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Conventional treatments for brain tumors relying on surgery, radiation, and systemic

chemotherapy are often associated with high recurrence and poor prognosis. In recent

decades, intra-arterial administration of anti-cancer drugs has been considered a suitable

alternative drug delivery route to intravenous and oral administration. Intra-arterial

administration is believed to offer increasing drug responses by primary and metastatic

brain tumors, and to be associated with better median overall survival. By directly

injecting therapeutic agents into carotid or vertebral artery, intra-arterial administration

rapidly increases intra-tumoral drug concentration but lowers systemic exposure.

However, unexpected vascular or neural toxicity has questioned the therapeutic safety of

intra-arterial drug administration and limits its widespread clinical application. Therefore,

improving targeting and accuracy of intra-arterial administration has become a major

research focus. This systematic review categorizes strategies for optimizing intra-arterial

administration into five categories: (1) transient blood-brain barrier (BBB)/blood-tumor

barrier (BTB) disruption, (2) regional cerebral hypoperfusion for peritumoral hemodynamic

changes, (3) superselective endovascular intervention, (4) high-resolution imaging

techniques, and (5) others such as cell and gene therapy. We summarize and discuss

both preclinical and clinical research, focusing on advantages and disadvantages of

different treatment strategies for a variety of cerebral tumor types.

Keywords: brain tumor, intra-arterial, targeted therapy, chemotherapy, blood–brain barrier, nanoparticles,

superselective cerebral infusion, imaging

INTRODUCTION

Brain tumors are a large class of heterogeneous neoplasms, generally classified as benign or
malignant tumors. It is widely believed that uncontrolled proliferation and tissue infiltration of
dedifferentiated cells caused by harmful chemical, physical, and biological exposures are the main
causes of brain tumor malignancy (1). Non-malignant brain tumors also can pose a much higher
risk than elsewhere in the body, in particular when situated in areas hard to reach by surgical
interventions. According to the latest statistics from the United States Central Brain Tumor
Registry, the average annual incidence of brain and other central nervous system (CNS) tumors
(malignant and non-malignant) after age adjustment was 23.03 per 100,000 people (2). Moreover,
a worldwide meta-analysis reported that the total incidence of primary brain tumors was 10.82 per
100,000 person-years, with an estimated range of 0.01 (pineal tumors) to 25.95 (all primary brain
tumors) per 100,000 people (1). As of 2011, several population-based studies indicated that the
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incidence ofmetastatic brain tumors was 7–14 per 100,000 people
(3), thus accounting for 2% of all cancers and 12.1% of metastatic
diseases (4). The brain tumor incidence is related to a variety of
factors, such as the type, location, and grade of a primary tumor
in case of metastases, as well as the age, gender, ethnicity, and risk
factor exposure of the patients (1, 5). For example, primary brain
tumors are most common in children aged 0–14 years (2, 6) and
include hair cell astrocytoma, embryonic tumors, and malignant
gliomas (6). Meningiomas have the highest incidence of all adult
primary brain tumors (3), followed by malignant gliomas and
pituitary tumors (3, 4). It is noteworthy that brain metastases
are more common in adults, with lung cancer, breast cancer, and
melanoma showing the highest rates (3, 4).

Brain tumors are relatively rare compared to other
neurological diseases, and complex pathogenesis of some
brain tumor types (especially malignant gliomas) often renders
existing treatment strategies ineffective in prolonging survival
time. Thus, brain tumors are the most life-threatening cancers
in humans (7). The traditional treatment of brain tumors is the
combination of surgery, radio- and chemotherapy (8). Surgery
targets at the removal of tumor tissue. Radio- and chemotherapy
as primary or adjuvant treatments have a positive effect on
improving the survival rate of selected patients (9) and can
reduce tumor mass prior to surgery. Anti-tumor effects are
not only based on drug dose and tumor sensitivity but also
related to the route of drug delivery. In general, drug binding
to plasma proteins or lipids in the peripheral circulation and
the target organ metabolism affect therapeutic effects after
systemic administration (10). Systemic exposure in non-targeted
organs caused by intravenous and oral administration are also
an important factor restricting long-term use of chemotherapy
drugs (11).

Intra-arterial administration was first described for the
treatment of brain tumors in the 1950s (12). In comparison
to intravenous delivery, intra-arterial administration increases
intra-tumor drug concentration and accelerates systemic
clearance (13). Up to now, intra-arterial administration has
been shown to exert positive effects on recurrent or progressive
malignant glioblastomas (14), retinoblastomas (15), and
primary CNS lymphomas (16). However, severe vascular
toxicity and neurotoxicity have been reported in several clinical
studies. For example, patients with primary glioblastomas
or anaplastic astrocytomas receiving intra-arterial cisplatin
often experience significant loss in high-frequency hearing
(17, 18). Moreover, patients with newly diagnosed or recurrent
malignant gliomas or other brain tumors suffer from decreased
visual acuity and irreversible encephalopathy (e.g., cerebral
edema and leukoencephalopathy) when receiving intra-arterial
carmustine 1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU)
(19, 20). Myelosuppression mostly occurs in patients with
primary CNS lymphomas who have received intra-arterial
nitrosourea 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-
chloroethyl)-3-nitrosourea (ACNU) and radiotherapy (21).
Myelosuppression is also the most common side effect of intra-
arterial cisplatin combined with oral etoposide in the treatment
of recurrent malignant gliomas (22). Other relatively common
complications include nausea, vomiting, thrombocytopenia,

seizures, ocular pain, headache, intratumoral hemorrhage,
transient cerebral ischemia, granulocytopenia, nephrotoxicity,
and vasospasm (19, 21, 23–27). Radiotherapy before intra-
arterial administration may contribute to white matter necrosis
(20, 28). Moreover, technical (e.g., perfusion strategy and artery
selection) and pharmacological factors (e.g., drug dosage and
compatibility) can affect safety, accuracy, and efficacy of intra-
arterial administration (29–31) and have not been discussed in
detail so far.

On the other hand, a number of strategies to improve
the therapeutic effects of intra-arterial administration for
the treatment of brain tumors have been suggested. This
systematic review summarizes the five most important ones. The
first option is blood–brain barrier (BBB)/blood-tumor barrier
(BTB) disruption using chemical reagents (such as mannitol,
bradykinin, or alkylglycerols) or penetration drug carriers (such
as liposomes, micelles, cell-penetrating peptides) to increase
the direct entry of drugs into tumor and brain tissues. The
second option is intra-arterial injection during transient cerebral
hypoperfusion (IA-TCH) or flow arrest (IA-FA). This increases
local plasma drug concentration and exposure time by reducing
dilution, absorption, and contact with blood components. The
third option are microcatheters designed to allow superselective
intra-arterial cerebral infusion (SIACI) into the tumor-feeding
arteries to reduce neurotoxic side effects while achieving well-
targeted drug delivery. The fourth option is to combine imaging
techniques, such as MRI, CT, X-ray, SPECT, and PET with
intra-arterial infusion of labeled therapeutic agents, to monitor
delivery and accumulation in the tumor and brain parenchyma.
The fifth option is to use advanced techniques including intra-
arterial infusion of gene-edited viruses or cells to achieve targeted
molecular or cell therapy for brain tumors. Next to providing an
overview, this review also discusses advantages and limitations of
these different strategies that became obvious in preclinical and
clinical research.

METHODOLOGICAL APPROACH

Literature search and evaluation were conducted according to
the Preferred Reporting Items for Systematic Reviews and Meta-
Analysis (PRISMA) standard. No ex-ante protocol was used.

A systematic literature search was conducted in three
databases: EMBASE, PubMed, and Web of Science. The original
search date was October 22, 2019 (n = 1,835) and updated
on June 30, 2020 (n = 1,855). One more study was included
during the updated search. The publication time in EMBASE
was 1963–2020, PubMed 1962–2020, and Web of Science 1946–
2020. A keyword-based search strategy was applied as follows:
In EMBASE, the keyword terms “brain tumor” and “intraarterial
drug administration” of EMTREE dictionary were used. The
MeSH-defined keywords “Brain Neoplasms” and “Injections,
Intra-Arterial” or “Infusions, Intra-Arterial” were used in
PubMed searches, whileWeb of Science searches were conducted
with “Brain tumor” and “Intra arterial.” In addition, other
eligible publications selected from the list of references in the
included literature were used to supplement the search results.
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Only peer-reviewed articles published in English were included.
The included literature should focus on strategies that aimed
at improving the therapeutic effect of intra-arterial treatment.
Therefore, articles that simply evaluated the therapeutic effects
of intra-arterial administration but without comparing them to
alternate approaches were excluded (n = 105). We also excluded
conference abstracts (n = 10), papers without available full-text
(n = 3), papers not reporting brain tumor treatment (n = 21),
and in-vitro studies (n= 5), as well as studies not reporting intra-
arterial treatment (n = 4) or being focused on embolization only
(n= 5). Reviews were also excluded (n= 28).

RESULTS

Data Set
A total of 1,855 articles were retrieved from EMBASE (n = 486),
PubMed (n = 534), and Web of Science databases (n = 835).
By screening the reference lists of the included papers, one more
publication was added to the search results, resulting in a total of
1,856 articles. Screening for duplicates and their removal resulted
in a total of 1,070 articles. We next screened titles and abstracts,
obtaining 399 articles not meeting any exclusion criterion.
Finally, 218 articles published between 1981 and 2020 were
included after full-text evaluation (Figure 1A), what allowed us
analyzing literature output in the previous four decades.

We then grouped articles according to the strategies described
for optimizing intra-arterial administration of therapeutic agents
to brain tumors. There were 94 studies focusing on BBB/BTB
disruption, 24 on TCH, 39 on SIACI, 33 on imaging-guided
approaches, and 46 on other therapeutic agents and methods
(Figure 1B).

As shown in Figure 1C, research on optimization strategies
changes with the development of new technologies. The majority
of studies focused on BBB disruption and were most frequently
published 1991–2000 (n = 42). Numbers of studies focusing
on BBB disruption gradually decreased from 2001. However,
the number of publications on BBB disruption was still higher
(2001–2010) than or equal to (2011–2020) the numbers of studies
focusing on other strategies. Research on nanoparticles became
a main research focus for improving BBB/BTB penetration
in the past decade (2011–2020). Several techniques emerging
from medical physics were applied in preclinical research on
TCH (n = 10). With the improvement of microcatheters,
superselective infusion techniques gradually became a routine
treatment option in 2011–2020 (n = 14). In parallel, real-
time image-based monitoring became increasingly important for
optimization of therapeutic procedures (n= 14).

Strategies for Improved Intra-Arterial Drug
Delivery to Brain Tumors
BBB/BTB Disruption
The BBB represents a major obstacle for CNS drug delivery (32).
The anatomy of BBB, mainly composed of brain endothelial
cells, astrocytes, and pericytes (33), has been well studied.
The tight junctions of endothelial cells are the mainstay of
the barrier structure (34), while transcellular carriers and cell

surface receptors (35) allow the selective transport of nutrients
and metabolites (36) across the BBB. Morphology and function
of BBB often change under pathological conditions (37). It
has been found that the BBB is damaged in primary tumors
such as meningiomas (38), schwannomas (39), and high-grade
gliomas (40), but this does not necessarily facilitate drug uptake
(41). On the other hand, excessive BBB permeability increases
the risk of cerebral edema (42). Therefore, reasonable and
targeted changes in BBB permeability are critical to increase
drug uptake while at the same time minimizing drug dose and
adverse effects.

Some chemical agents have been shown to modify the BBB
(Table 1). The hypertonic solution mannitol (80) draws water
from endothelial cells into blood vessels, causing endothelial
cell shrink. This impacts tight junctions, allowing drugs to pass
the BBB (81, 82). Reagents with comparable effects comprise
arabinose (83) and hypertonic urea (84). To date, mannitol
remains one of the most effective hyperosmotic solutions for
transient BBB disruption. Mannitol is safe and well-tolerated
in combination with intra-arterial chemotherapy (Table 2). The
approach increases BBB permeability and thus facilitates the
use of relatively large-sized antibodies (e.g., bevacizumab and
cetuximab) for the treatment of malignant glioma (100, 101, 107).
It improves therapeutic effects of methotrexate and carboplatin
on primary CNS lymphomas and cerebral metastases (93, 98).
The risk for cognitive impairment was reduced when mannitol-
mediated BBB disruption was used together with radiotherapy
in patients with germ cell tumors (113). A multi-center study
also confirmed the benefits of intra-arterial chemotherapy with
osmotic BBB disruption in enhancing the therapeutic response
of primitive neuroectodermal tumors (94). By detecting 99mTc-
glucoheptonate (TcGH), SPECT scans confirmed BBB opening
within 40min after mannitol injection and returned to the
steady state after 6–8 h. This provides a wide time window for
clinical applications (82). However, preclinical studies revealed
that BBB disruption with mannitol is variable (114) and may
cause an unexpected increase in transcapillary transport of
anticancer drugs into healthy brain tissues (45, 115). In both
humans and experimental animals (e.g., pigs and rats), focal
motor seizures occur during BBB opening and last for several
hours after termination of the procedure. The presence of high-
frequency and high-amplitude electroencephalography (EEG)
signals suggests that intra-arterial injection of mannitol through
the anterior circulation may directly affect the motor cortex,
regardless of the size and location of the tumor, or applied
chemotherapy (116, 117). Other potential complications such as
tachycardia and increased intracranial pressure as well as nausea,
headache, and vomiting have been reported retrospectively (118).
BBB disruption may also result in transient aphasia, hemiparesis,
or even edema-induced intracranial herniation (94). Some
conditions can affect mannitol-mediated BBB opening (114). For
example, low brain temperature and the Na+/Ca2+ exchange
blocker KB-R7943 enhance mannitol-mediated BBB opening
(119), while intraperitoneal administration of magnesium sulfate
attenuates mannitol effects (120). Thus, hyperosmotic mannitol
infusion remains challenging and is hard to control, even though
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FIGURE 1 | Methodological approach. (A) PRISMA flow diagram. (B) Pie chart of the total number of publications between 1981 and 2020. (C) Temporal trend graph

of the numbers of publications for different strategies. Since 1981, the numbers of articles on BBB/BTB disruption published in consecutive decades are 16, 42, 22,

and 14, respectively. The numbers of articles on SIACI published in consecutive decades are 12, 9, 4, and 14, respectively. The numbers of articles on imaging

published in consecutive decades are 8, 9, 2, and 14, respectively. The numbers of articles on TCH published in consecutive decades are 4, 8, 2, and 10,

respectively. The numbers of articles on other strategies published in consecutive decades are 15, 16, 12, and 3, respectively.
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TABLE 1 | Agents for BBB modification: preclinical studies.

No. Agent Concentration Infusion velocity Effect Detection method Model References

1 Mannitol 1.37M, 1.60M 2.50ml over 30 s Capillary permeability ↑, cerebral blood

flow ↑, blood pressure ↑

14C-AIB, 14C-IAP W256 carcinosarcoma and

C6 glioma-bearing rats

(43)

1.60M 0.25 ml/s/kg for 30 s Survival of the rats ↓ Methotrexate Osteogenic

sarcoma-bearing rats

(44)

1.40M 3.00ml over 45 s BBB opening ↑, leakage of HRP into

tumors ↑, concentrations of EB, HRP in

the normal brain ↑, concentrations of 5-FU

in serum, tumor and tumor-free brain ↑

EB, HRP, 5-FU RG-C6 glioma-bearing rats (45)

1.60M 2.50ml over 30 s Concentrations, distribution in tumor and

cortex ↑

14C-methotrexate C6 glioma-bearing rats (46)

1.60M 0.12 or 0.25 ml/s for

30 s

Tumor uptake of boron compounds ↑,

mean survival time of the rats ↑

BSH or BPA, EB, HRP F98 glioma-bearing rats (47–52)

1.60M 0.09 ml/s for 30 s Percentage of accessible tissue

space ↑

14C-AIB, 14C-dextran 70,
14C-methotrexate

LX-l human small cell lung

carcinoma-bearing female

athymic nude rats

(53)

not given Not given Survival time of the rats ↑ monoclonal antibody BR96-DOX LX-l human small cell lung

carcinoma-bearing female

athymic nude rats

(54)

1.60M 1.5 g/kg Perfusion territory and BBB disruption ↑ SAA (DHB, SA, DHTA) Sprague–Dawley rats (55)

2 Arabinose 1.60M 0.78ml over 30 s BBB permeability ↑ EB Male Fischer 344 rats (56)

3 Bradykinin 10 mg/kg/min 53.3 µl/min for

15min

Permeability in tumor capillaries ↑, blood

volume in tumor or brain tissue =

14C-AIB, 14C-sucrose, 14C-inulin,
14C-dextran, EB, and HRP

9L gliosarcomas, C6

gliomas and RG-2

glioma-bearing rats

(57, 58)

4 RMP-7 0.1 mg/kg/min 53 µl/min for 15min Permeability in tumor capillaries ↑, blood

volume in tumor or brain tissue =

14C-AIB, 14C-sucrose,
14C-inulin, and 14C-dextran

RG-2 glioma-bearing rats (59)

0.1 mg/kg/min 53 µl/min for 15min Permeability in tumor capillaries ↑↑,

permeability of normal brain capillaries ↑,

permeability of the vascular barriers to

hydrophilic compounds ↑, lipophilic drug ↓

14C-carboplatin, 14C-dextran,

and 14C-BCNU

Female Fischer 344 and

Wistar rats

(60)

0.1 mg/kg/min 53 µl/min for 15min Permeability in tumor capillaries ↑, survival

of the rats ↑

14C-carboplatin, and
14C-dextran

RG-2 glioma-bearing rats (61)

0.1 mg/kg/min 53 µl/min for 15min Delivery of carboplatin to brain tumors↑,

survival time of the rats ↑

14C-carboplatin RG-2 glioma-bearing rats (62)

0.1 mg/kg/min 53 µl/min for 15min Cytokines delivery to brain tumors ↑ 125 I-IFN-gamma, TNF-alpha, and

interleukin-2

RG-2 glioma-bearing rats (63)

1.5 mg/kg For 15min Viral delivery to brain tumors ↑, normal

brain tissue =

Herpes virus hrR3 encoding virus

thymidine kinase gene and the

lacZ reporter gene

9L gliosarcoma-bearing rats (64)

5 Alkylglycerols 0.01–0.3M 6 ml/min for 12 s Methotrexate delivery to the brain and to

brain tumors ↑

Cisplatin, methotrexate C6 gliomas-bearing rats (65)

6 1-O-pentylglycerol 300mM 6 ml/min over

12–15 s

Concentrations of ErPC in the brain tumor

↑↑, brain tissue adjacent to tumors ↑

ErPC C6 gliomas-bearing rats (66)

(Continued)
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TABLE 1 | Continued

No. Agent Concentration Infusion velocity Effect Detection method Model References

200mM 6 ml/min for 2min Delivery of small and large compounds to

normal brain and brain tumors ↑

Fluorescein sodium, RB

200-albumin, FITC-dextran,

methotrexate

C6 gliomas-bearing rats (67)

1-O-pentylglycerol 10–300mM 53 µl/min for 15min No signs of toxicity, delivery of

methotrexate to the brain ↑

Methotrexate Male Wistar rats (68, 69)

2-O-hexyldiglycerol 50–100mM 53 µl/min for 15min No signs of toxicity, delivery of

methotrexate to the brain ↑

Methotrexate Male Wistar rats (68, 69)

7 Histamine 1, 10 mg/kg/min 1.5 ml/h for 10min Regional tumor and brain capillary

permeability ↑

14C-AIB RG-2 glioma-bearing rats (70)

8 Nifedipine 0, 0.1, 1, 5, 10

mg/kg/min

For 15min Permeability in tumor capillaries ↑ EB Male Wistar rats (71)

9 Etoposide 3.0–22.5 mg/kg For 25min BBB permeability ↑ 99mTc-DTPA, EB Sprague-Dawley rats (72)

10 Cisplatin 1, 1.2, 1.5mg For 60min BBB permeability ↑, local cerebral blood

flow =

14C-AIB, 18F- fluoroantipyrine Female Wistar rats (73)

11 Vinorelbine 5–10 mg/kg 4 ml/kg for 2min BBB permeability ↑ EB Sprague-Dawley rats (74)

12 Leukotriene C4 2.50% 53.3 µl/min for

15min

BBB/BTB permeability ↑ 14C-AIB, γ-GTP RG-2 glioma-bearing rats (75)

13 Leukotriene E4 5µg/ml 53.3 µl/min for

15min

Permeability in tumor capillaries ↑,

permeability of normal brain capillaries =

14C-AIB, 14C-sucrose,
14C-5-FU, and 3H-methotrexate

C6 glioma-bearing rats (76)

14 TNF-alpha 0, 1,000,

10,000, 100,000

IU

for 1, 2, 4, 8, and

16 h

BBB permeability ↑ Sodium fluorescein, EB-albumin newborn pigs (77)

15 Short-acting NO donor

(Proli/NO)

10−2-10−12 M For 30 s and 3min BBB permeability ↑, long-term survival of

the rats ↑

14C-AIB, 14C-sucrose,
14C-dextran, sodium nitrite,

carboplatin

C6 glioma-bearing rats (78)

16 Papaverine 0.5 mg/kg For 0.5, 1, 2, 3 and

5 h

BBB permeability ↑ Occludin, claudin-5, F-actin,

PKA, HSP70

C6 glioma-bearing rats (79)

AIB, aminoisobutyric acid; BBB, blood-brain barrier; BCNU, carmustine; BPA, boronophenylalanine; BSH, sodium borocaptate; BTB, blood-tumor barrier; DHB, 2,4-dihydroxybenzoic acid; DHTA, 2,5-dihydroxyterephthalic acid; DTPA,

Diethylene triamine pentaacetic acid; DOX, doxorubicin; EB, Evans blue; ErPC, erucylphosphocholine; FITC, fluorescein isothiocyanate; HRP, horseradish peroxidase; HSP70, heat shock protein 70; IAP, iodoantipyrine; IFN, interferon;

PKA, protein kinase A; RB 200, rhodamine B200; γ-GTP, gamma glutamyl transpeptidase; SA, sodium salicylate; SAA, salicylic acid analogs; TNF, tumor necrosis factor; 5-FU, 5-fluorouracil.
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TABLE 2 | Agents for BBB modification: clinical research and applications.

No. Agent Tumor Intra-arterial

administration

Surgery Radiation Systemic

chemotherapy

Analysis method Effect References

1 Mannitol (1 ml/s, 120ml) Glioblastoma 5-fluarouracil,

Adriamycin

× × × CT Tumor mass size ↓/= (85)

Mannitol (8–10 ml/s, 30 s) Glioblastoma Methotrexate × × × Cox Proportional Hazards

Regression Model

Survival of the patients ↑ (86)

Mannitol (25%, 30 s) Malignant gliomas, primary CNS

lymphoma

Methotrexate × × × CT and 99mTc- SPECT Tumor area↓, BBB/BTB

disruption ↑

(87)

Mannitol (20%, 200ml) Brain metastasis ACNU Two- and one-compartment

open model,

high-performance liquid

chromatography

ACNU levels in blood and tissue

↑

(88)

Mannitol (8–10 ml/s, 30 s) Brain metastasis Methotrexate × CT and
99mTc-glucoheptonate

radionuclide scans

BBB/BTB disruption ↑ (89)

Mannitol (20%, 200ml) Astrocytoma ACNU × × CT and high-performance

liquid ion exchange

chromatography

2/3-year survival rate of the

patients ↑, ACNU levels in blood

and tissue ↑

(90)

Mannitol (25%, 27–30 s) Astrocytoma, glioblastoma Methotrexate × Three-compartment model,

fluorescence polarization

immunoassay

Methotrexate concentrations in

serum and urine ↑, methotrexate

half-life and cytotoxic

concentrations ↑

(91)

Mannitol (20%, 50ml) Malignant gliomas, brain

metastases

ACNU and

cisplatin

× CT Survival of the patients with

malignant gliomas =, with brain

metastases ↑

(92)

Mannitol (25%, 4–10 ml/s,

30 s)

Primary CNS lymphoma,

primitive neuroectodermal tumor,

metastatic disease, germ cell

tumor, glioblastoma multiforme

Carboplatin or

methotrexate

× MRI, CT, Karnofsky

performance status

evaluation

Tumor volume ↓, median survival

times ↑

(93–95)

Mannitol (25%, 3–11 ml/s,

30 s)

Primary CNS lymphoma,

primitive neuroectodermal tumor

Carboplatin or

methotrexate

× CT, 99mTc- glucoheptonate

-SPECT

Time course to closure of the

BBB disruption

(82)

mannitol (25%, 3–12 ml/s,

30 s)

Primitive neuroectodermal

tumors, medulloblastomas, germ

cell tumors

Carboplatin or

methotrexate

× × Physical examinations, CT,

and/or MRI scans,

cerebrospinal fluid studies,

and ophthalmologic

evaluations

Overall survival ↑, time to

progression ↑, and

neurocognitive function ↑ of the

patients

(96)

Mannitol (25%, 3–12 ml/s,

30 s)

Refractory anaplastic

oligodendroglioma and

oligoastrocytoma tumors

Carboplatin and

melphalan

× CT, MRI, audiologic,

ophthalmologic and

neuropsychologic

evaluations, tumor

response, duration of

response, and survival

Adverse events ↓, tumor

response ↑. median

overall/progression-free survival

of the patients ↑

(97)

(Continued)
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TABLE 2 | Continued

No. Agent Tumor Intra-arterial

administration

Surgery Radiation Systemic

chemotherapy

Analysis method Effect References

Mannitol (1,400 mg/m2,

10min or 25%, 30 s)

Primary CNS lymphoma Methotrexate × CT, fluorescence

polarization immunoassay,

non-compartmental analysis

Cerebrospinal fluid/serum ratio of

methotrexate ↑, overall response

rate ↑, median overall survival of

the patients ↑, median

progression-free survival of the

patients ↑

(98, 99)

Mannitol (25%, 4–6 ml/s,

30 s)

Primary CNS lymphoma Carboplatin × DC-EEG, near-infrared

spectroscopy

Lateralized DC-EEG response

from negative to positive shift ↑,

BBB disruption ↑

(16)

Mannitol (20%, 60–90ml) Glioblastoma multiforme,

astrocytoma, metastatic brain

tumor

Fluorescein Cerebral fluorescein

micro-angiograms

Transport of fluorescein into

tumors and normal brain tissue ↑

(47)

Mannitol (25%, 5, 10

ml/120 s)

Recurrent or progressive

malignant gliomas, malignant

brainstem gliomas

Bevacizumab

(superselective)

MRI Tumor area, volume, perfusion ↓,

progression-free survival of the

patients ↑

(100–104)

Mannitol (25%, 10 ml/120 s) Recurrent glioblastoma

multiforme

Bevacizumab,

cetuximab,

temozolomide

(superselective)

× × × MRI, PET Tumor size and 18F-FDG uptake

↓

(105)

Mannitol (25%, 10ml) Multiply recurrent pediatric

ependymoma

Bevacizumab,

cetuximab

(superselective)

× × × MRI, PET Residual tumor size and activity

↓

(106)

Mannitol (20%, 12.5

ml/120 s)

Recurrent malignant gliomas Bevacizumab

(superselective)

× × MRI Tumor progression ↓ (14)

Mannitol (20%, 12.5

ml/120 s)

Recurrent malignant gliomas Cetuximab

(superselective)

Physical and neurological

examination, MRI

Safe and tolerated toxicity (107)

Mannitol (20%, 12.5

ml/120 s)

Newly diagnosed glioblastoma Cetuximab

(superselective)

× × × MRI No evidence of tumor

progression or recurrence, less

complications (e.g., mild

headache)

(108)

2 RMP-7 (0.1, 0.3, 1, 3

mg/ml, 1 ml/min)

Recurrent malignant gliomas None × 68Ga EDTA-PET, MRI Transport of 68Ga EDTA into

tumors ↑, normal brain tissue

-tumor volume ↓

(109)

RMP-7 (10, 30, 100, 300

ng/kg)

Recurrent malignant gliomas Carboplatin Gadolinium-enhanced MRI Tumor volume ↓ (110)

RMP-7 (300 ng/kg) Recurrent glioblastoma

multiforme, anaplastic

astrocytoma

Carboplatin × MRI Tumor progression and survival

differ in patients with

hypervascular and hypovascular

tumors

(111)

RMP-7 (11,448 ng/m2) Glioblastoma multiforme,

adenocarcinoma, high-grade

astrocytoma, mixed anaplastic

glioma

Carboplatin × × × MRI No obvious tumor mass ↓, safe

and tolerated neurological

complications

(112)

ACNU, nimustine; BBB, blood-brain barrier; BTB, blood-tumor barrier; CNS, central nervous system; DC-EEG, direct-current electroencephalography; EDTA, ethylenediamine tetraacetic acid; FDG, fluorodeoxyglucose.
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most side effects seemmild and can be controlled by medications
(98, 102).

The BTB is found on tumor capillaries and can have
a continuous non-fenestrated, continuous fenestrated or
discontinuous phenotype (121). The surface receptor profile
of BTB capillaries is more heterogeneous than that of normal
capillaries (41, 122). Intra-arterial infusion of bradykinin (57),
its analog RMP-7 (known as Cereport R© or Lobradimil, a widely
used adjuvant chemotherapy reagent) (59), 1-O-pentylglycerol
(66), or calcium antagonists (71) into rats transplanted
with different tumor cell lines significantly increases BTB
permeability. However, blood volumes within the tumor or
the surrounding brain remain unchanged (Table 1). RMP-7
penetrates the BTB by activating B2 receptors on endothelial
cells (60), which seems to be regulated by the NO-cyclic
GMP pathway (123, 124). Infusion of RMP-7 also enhances
intra-arterial delivery of a therapeutic herpes simplex virus
vector (64, 125) and tumor uptake of carboplatin (61, 126).
Short-chain alkylglycerols promote delivery of methotrexate
(68) (Table 2). In Fischer 344 rats with gliosarcoma, bradykinin
fosters selective herpes simplex virus infection in multiple
tumor foci and increases the absorption of single crystal iron
oxide nanoparticles (127). Moreover, histamine has a selective
effect on increasing BTB permeability that is mediated by H2
receptors (70). Animal experiments demonstrated that intra-
carotid infusion of leukotriene C4 (75) and E4 (76) increase
BTB permeability, but do not affect normal brain capillaries.
Preclinical evaluation of RMP-7 indicated a high efficacy in
tumor uptake but minimal disturbance to normal tissues. It
can, however, cause rapidly emerging side effects including
hypotension, hypertension, abdominal pain, vasodilatation,
headache, nausea, tachycardia, fatigue, and vomiting during
intravenous infusion in a dose-dependent manner (128). RMP-7
may also cause leukopenia, nausea, thrush, cellulitis, urinary
tract infection, hematuria, weakness, seizures, sensory loss,
cortical blindness, oculomotor nerve palsy, and even ischemic
stroke at the maximum intra-arterial infusion dose of 300 ng/kg
(110, 112). However, the RMP-7-induced BBB/BTB permeability
is transient and the barrier can spontaneously recover even
during RMP-7 administration. This makes it difficult to define
the optimal dosing and timing paradigm of RMP-7 in order
to promote the maximum intratumoral concentration of
chemotherapeutic agents (129, 130). Therefore, any potential
beneficial effects from RMP-7-mediated drug delivery need to be
confirmed in further clinical investigations.

Importantly, drugs used for tumor treatment may also exert
effects on the BBB (Table 1). Intra-carotid infusion of vinorelbine
into rats increases local BBB permeability at high doses (74),
although recent data show much lower vinorelbine efficacy
in brain vs. peripheral metastases (131). Cisplatin (73) and
etoposide (72) were reported to open the BBB, and this effect
precedes changes in local cerebral blood flow and necrosis. BBB
opening may therefore be a sensitive indicator of cisplatin and
etoposide neurotoxicity during intra-arterial administration (73).
However, cisplatin is known for its acute gastrointestinal toxicity
causing nausea and vomiting and can lead to myelosuppression
(132). Etoposide has systemic side effects, including leukopenia,

thrombocytopenia, and anemia when used with carboplatin
(133). Another main obstacle that restricts further application of
cisplatin and etoposide is their unknown mechanism. Whether
the capability of these drugs to bypass the BBB is due to increased
bradykinin release or P-glycoprotein expression in newly formed
vessels (134) remains uncertain and requires future research.

Recently, it has been found that convection-enhanced delivery
(CED) using catheters stereotactically inserted into brain tumors
fosters drug delivery into these tumors and surrounding brain
tissue by establishing a local positive pressure gradient (135).
In contrast to diffusion-based concentration gradients, CED
has advantages when applying compounds of high molecular
weight because of a BBB bypass (135, 136). A main application
of CED is the targeted delivery of cytotoxin to the tumor
parenchyma or the surrounding tissues with encouraging
results being reported for glioblastoma multiforme (137, 138).
However, there is not yet convincing evidence for a benefit
of CED in other chemotherapeutic paradigms even though
preliminary experience is promising. In a F98 glioma rat model,
CED of platinum-based drugs and liposomes increases drug
accumulation in tumor tissue and extends the median survival
time (139). CED of carboplatin has also been reported to have
a sound therapeutic effect on glioblastomas in a Phase I clinical
trial (140). However, there are a number of side effects caused
by CED, such as headache, seizure, fever, nausea, vomiting,
fatigue, erythema, and even liver enzyme perturbations and
hematological changes (141, 142), which are related to the time
and location of the treatment (143). Factors such as catheter
reflux, leakage, or improper imaging guidance may lead to
treatment failure (144).

Focused ultrasound is a novel non-invasive strategy for
reversibly disrupting BBB tight junctions. Application of low
frequency continuous wave ultrasound (∼10ms bursts, 1 MPa
amplitude, 1Hz frequency for 20–30 s intervals) generated well-
controllable damage to tumor tissue, but minimal disturbance
to surrounding healthy brain tissue (145). Microbubbles
are standard ultrasound contrast agents and can help to
create large shear microstreaming to open the capillary wall
(146). Doxorubicin encapsulated in liposomes significantly
accumulates in the rat brain afterMRI-guided focused ultrasound
with microbubbles (147) and has been investigated in a
patient with high-grade glioma recently (148). Using the same
strategy, focused ultrasound enhances the delivery of BCNU by
intravenous administration to normal and C6 glioma-implanted
rat brain tissue (149) as well as methotrexate to the rabbit
brain (150). The most severe side effects are necrosis, febrile
seizures, hemorrhage, and brain edema. Other complications
include tolerable back pain and self-limiting headache (151,
152). Focused ultrasound may offer a promising method greatly
improving local drug delivery after intra-arterial administration,
but more evidence for clinical safety, efficacy, and feasibility
is required.

The recent advent of nanotechnology has led to widespread
nanoparticle applications in intra-arterial administration
(Table 3). Due to the ability to pass through the BBB, some
nanoparticles can be used for intra-arterial drug delivery (168).
The cationic (positive) charge on their surface increases homing
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toward negatively charged tumor cell surfaces (169). It has
been demonstrated that intra-arterial injection of paclitaxel-
loaded cationic, polymeric, and magnetic liposomes increases
drug delivery to the tumor tissue (156). When combined with
BBB disruption induced by focused ultrasound, intra-arterial
liposome injection increases their deposition into tumor
tissue of C6 tumor-bearing rats (158). Similarly, application of
cationizable lipid micelles (163) with cationic short peptides such
as the cell-penetrating trans-activator of transcription (TAT)
was shown to increase the uptake of micelles (165) and can be
used for selective drug delivery to gliomas. The translocation
efficiency of nanoparticles is not only determined by surface
charge. For instance, larger particles are more likely to adhere
to the vessel wall, but the hydrodynamic resistance for BBB
crossing is also increased (162). Other parameters such as
shape, lipophilicity, and ligand density can affect effective BBB
penetration of nanoparticles (170). More research is needed
to optimize intra-arterial nanoparticles delivery protocols for
future applications.

TCH
The pharmacokinetic theory of intra-arterial drug administration
suggests that a comparable tumor response can be obtained faster
by intra-arterial than by intravenous administration due to the
first pass effect. Regional slow blood flow can increase tissue
drug levels and rapid systemic clearance (171). In a non-human
primate model, phased pulsatile infusion during the diastole
resulted in excellent distribution of the drug in blood (172).
Intra-arterial drug administration during cerebral hypoperfusion
promotes drug deposition in tumor and surrounding tissues,
increases the contact time of drugs with tumor cells, and
avoids non-targeted binding to plasma proteins (173). Hence,
such improved methods increase drug concentrations in the
tumor tissue while at the same time enabling reduction of the
overall amount of drugs infused, mitigating potential side effects
(174, 175).

Almost 30 years ago, it was shown that glucose reduces the
pH of tumors by reducing blood flow, which in turn promotes
thermochemotherapeutic effects (176). Various vasodilators such
as adenosine (177), histamine (178), or iloprost (179) have
been considered to alter regional cerebral blood flow in brain
and tumor capillaries. Adenosine was shown to promote
endovascular embolization during arteriovenous malformation
by transient induction of hypotension (180). Taking advantage of
this, a decrease in mean arterial blood pressure can be achieved
by intravenous injection of adenosine, esmolol, and large doses
of cold saline. When combined with bilateral carotid occlusion,
cerebral blood flow measured by a laser Doppler probe would
transiently drop to 10–20% for 30–40 s and completely recover
within 5min without inotropic support. This procedure allows
intra-arterial injection of less mannitol to achieve BBB disruption
lasting at least 60min (174). It has been shown that TCH can
improve the uptake of lipophilic drugs (e.g., BCNU) into rabbit
brains without causing severe neuronal damage or abnormal
EEG signals (181). In glioma-bearing rats, it was found that a
combination of lowering cerebral blood flow and BBB opening
increases the concentration of the chemotherapeutic drug (e.g.,

mitoxantrone) in glioma tissue more than 10-fold as compared
to the contralateral, tumor-free brain tissue. The treatment effect
was reported to last for more than 4 h (175). Furthermore, TCH
is sufficient to enhance early regional deposition of nanoparticles
such as micelles (163–165) and liposomes (158–162) into tumor
tissues. This provides a novel approach for targeted intra-arterial
tumor therapy (Table 3).

Despite these promising findings, the translation of TCH-
promoted intra-arterial drug administration to brain tumors
into clinically applicable procedures is still not completed.
Although the strategy has been validated in standardized
animal models, tumor response and survival time after intra-
arterial drug administration in humans were not yet described.
TCH has been widely used in neurosurgical procedures for
the treatment of arteriovenous malformations and aneurysms,
but drug distribution in tumor vessels is complex and blood
flow might be variable. Moreover, a relatively high risk of
systemic hypotension or regional low cerebral blood flow is a
challenge for the clinical application of TCH in intra-arterial
drug administration.

SIACI
In theory, primary brain tumors usually have a limited number
of supplying arteries. This is advantageous when considering
treatment by superselective intra-arterial infusion (182).
However, since the ophthalmic artery originates from the
internal carotid artery, drugs injected into the internal carotid
artery also reach the eye, which can injure retinal ganglion cells
and lead to temporary or permanent ocular complications (183)
such as vision loss, vasculitis, and cataracts (184). Hence, it is
reasonable to selectively inject into the main tumor-supplying
arteries rather than infusing into major brain supplying vessels,
such as the carotid or vertebral arteries (185). In clinical practice,
the tip of a superselective catheter is usually placed in the A1
segment of the anterior cerebral artery, the M1 segment of
the middle cerebral artery, or in the posterior communicating
artery (182). Supraophthalmic carotid infusion became the
preferred procedure to prevent drugs from entering the eye
(184, 186–191). Flow-directed soft-tipped balloon or single-
lumen catheters (188) with an extended tip (182–184) can be
remotely controlled by hydraulic forces (189) and allow to
maneuver even in extremely curved skull base vessels (184). It
has been reported that supraophthalmic carotid chemotherapy
can be used to treat malignant gliomas with low dose cisplatin
and BCNU (182, 191, 192), and that the pharmacokinetic
changes of 11C-BCNU are consistent with the metabolic changes
captured by PET (185). In combination with external beam
radiation therapy, supraophthalmic infusion of fluorouracil
was reported to achieve acceptable median survival rates in
anaplastic astrocytomas and glioblastomas (193). Superselective
intra-arterial infusion of bevacizumab (100, 103) or cetuximab
(107, 108) combined with mannitol-mediated BBB opening
exerts profound anti-proliferative effects (194) and reduces
tumor volume. The procedure was proven to be safe and effective
in the treatment of brainstem gliomas (104) and multiply
recurrent pediatric ependymoma (106) as well as vestibular
schwannomas (195). However, it is still unclear whether
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TABLE 3 | Microparticles for BBB penetration: preclinical studies.

No. Microparticle Combined technique Detection method Effects Model References

1 Cationic magnetic aminodextran

microspheres and neutral

dextran microspheres

Magnetic field of 0.6 Tesla Fe3O4 magnetite atomic

absorption

Magnetite concentrations in

tumor ↑,

and in non-target tissue ↓

RG-2 glioma-bearing

rats

(153)

2 BCNU-loaded wafer and PLA

nanoparticles coated with

transferrin

None Transferrin X-ray photoelectron

spectroscopy, Bratton-Marshall

colorimetric assay and

zeta-potential analysis,
99mTc-SPECT, Gd-DTPA-MRI

Tumor growth ↓, average survival

time of the rats ↑

C6 glioma-bearing rats (154)

3 (DSPE-mPEG2000-)

ferrociphenol-loaded lipid

nanocapsules

CED MRI/MRS Survival time of the rats ↑,

accumulation of lipid

nanocapsules in the tumor zone

↑

9L gliosarcoma-bearing

rats

(155)

4 Paclitaxel-loaded cationic

polymeric magnetic liposomes

Magnetic field of 0.5 Tesla High-performance liquid

chromatography

Brain concentration of the

liposomes ↑

Sprague-Dawley rats (156)

5 Cisplatin, oxaliplatin-loaded

liposomes

BBB opening, gamma knife

irradiation

MRI, inductively coupled plasma

mass spectrometry

Accumulate of the liposomes in

brain tumors ↑, mean survival

time of the rats ↑, tumor control

↑

F98

glioblastoma-bearing

rats

(157)

6 Cisplatin-loaded liposomes CED, gamma knife

irradiation

Inductively coupled plasma mass

spectrometry

Maximum tolerated dose ↑,

median survival time of the rats ↑

accumulation of drugs in tumor

↑, systemic toxicity ↓

F98

glioblastoma-bearing

rats

(139)

7 Doxorubicin-loaded liposomes Focused ultrasound with

microbubbles

MRI, fluorometric assay Tissue concentration of

doxorubicin ↑

Sprague-Dawley rats (147)

8 Anionic, cationic, and

charge-neutral liposomes

Focused ultrasound, TCH Diffuse reflectance spectroscopy,

multispectral imaging, spatial

frequency-domain imaging

Uptake of the liposomes by brain

tumor ↑

C6 glioma-bearing rats (158–161)

9 Large (200 nm) and small

(60–80 nm) fluorescent

dye-loaded liposomes

TCH Diffuse reflectance spectroscopy,

multispectral fluorescence

imaging

Uptake of the liposomes by brain

tumor ↑

C6 glioma-bearing rats (162)

10 Cationizable micelles TCH Diffuse reflectance spectroscopy Uptake of the micelles by brain

tumor ↑

9L gliosarcoma-bearing

rats

(163)

11 TAT TCH Multispectral fluorescence

imaging

Uptake of the TAT by brain tumor

↑

9L gliosarcoma-bearing

rats

(164)

12 TAT-decorated and neutral

micelles

FA Diffuse reflectance spectroscopy Deposition of both micelles in the

tumor and blood vessels ↑

9L gliosarcoma-bearing

rats

(165)

13 Magnetically-mediated retention

of iron oxide nanoparticles

Magnetic field of 0.15 or

0.35 Tesla

MRI, electron spin resonance

spectroscopy

Nanoparticle accumulation in the

tumor ↑

9L gliosarcoma-bearing

rats

(166)

14 Heparin-coated

superparamagnetic

nanoparticles loading cationized

model protein β-galactosidase

Magnetic field of 0.35 Tesla MRI, β-galactosidase activity

spectrophotometry

Nanoparticle accumulation in the

tumor ↑, exposure of normal

brain regions ↓

9L gliosarcoma-bearing

rats

(167)

CED, convection enhanced delivery; DSPE-mPEG2000, 1,2-Distearoyl-sn-glycero-3-phospho-ethanolamine-N-[methoxy-(polyethylene glycol)-2000]; FA, flow arrest; Gd-DTPA, gadolium-diethylenetriamine pentaacetic acid; PLA,

poly(D,L-lactic acid); TAT, cell-penetrating trans-activator of transcription; TCH, transient cerebral hypoperfusion.
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long-term slow infusion or rapid bolus infusion is the more
effective approach (182). It was recently shown that median
progression-free survival of patients with recurrent glioblastoma
receiving a single dose of SIACI 15 mg/kg bevacizumab and
mannitol is comparable or even longer than that of those who
received biweekly intravenous bevacizumab at 10 mg/kg (102).
Moreover, side effects including epilepsy and headache indicate
a need for careful dose adjustments in therapies relying on
multiple administrations (102). Adverse events during invasive
procedures further include nausea, bradycardia, vomiting,
headache, and vascular complications such as asymptomatic
subintimal tear, and even intracranial herniation, stroke, and
cerebral hemorrhage. Thus, extensive experience in endovascular
intervention is required to apply superselective intra-arterial
drug administration (94, 133). Favorable results have been
reported for a patient suffering from metastatic breast cancer.
Skull and dura mater metastasis disappeared after repeatedly
performed superselective intra-arterial administration of
epirubicin into the right superficial temporal artery and the
middle meningeal artery, combined with embolization of
tumor-supplying vessels (196). Moreover, the median overall
survival was effectively extended to 6 months in small-cell lung
cancer patients with brain metastases receiving superselective
intracranial arterial infusion chemotherapy (teniposide, ACNU,
and carboplatin) (197) vs. 4–6 months of standard whole brain
radiotherapy (198, 199). Therefore, carefully weighing beneficial
outcomes vs. potential risks and adverse events is required for
different brain tumor types. Additional comparison to system
administration in further clinical trials is also warranted.

Advanced Imaging Technology
Advanced imaging technology is of great value for the diagnosis
and treatment of brain tumors (Table 4). Originally, imaging
technology was mainly used to detect the radioactivity of
radiopharmaceuticals or contrast agents in order to reflect
the distribution of drugs in tumor tissues. Later, imaging was
used to guide the intra-arterial drug perfusion and to predict
therapeutic effects. Dynamic PET imaging was first performed
to determine the position of the superselective catheter by intra-
arterial injection of 11C-labeled BCNU, and to predict clinical
response by comparing 11C radioactivity within the tumor
after SIACI vs. intravenous infusion (185). Similarly, continuous
PET scans were performed to quantify the pharmacokinetic
advantage of 13N-labeled cisplatin by calculating the time
course of 13N activity in tumor and normal brain tissue
(200). In addition, PET can distinguish between cerebral
necrosis following supraophthalmic intra-arterial chemotherapy
or radiotherapy (low metabolic turnover) and tumor recurrence
(high metabolic turnover) using 18F-fluorodeoxyglucose (18F-
FDG) (201). Glucose metabolism was also measured by PET
imaging to evaluate early treatment effects of intra-arterial
administration of ACNU into glioblastomas and astrocytomas
(202), as well as recombinant human tumor necrosis factor
(TNF)-alpha in malignant astrocytomas (203). Another non-
invasive method using radiopharmaceutical labeling to monitor
drug biodistribution in tumors for assessing the effectiveness
of intra-arterial chemotherapy is dynamic scintigraphic imaging

with 195mPt-labeled cisplatin (206). Moreover, SPECT using
99mTc-hexamethyl-propyleneamine oxime (HMPAO) allows one
to evaluate the cerebral distribution after either fast pulsatile or
slow continuous supraophthalmic carotid infusion (186). Using
99mTc-hexakis-2-methoxyisobutyl-isonitrile (MIBI), SPECT can
also assess changes in tumor MIBI uptake before and after
radiochemotherapy (204).

The main limitation of SPECT and PET is the relatively low
spatial resolution of these imaging modalities. CT is superior
in this respect, has widespread availability, and is easier to
apply. The permeability of blood vessels in brain tumors can be
assessed in CT images by measuring iopamidol distribution in
blood vessels and the extracellular fluid space (217). Angio-CT
provides more accurate information on the vascular territory of
the tumor than digital subtraction angiography (DSA), which
aids intra-arterial chemotherapy of metastatic brain tumors
(208). Superselective angio-CT was also shown to precisely define
enlarged medullary veins in patients suffering from astrocytomas
(207). Recently, direct-current (DC)-EEG was applied for real-
time, non-invasive monitoring of BBB opening during clinical
treatment of a primary CNS lymphoma by measuring low
frequency oscillations of 0.01–0.15Hz (16), but the accuracy of
the procedure needs to be verified.

With the widespread availability of MRI, the intra-arterial
administration of therapeutic drugs to brain tumors is further
improved. Due to its high resolution and sensitivity, MRI has
the ability to accurately assess the therapeutic response to
the tumors. Magnetic resonance spectroscopy (MRS) is used
to reveal intracellular pH changes after BCNU treatment for
anaplastic astrocytomas or glioblastomas with alkalization in
intra-arterial administration and acidification in intravenous
chemotherapy (209). The reduction of phosphocreatine and
phosphodiesters, indicating early metabolic changes after intra-
arterial treatment, can be visualized by MRS imaging and
precedes apparent structural changes (210). Recently, proton
MRS was successfully applied to detect a decreased total
cholesterol (tCho)/α-naphtalene acetic acid (NAA) metabolite
ratio. tCho is used as a marker for cell membrane breakdown
and proliferation, while NAA indicates neuronal density and
viability. The decreased tCho/NAA ratio was observed in
two regions of interest (enhancing component and non-
enhancing T2-hyperintense signal abnormality) after SIACI of
bevacizumab in the treatment of recurrent grade IV glioblastoma
(194). By measuring biochemical changes rather than detecting
anatomical abnormalities, MRS avoids the non-specific reduction
of MRI contrast enhancement by bevacizumab, while providing
potential biomarkers of treatment efficacy (194). However,
these preliminary studies lack a precise description of clinically
meaningful endpoints, which are urgently needed for the long-
term follow-up of larger patient populations to determine the
correlation of early metabolic changes with treatment outcomes.

MRI usually determines the changes in tumor volume
by measuring the size of the contrast-enhanced lesion.
However, given that both recurrent tumors and therapeutic
drugs may cause BBB destruction leading to heterogeneous
enhancement and T2/FLAIR hyperintensity, MRI has limitations
in distinguishing between tumor recurrence and long-lasting
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TABLE 4 | Imaging techniques for intra-arterial drug delivery.

No. Imaging modality Tumor types Intra-arterial administration Results(s) and effect(s) References

1 PET Malignant gliomas of grade III or IV 11C-BCNU (superselective) Half-lives for the second curve

components ↓, chemical and metabolic

decomposition ↑ of BCNU

(185)

Glioblastoma 13N-cisplatin Ratio of integrated tumor/brain count

ratios ↑

(200)

Glioblastoma multiforme, astrocytoma,

oligodendroglioma, diffuse CNS leukemia,

and metastases

BCNU, 18F-FDG Glucose metabolic values of the necrotic

areas ↓

(201)

Glioblastoma and astrocytoma ACNU, 18F-FDG Regional cerebral metabolic rate for

glucose ↓

(202)

Malignant astrocytoma Recombinant human TNF-alpha,

hemoglobin-bound C15O (for

blood volume), 18F-FDG (for

glucose metabolism)

Cerebral hemocirculation and glucose

metabolism in tumor ↓

(203)

2 SPECT Recurrent malignant gliomas ACNU or cisplatin and

etoposide, 99mTc-HMPAO

Homogeneous distribution with fast

pulsatile infusion, inhomogeneous

distribution with slow continuous infusion

(186)

Malignant astrocytoma, meningioma,

lymphoma, germ cell tumor, metastasis,

schwannoma, ependymoma

99mTc-MIBI MIBI-index immediately following therapy

correlated with treatment response 2

months after therapy

(204)

SPECT, MRI Cystic anaplastic astrocytoma,

glioblastoma multiforme

ACNU and cisplatin,
99mTc-HMPAO

Concentrations in the tumor ↑ (205)

3 dynamic scintigraphic

imaging

Recurrent pineal blastoma, progressive

oligodendroglioma, and recurrent

high-grade astrocytoma (grade III or IV)

195mPt-cisplatin Higher local concentration of free cisplatin

in tumors ↑

(206)

4 DC-EEG Primary CNS lymphoma Carboplatin Lateralized DC-EEG response from

negative to positive shift to monitor

blood–brain barrier disruption

(16)

5 angio-CT Astrocytoma ACNU, iopamidol Contrast enhancement of the tumor ↑, the

medullary veins of the tumors ↑

(207)

Brain metastases from hepatocellular

carcinomas

Cisplatin, iopamiron Tumor perfusion in the vascular territory ↑ (208)

6 phosphorus MRS Recurrent mixed

astrocytoma/oligodendroglioma

BCNU (superselective) Phosphocreatine and phosphodiesters ↓,

intracellular pH ↑

(209, 210)

MRI, 1H-MRS Recurrent glioblastoma Bevacizumab (superselective) Metabolic tCho/NAA ratio in the tumor ↓ (194)

2D thick-slice MR-DSA Meningiomas, gliomas, metastatic tumors,

neuromas, and hemangioblastomas

Gadolinium chelates Visualization of large cerebral arteries,

venous sinuses, and most tributaries ↑,

display of location, shape, and phase of

tumors ↑

(211)

MRI, PET Recurrent butterfly glioblastoma Bevacizumab (superselective) Direct visualization of the brain

parenchyma perfused for drug targeting

and brain accumulation

(212)

MRI Retinoblastoma Melphalan, topotecan and

carboplatin

To monitor tumor size and the risk factors

of abnormal enhancement of the

postlaminar optic nerve

(213)

MRI Brain metastases from MDA-MB-231

breast tumor in the mouse model

Docetaxel Mean tumor apparent diffusion coefficient

values ↑, tumor volume ↓

(214)

MRI C6 glioma in the rat model MSCs expressing ferritin heavy

chain and enhanced GFP

To track the tropism and fate of MSCs

after transplantation

(215)

MRI, electron spin

resonance spectroscopy

9L gliosarcoma in the rat model Magnetically-mediated retention

of iron oxide nanoparticles

Nanoparticle accumulation in the tumor ↑ (166)

MRI, ultrasonic

photoacoustic imaging

U87 glioma in the rat model MSCs (conjugated with GFP)

labeled with superparamagnetic

iron oxide nanoparticles coated

with gold

MSCs tracking after transplantation

possible, tumor size ↓

(216)

ACNU, nimustine; BCNU, carmustine; CNS, central nervous system; DC-EEG, direct-current electroencephalography; FDG, fluorodeoxyglucose; GFP, green fluorescent protein; HMPAO,

hexamethyl-propyleneamine oxime; MIBI, hexakis-2-methoxyisobutyl-isonitrile; MSCs, mesenchymal stem cells; NAA, α-naphtalene acetic acid; tCho, total cholesterol; TNF, tumor

necrosis factor.
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sequelae of the therapeutic intervention. To overcome this
deficiency, hemodynamic changes in tumors are considered an
important indicator to accurately predict disease progression.
Originally, MR DSA following bolus injection of gadolinium
chelates offers a high temporal resolution for showing large
cerebral arteries, venous sinuses, and tumor blood vessels. In
some doubtful cases, MR DSA was able to identify meningioma
and acoustic neuroma by first-pass stain. The tumors were later
confirmed by pathological examination (211). Next, dynamic
susceptibility contrast MR imaging (DSC-MRI) became a more
common MRI perfusion technique. It can reveal cerebral blood
volume, cerebral blood flow, and mean transit time for assessing
brain tumors by using gadolinium-based tracer kinetic and
dilution models (218). MRI with gadolinium was recently used
to provide a better visualization of ambiguous tumor feeding
arteries during microcatheter injection of bevacizumab in
treating a recurrent butterfly glioblastoma, underlining the role
of MRI in real-time guidance of neurointervention (212).

However, use of gadolinium-based agents is associated with
a potential risk for brain deposition and nephrogenic systemic
fibrosis (219). Chemical exchange saturation transfer (CEST),
a new contrasting strategy, can apply a saturation pulse to the
resonance frequency of the exchange protons on the compound
to sensitively detect perfusion area and BBB opening. Salicylic
acid analogs (SAA) are the natural contrast agents used for
CEST MRI and may offer increased safety and operability than
gadolinium-based agents (55). In recent years, 3D pseudo-
continuous arterial spin labeling (3D-pcASL), a non-invasive
MR perfusion measurement technique not requiring contrast
injection, has been found to provide higher image quality
with less susceptibility artifacts than DSC-MRI. Cerebral blood
volume and flow measured by DSC-MRI or 3D-pcASL are
different between patients with tumor recurrence and those
who experience long-lasting treatment effects (220). However,
image distortion still occurs in inhomogeneous regions. To
address this, the combination of 3D-pcASL and Turbo Spin
Echo using Cartesian acquisition with spiral profile reordering
was used to provide better contrast between tumor and normal
tissues. Another benefit is high reproducibility between scanning
sessions, suggesting a potential use for therapeutic response
assessment (221).

MRI monitoring and magnetic targeting also play an
important role for intra-arterial drug delivery systems. A
prominent example is highly selective deposition of magnetic
microparticles in brain tumors (Table 3). In the late 1980s,
large multivesicular liposomes containing magnetic resonance
contrast agents were found to spontaneously attach to the
vascular bed of vessels in the frontal and occipital lobe
when injected intra-arterially into experimental animals (222).
Currently, intravenously infused iron oxide nanoparticles can
be selectively deposited in gliosarcomas when using a low-
strength magnetic field (0.4 T) (223). The short plasma half-lives
of magnetic nanoparticles make them more suitable for intra-
arterial infusion (224). However, administering large numbers
of magnetic particles into cerebral arteries is associated with
a considerable risk of embolization (225). The precision of
the approach can be increased by modifying magnetic field

topography, thereby alleviating the above-mentioned risk of
embolism (166). Further, the cationized model protein β-
galactosidase (representing targeted protein drugs such as tumor
suppressor proteins and anti-neoplastic enzymes) loaded onto
heparin-coated iron-oxide nanoparticles could be precisely
deposited in glioma tissue by intra-arterial infusion under MRI
surveillance. This also allowed for optimization of magnetic field
topography andmaintained physiological arterial fluid dynamics,
thus representing an effective approach for precise molecular
treatment of brain tumors (167). In terms of cell transplantation,
MRI enables real-time tracking of bone marrow-derived human
mesenchymal stem cells (MSCs) labeled with superparamagnetic
nanoparticles (216) or human MSCs expressing ferritin heavy
chains (215) in experimental animals (Table 4). In addition,
MRI may help to avoid adverse ischemic events in the clinical
treatment of glioblastoma multiforme by intra-arterial infusion
of tumor-infiltrating lymphocytes. This notion is supported by
preclinical data showing that MRI is well-suited to evaluate
ischemic events during intra-arterial infusion of activated T cells
into the native rabbit brain (226).

Other Approaches
There are a number of other approaches to improve intra-
arterial administration. The first approach is the combination of
compounds to enhance the efficacy of chemotherapeutic drugs.
For instance, it was shown that the combination of oral 2% D,
L-alpha-difluoromethylornithine and intra-arterial injection of
BCNU doubled the median survival time of T9 gliosarcoma-
bearing rats by reducing polyamine metabolism required for
tumor growth and enhancing anti-tumor cytotoxicity of BCNU
(227). Spirohydantoin mustard (spiromustine) promotes BBB
penetration and cisplatin deposition in glioblastoma multiforme
by combining the anti-tumor reactive moiety of cisplatin
with the hydantoin part of spiromustine (228). However, the
neurotoxicity of these compounds hampers the interest in
further research.

The second approach is the combination of multiple
therapeutic regimens. For example, intra-carotid administration
of cisplatin combined with intravenous doxorubicin injection
is an alternative treatment for patients with inoperable
meningiomas (229). Short-term intra-arterial and intravenous
chemotherapy prior to radiation increases survival of adult
patients with astrocytomas (230). Hyperthermia enhances the
cytotoxic effects and deposition of anti-cancer drugs to the
tumors. Both preclinical and clinical studies showed that ACNU
(231) or adriamycin (232, 233) delivery in combination with
local or interstitial brain hyperthermia was associated with
higher survival rates. Moreover, intra-arterial administration of
carboplatin and melphalan combined with intrathecal topotecan
chemotherapy showed a good alleviation effect on a patient
suffering from extraocular retinoblastomawith CNS involvement
(234). Of note, such combined therapy is often based on
individualized treatments. This requires consideration of various
factors such as radio- or chemotherapy sensitivity of the tumors,
invasion area, and metastatic pathways.

The third approach is the use of new therapeutic agents.
Injection of bromodeoxyuridine (anaerobic radiosensitizer)
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into the external carotid artery through a catheter has
been found to increase susceptibility of glioma cells to
radiotherapy and increases survival time of treated patients (235).
Moreover, intra-carotid injection of recombinant human TNF
and lymphotoxin produces remarkable anti-tumor effects in C6
and T9 gliomas-bearing animal models (236). Clinically, intra-
arterial administration of TNF-alpha improves the neurological
symptoms in patients with glioblastomamultiforme ormalignant
astrocytomas by inducing coagulation necrosis in central tumor
tissue and its feeding arteries (237). With the same strategy,
advanced cytotoxins consisting of IL-13, IL-4 or transforming
growth factor-alpha have been developed to target glioblastomas
expressing these receptors (144, 238, 239). In general, data
regarding the efficacy of these cytotoxins is less encouraging
when applied in solid tumors. This may be due to the difficulties
of large molecules to penetrate the tumor mass, and lower or
more variable receptor expression in solid neoplasms.

The fourth approach is gene therapy. Intra-arterial infusion
of a p53-containing adenoviral vector can delay the growth of
Gli36 glioblastoma tissue carrying a missense-mutated p53 gene
(240). Phosphorothioate oligodeoxynucleosides injected intra-
arterially were precisely delivered to tumor tissue after BBB

opening with bradykinin (241). Recently, intra-arterial infusion
of a plasmid encoding an anti-angiogenic endostatin was shown
to prolong survival time in the rat 9L gliosarcoma model by
decreasing tumor vascular density, perfusion, and permeability
(242). Moreover, G47Delta viruses (herpes simplex virus vector
with oncolytic replication-competency) carrying deletions of the
gamma34.5 and alpha47 genes (243) or the CLN2 gene (244)
were injected into the carotid artery after mannitol-mediated
BBB opening and had a positive impact on survival in a nude
mouse model of cerebral breast cancer metastasis. A recent
Phase II clinical trial showed that intra-arterial administration
of ganciclovir combined with replication-deficient adenovirus
mutant thymidine kinase is effective in improving 6-month
progression-free survival, overall progression-free survival, and
overall survival in patients with recurrent high-grade gliomas
(anaplastic gliomas and glioblastomas) (245). Compared with
intratumoral or intracerebral injections in current clinical trials
(246, 247), intra-arterial gene therapy expands the treatment area
and maximizes the therapeutic effect, but it also puts forward
higher requirements for transfection efficiency.

The fifth approach is cell therapy that may benefit from intra-
arterial administration. Intra-carotid rather than intravenous

FIGURE 2 | Schematic diagram of strategies for improving intra-arterial administration.
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administration of a human cytotoxic T-cell line (TALL-104) in
the 9L glioblastoma model and a metastatic xenograft model of
epidermoid carcinoma enhanced specific anti-tumor effects and
significantly prolonged survival time (248). Injection of a murine
colon cancer cell line (CT-26) overexpressing interleukin-4 (IL-
4) or hemagglutinin antigen can serve as a pre-immunization
strategy to prevent metastases from cecum, liver, and lung. Intra-
carotid but not systemic administration of CT-26 expressing IL-
4 or hemagglutinin antigen is effective to prevent the growth
of blood-borne brain metastases (249). In addition, cells may
be good “vectors” to be used in intravascular gene therapy.
HumanMSCs carryingDelta24-RGD oncolytic adenoviruses and
labeled with green fluorescent protein are selectively planted into
glioma xenografts and exert a strong anti-tumor effect (250).
However, it is still too early to translate these approaches into
clinical applications.

CONCLUSIONS

This systematic review comprehensively describes existing
strategies for promoting the accuracy of intra-arterial drug
delivery in experimental and clinical brain tumor therapy
(Figure 2). These strategies show a promising potential to
innovate and optimize many aspects of brain tumor treatments,
including the accurate prediction of targeted tumor tissue,
the effectiveness of drug transfer over the BBB/BTB, and the
precise deposition of the therapeutic agent(s) in the tumor.
Moreover, methodological advances foster the development of
multidisciplinary treatment strategies that can result in better
treatment effects and might represent a promising way forward
in the treatment of brain tumors. However, translating new
and improved methods from animal experiments to clinical
practice still has to facemany challenges. First, genetic, molecular,
immune, and cellular differences between humans and other
species prevent animal models from replicating the whole
spectrum of important aspects of human pathophysiology under
disease-specific conditions. Second, experimental animals exhibit
different tolerances to drug toxicity, which makes it difficult
to accurately assess the safety and effectiveness of therapeutic
or adjuvant drugs before applying them to patients. Third, the
number of patients included in early-stage clinical trials is usually

insufficient to reveal all but the strongest effects, while patient
age, sex, tumor type, course of disease, and adjunct treatment
strategies are difficult to standardize or even harmonize. This
limits the predictive value of obtained results. Based on
this, new disease models have attracted much interest. The
“tumor graft models” or “patient-derived xenograft” models are
valuable humanized models to maintain the tumor heterogeneity
and genetic characteristics of the patients by implanting
tumor tissues removed from surgery into immunodeficient
mice. Another breakthrough is the development of human
brain organoids, which can be produced by patient-derived
tumor cells or tissues in a 3D in-vitro culture system. These
organoids have greater feasibility in large-scale screening of
therapeutic agents and can exhibit their aggressiveness and
proliferative ability and establish vascular system in host brains.
In addition, some large animals exhibit an anatomical structure
of the brain and its blood vessels being similar to that of
humans, which may be a good option to optimize intra-
arterial procedures. These models can also make excellent use of
clinical imaging technologies (251). Taken together, this forms
an excellent basis to further refine intra-arterial approaches for
the treatment of brain tumors to ultimately improve clinical
treatment regimens.
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