two microarray data sets were found
to include control cells and methotrexate-, oxaliplatin-, and
SN38-resistant cells (31) because ABCB1 is associated with the
resistance to these drugs (32–34). Differentially expressed genes
(DEGs) were statistically detected in all drug-resistantmicroarray
data sets through the previously published pipeline (35, 36).
This pipeline was followed by data normalization with Robust
MultiArray Average (37), hypothesis testing by linear models for
microarray data (LIMMA) method (38), and controlling the false
discovery rate through the Benjamini–Hochberg method (23).
DEGs were selected as significant based on adjusted p < 0.05
and downregulated and upregulated genes were determined by
the aid of fold change (FC) values with threshold |log2FC| ≥1.
Candidate drugs were identified with drug repositioning through
the L1000-CDS2 tool based on downregulation or upregulation
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FIGURE 2 | Heatmap indicating biological pathways in which co-expressed genes involved based on the over-representation analysis. Each cell on the heatmap was

colored according to the p-value of genes in each co-expression network. If the pathway is not detected, it was indicated with a cross.

information. Candidate drugs for each drug-resistant cell line are
listed in Supplementary Table 2.

Diagnostic and Prognostic Features of
ABCB1 Mediated Co-expression Networks
Principal component analyses (PCA) were performed to each
of four gene groups co-expressed with ABCB1 gene. For this
purpose, gene expression profiles of FPKM normalized RNA-
Seq data set with 644 primary colorectal tumor and 51 matched
normal samples were obtained from TCGA. Each simulation was
carried out with the randomly chosen 50 normal and 50 tumor
samples which have expression data of genes co-expressed with
ABCB1 gene. The first two principal components explaining at
least 80% of total variance were considered to identify sensitivity
and specificity metrics.

Survival analyses were carried out according to the well-
established pipeline (39, 40) using FPKM normalized RNA-
Seq data originated TCGA data set for determination of
the prognostic performance of each edge. The subjects were
partitioned into low-risk and high-risk groups according to their
prognostic index (PI), also known as the risk score, which is the
linear component of the Cox model (PI = β1x1 + β2x2 +. . .

+ βpxp, where xi is the expression value of each gene and βi
is the coefficient obtained from the Cox fitting). All analyses
were performed using the “survival” package in R (version 3.6.1)
(https://www.R-project.org/). Kaplan–Meier plots were used for
the evaluation of the survival signatures in each edge, and the cut-
off for the log-rank p-value was considered as <0.05 to describe
statistical significance. Hazard ratio (HR = O1/E1/O2/E2) was
calculated for the determination of the significance of the survival
plots according to the rate between the relative death rate in
group 1 (O1/E1) and the relative death rate in group 2 (O2/E2),
where O represents the observed number of deaths and E
represents the expected number of deaths.

RESULTS

ABCB1 Mediated Co-expression Networks
as Resistance Signatures of CRC and Their
Biological Functions
Co-expression networks are one of the major network
approaches indicating altered co-expression patterns of
genes between two phenotypes. These networks represent
significant potential to identify gene clusters associated
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FIGURE 3 | PCA plots for each co-expression network. Red dots represent healthy colorectal samples, whereas blue dots represent colorectal tumor samples.

Variances explained by the principal components are indicated in axis titles for all plots.

with the phenotype of interest in many cancer types
(41, 42).

In our study, we used co-expression networks around ABCB1
gene to elucidate potential drugs for avoiding drug resistance
in CRC. For that purpose, we reconstructed four co-expression
networks including different degrees (edges 50, 100, 150, and
200) of CRC-specific genes that demonstrated significant co-
expression patterns with ABCB1 gene through the data from
TCSBN database (Figure 1).

The reconstructed networks were named according to
network size (i.e., edges 50, 100, 150, and 200). As the number
of interactions increased, the number of negatively correlated
genes increased in parallel. In edge 50, 3 negative correlations,
47 positive correlations; in edge 100, 5 negative correlations, 95
positive correlations; in edge 150, 49 negative correlations, 101

positive correlations; and in edge 200, 100 negative correlations,
100 positive correlations were observed.

To elucidate the regulatory mechanisms behind the co-
expression patterns of module genes and to evaluate the
condition-specific expression pattern alterations, we performed
serial analyses to link the key regulators of the networks.
Transcription factors were already existing with the networks; 9
of the genes were encoding TFs in edge 50, 14 of the genes were
encoding TFs in edge 100, 15 of the genes were encoding TFs
in edge 150, and 17 of the genes were encoding TFs in edge 200
(Supplementary Table 3).

Gene set over-representation analysis of the edge 50, 100,
150, and 200 networks were performed to determine significant
biological pathways comprising these gene sets (Figure 2). The
common pathways among all the number of co-expressed
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FIGURE 4 | Kaplan–Meier plots estimating survival of patients for correlated networks indicating p-value and hazard ratio on each curve.

genes were ubiquitin-mediated proteolysis, interleukin signaling,
and cytosolic sensors of pathogen-associated DNA. Particularly,
interleukin signaling has been reported as involving multidrug
resistance of different cancer types as well as CRC (43).

Besides, the pathway related to CRC was detected when
the three different numbers of edges were examined. The
pathway ubiquitin-mediated proteolysis, antigen processing and
presentation, MAPK family signaling cascades, ErbB signaling
pathway, and Hippo signaling pathway were also previously
reported as pathways associated to drug resistance (44).

PCA was performed to identify the diagnostic performance
of the correlated genes. As shown in Figure 3, the correlated
genes demonstrated promising performance to be considered for
diagnostic purposes. These genes exhibited distinctive features
between 50 control and 50 tumor samples. Sensitivity, specificity,
and diagnostic odds ratio (DOR) metrics were calculated
considering the two most significant principal components.
Sensitivity and specificity values were determined as 100 and
100% for edge 50, 9% and 96% for edge 100, 100 and 100%
for edge 150, and finally 98 and 100% for edge 200. All gene
sets exhibited high diagnostic performance (sensitivity ≥0.92,
specificity ≥0.98, DOR ≥276).

Survival analysis was also performed by partitioning patients
into low-risk and high-risk groups according to the expression
levels of each gene in the network, and p-values and hazard

ratios (HRs) were found to evaluate the prognostic power for
all networks (Figure 4). In edge 50, p-value and HR were 0.0012
and 1.773, respectively. As the network size increased, both the
statistical significance and the HRs were improved. Edge 200
presented a p-value and HR of 2× 10−5 and 2.214, respectively.

Identification of Potential Repositioning
Drugs and Molecular Docking Simulations
By reconstructing the ABCB1 gene–mediated co-expression
networks, our main goal was to identify the potential therapeutic
targets and candidate drugs. Through employing a drug
repositioning methodology, here, we aimed to propose
hypotheses with drugs used outside of oncology but tentatively
promising in cancer as in previous studies (45, 46).

Therefore, L1000CDS2 was used to find appropriate drugs
with reversal effects on the gene expression profiles in
CRC. As a result, 45 drugs for edge 50, 41 drugs for
edge 100, 39 drugs for edge 150, and 44 drugs for edge
200 were determined (Figure 5 and Supplementary Table 4).
Eight of the candidate drugs were antineoplastic agents, such
as celastrol, rottlerin, withaferin A, amsacrine, teniposide,
geldanamycin, sunitinib, and vorinostat, which are known for
the treatment of various diseases such as acute lymphoblastic
leukemia, stomach cancer, and pancreatic cancer; two of
the potential drugs (arachidonyl trifluoro-methyl ketone and
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FIGURE 5 | Number of drugs that were identified via drug repositioning for each co-expressed network.

cycloheximide) were neuroprotective agents. Furthermore, seven
drugs (importazole, AG 957, NCGC00182353-01, brazilin,
NCGC00181381-01, PD 407824, and Ro 28-1675) with inhibitor
activity were also proposed as novel candidates for CRC in
this study. Among those, importazole is a transport receptor
importin-β (47) and AG 957 is a protein tyrosine kinase
inhibitor (48). Moreover, brazilin is a NF-kappaB inhibitor
(49) and PD 407824, a hepatoprotective agent, is known as
Wee1/Chk1 inhibitor (50), whereas Ro 28-1675 is known as
glucokinase activator (51). However, the action mechanisms of
NCGC00182353-01 and NCGC00181381-01 were not identified
yet (Supplementary Table 5).

The traditional path of drug development, that is, finding a
proper drug target, identifying a potential drug, and setting up
experimental assays to test the efficiency of the proposed drug,
is a time-consuming and high-cost process. However, molecular
docking, which simulates the binding affinity of a drug in three-
dimensional structure of a drug target, can be implemented as
a higher resolution simulation method (52) and is accepted as
the most useful method to predict the binding affinity of the
drug–target complex with minimum free energy (53).

We performed molecular docking simulations on three
different domains of ABCB1: the ATP binding sites (NBD1 and
NBD2) and TMD, which is the site of substrate recognition and
translocation (54). The binding activities estimated by molecular
docking simulations are shown in Figure 6.

As the positive controls, the well-known ABCB1
inhibitors afatinib, elacridar, estramustine, tariquidar,
verapamil, and zosuquidar were used. Afatinib, estramustine,

and zosuquidar were antineoplastic agents, elacridar
was an acridonecarboxamide derivative, tariquidar was
an anthranilamide derivative, and verapamil was an
antihypertensive calcium blocker channel. The binding affinities
of afatinib, elacridar, tariquidar, and zosuquidar on TMD were
−9.2, −11, −11, and −11.4 kcal/mol, respectively, which were
significantly high compared with those for estramustine (−7.6
kcal/mol) and verapamil (−7.7 kcal/mol). Although the binding
affinities of the ligands were lower in NBDs (when compared with
those in TMD), the highest results were obtained in elacridar
(NBD1: −8 kcal/mol, NBD2: −8 kcal/mol), tariquidar (NBD1:
−7.3 kcal/mol, NDB2 −7.2 kcal/mol), and zosuquidar (NBD1:
−8.1 kcal/mol, NBD2:−7.6 kcal/mol) (Supplementary Table 6).
On the contrary, while focusing on the antineoplastic agents,
we obtained the high binding affinities by docking at TMD
with the colorectal associated drugs and repurposed drugs
(Supplementary Table 4). Overall, TMD came into prominence
as a promising site for ligand binding to inhibit ABCB1.

The high binding affinities of these drugs were rottlerin
(−10.4 kcal/mol), withaferin A (−9.9 kcal/mol), teniposide (−9.7
kcal/mol), and celastrol (−9.7 kcal/mol) in antineoplastic agents
section; aristolochic acid (−8.6 kcal/mol), GF 109203X (−8.3
kcal/mol), and radicicol (−8.2 kcal/mol) inside of colorectal
associated section; and finally when we look at the novel drugs,
the high binding affinities of these drugs were PD 407824 (−10.5
kcal/mol), NCGC00181381-01 (−9.6 kcal/mol), importazole
(−9 kcal/mol), Ro 28-1675 (−8.2 kcal/mol), and brazilin (−8.1
kcal/mol) in repurposed drugs section. As a comparison of
these novel drugs with positive controls, brazilin, importazole,
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FIGURE 6 | Binding affinities of ligands (the positive controls, antineoplastic agents, colorectal associated, and repurposed drugs) estimated through the molecular

docking simulations considering three domains: the nucleotide-binding domain 1, nucleotide-binding domain 2, and transmembrane domain.

NCGC00181381-01, PD 407824, and Ro 28-1675 showed that the
importance of repurposed drugs reversing the effect of caused
by ABCB1 (Figure 7). Moreover, it was investigated that the
targetability of co-expressed TFs that regulate ABCB1 by the
potential drugs with possible drug-resistant reversal effect in
ABCB1. the protein structures were investigated for 17 TFs
determined on the co-expression network, however, only two of
them (FOXO3 and SPDEF) were found as having a structure for
molecular docking analysis. All drugs indicated in Figure 7 were
docked on these two TFs and binding affinities were given in
Supplementary Table 7.

The Cross-Validation of Repurposed Drugs
Using Transcriptomic Codes of
Drug-Resistant HT29 Cells
An in silico cross-validation study was performed using
transcriptome data for genes co-expressed with ABCB1 in drug-
resistant HT29 cells. We acquired transcriptome datasets of
oxaliplatin-resistant, methotrexate-resistant, and SN38-resistant
HT29 cancer cell lines (Table 1). After analyzing DEGs in
resistant cell lines, we queried these gene expressions for
drug repositioning by L1000-CDS2 as same as we performed
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FIGURE 7 | Molecular docking simulations of the candidate drugs (shown in red) on TMD of the MDR1 protein (shown in blue). Binding affinity for each protein-drug

docking was indicated.
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TABLE 1 | Information about the data sets used for the identification of DEGs and candidate repurposed drugs.

Data set Drug resistance Control Tumor sample Drug-resistant Tumor sample

GSE16648 Methotrexate 3 sensitive cells 3 methotrexate-resistant cells

GSE42387 Oxaliplatin 3 control parental cells 3 oxaliplatin-resistant cells

GSE42387 SN38 3 control parental cells 3 SN38-resistant cells

FIGURE 8 | Drugs identified throughout the study in both methods: drug repurposing through (1) ABCB1 mediated co-expression networks and (2) gene expression

profiling in drug-resistant colorectal cancer cell lines.
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within co-expressed modules. All drugs offering reversal
expression patterns against drug-resistant cell lines are listed
in Supplementary Table 2. A comparison of these drugs with
the drug candidates previously identified through co-expression
networks presented common signatures as illustrated in Figure 8.

DISCUSSION

Drug resistance in cancer becomes more challenging in cancer
therapy today. There are many underlying mechanisms of
resistance parallel to the number of patients with cancer because
each cancer case has its characteristics leading to various tumor
progression or eventually death (55).

As same as others, drug-resistant colon cancer is still
an obstacle for effective therapy and novel therapeutic
strategies are urgently needed. Hence, investigation on the
underlying mechanisms conferring drug resistance, as well
as the development of safe and effective reversing agents by
targeting these mechanisms, will play a pivotal role in the
successful chemotherapy for colon cancer (56). To improve the
current understanding of the MDR-1-related drug resistance
in colorectal cancer, we explored gene co-expression networks
around ABCB1 gene and repurposed candidate drugs for the
treatment of CRC. The candidate drugs were also assessed
by using molecular docking for determining the potential of
physical interactions between the drug and MDR1 protein as
a drug target. We also evaluated the diagnostic or prognostic
features of co-expressed gene networks in CRC. Considering
gene expression profiles in drug-resistant (i.e., oxaliplatin,
methotrexate, SN38) HT29 cell lines, another drug repositioning
strategy was applied to identify drugs that demonstrate a reversal
effect on the transcriptomic reprogramming in CRC. All these
results can shed light on the development of effective diagnosis,
prognosis, and treatment strategies for drug resistance in CRC.

As one of the reasons for the resistance problem in patients
with cancer, MDR-1 protein has been chosen as a target in this
study. To improve the current understanding of the MDR-1-
related drug resistance in CRC, we explored gene co-expression
networks around ABCB1 gene encoding the MDR-1 protein.
Disease co-expression networks in cancer are mainly used
to explore systems biomarkers for exploring prognosis and
treatment strategies (41, 42, 57).

Moreover, co-expression networks in different cancer types
were applied not only for insights in cancer biology but also
for drug repositioning (58). In this study, we outline a roadmap
for tackling the problem of resistance by using co-expression
networks for the first time to the best of our knowledge.

Our approach differs from previous drug repositioning studies
in several respects. First, we use ABCB1 mediated co-expression
network with different edge numbers which enable robust and
sensitive detection of gene co-expression modules even around
this protein whereas previous studies were only focused on
MDR-1 protein as a drug target to overcome drug-resistance
problem (59, 60).

Second, we applied the drug repositioning strategy by seeking
a reversed expression effect of the disease condition. In previous
studies, the differentially expressed genes were determined and

used as a query for determining reversal expression patterns
induced by drugs (45, 46, 61). Our input data for drug
repositioning has an essential difference although we utilized a
familiar strategy. Instead of using differential expressed genes, we
employed positively and negatively correlated genes for ABCB1
protein as a proxy.

Lastly, our approach is independent of healthy samples and
only focused on CRC-associated transcriptome data. Several
previous studies focused on co-expression patterns in cancer as
opposed to the normal transcriptome represented by healthy
tissue samples. Although intuitive, such a strategy is prone
to exclusion of disease-related modules that only superficially
resemble normal ones (62, 63).

It should be noted that co-expression studies focusing on only
a subset of genes rather than the entire transcriptome has an
advantage from a computational perspective into translational
science. This is caused by the fact that large networks are
technically challenging for translational science into the clinic.
Therefore, the use of robust co-expression modules in drug
repositioning or biomarker studies is also another promising way
of the current study.

Our findings emphasize the value of studying co-expression
modules to overcome drug resistance and to exploit this
knowledge for suggesting potential therapeutics. Such an
approach is fundamentally different from the currently common
drug repositioning studies with its starting point. Results
can be employed either determining mechanisms underlying
MDR-1 mediated drug resistance in CRC or it can be
exploited to anticipate the new repurposed drugs for the
treatment. Moreover, it can provide a complementary strategy
for biomarker discovery in drug-resistant cancers as well as
therapy options.
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