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Tumors are complex, dynamic, and adaptive biological systems characterized by high

heterogeneity at genetic, epigenetic, phenotypic, as well as tissue microenvironmental

level. In this work, utilizing cellular automata methods, we focus on intrinsic heterogeneity

with respect to cell cycle duration and explore whether and to what extent this

heterogeneity affects cancer cell growth dynamics when cytotoxic treatment is applied.

We assume that treatment acts on cancer cells specifically during mitosis and compare

it with a (cell cycle-non-specific) cytotoxic treatment that acts randomly regardless of

the cell cycle phase. We simulate the spatiotemporal evolution of tumor cells with

different initial spatial configurations and different cell length probability distributions.

We observed that in heterogeneous populations, strong selection forces act on cancer

cells favoring the faster cells, when the death rates are lower than the proliferation

rates. However, at higher mitotic death rates, selection of the slower proliferative cells

is favored, leading to slower post-treatment regrowth rates, as compared to untreated

growth. Of note, random cell death progressively eliminates the slower proliferative

cells, consistently, favoring highly proliferative phenotypes. Interestingly, compared to the

monoclonal populations that exhibit complete response at high random death rates,

emergent resistance arises naturally in heterogeneous populations during treatment.

As divergent selection forces may act on a heterogeneous cancer cell population, we

argue that treatment plan selection can considerably alter the post-treatment tumor

dynamics, cell survival, and emergence of resistance, proving its significant biological

and therapeutic impact.

Keywords: cell cycle variation, intrinsic heterogeneity, cytotoxicity, phenotypical selection, cellular automata,

mathematical modeling, resistance, recurrence dynamics

INTRODUCTION

One of the major reasons for therapy failure in several cancer types has been attributed to the
extensive heterogeneity observed among cells of a single tumor (intra-tumoral heterogeneity)
and between different patients (inter-tumoral heterogeneity). Both intrinsic (i.e., genetic) and
extrinsic (i.e., microenvironmental) factors may contribute to the heterogeneity observed, which
significantly affects tumor progression and therapeutic effectiveness. The observed heterogeneity
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can be spatial, where genetically diverse subpopulations
dominate spatially distinct tumor regions, or temporal, where the
genetic makeup evolves over time in response to different types
of selective pressures, including therapeutic intervention (1–8).

Cancer cells are characterized by dysregulated mitosis that
boosts proliferation ability as compared to normal cells, leading
to aggressive tumor progression (9). Several types of cytotoxic
drug compounds are used in cancer therapy. Most of these
compounds target protein components expressed during mitosis
with the aim to block cell division and subsequently to induce
cell death. The cytotoxic compounds that act during a specific
phase of the cell cycle are known as cell cycle-specific drugs
(such as paclitaxel and methotrexate), whereas those acting
regardless of the cell cycle phase, targeting at any point in the
cell cycle including the resting phase, are called cell cycle-non-
specific agents (such as alkylating drugs and platinum analogs
like cisplatin) (10). Available therapies are successful in some
cancer types; yet, the extensive heterogeneity observed in many
cancers turns therapeutic agents ineffective, promoting tumor
recurrence and resistance.

Although many proposed mathematical models account for
the natural variability in the proliferative capacity of the cell
population by introducing heterogeneity in the cell cycle duration
(11–14), the direct effect this heterogeneity plays on tumor
evolution, when cytotoxic treatment is applied, has not been
demonstrated. Differences between mitotic and random death
rates reflecting different drug pharmacodynamics have not been
demonstrated either. In particular, Powathil et al. (13) developed
a hybrid discrete-continuous multi-scale mathematical model in
order to study how spatial heterogeneity in oxygen that develops
as tumors grow affects the efficacy of cell cycle phase-specific
cytotoxic drugs. Greene et al. (14) and Lorz et al. (12) proposed
an age-structured compartmental model that accounts for cell
intrinsic heterogeneity in proliferation and apoptosis. In their
work, they investigated how antimitotic drugs that primarily
extend the cell cycle length and then trigger apoptosis affect
cancer growth dynamics. Gallaher et al. (11) proposed a lattice-
free agent-based model in order to explore how a heterogeneous
distribution of phenotypes evolves over time. In their work,
they accounted for both cell proliferation and migration, while
they assumed a resistance cost to proliferating cells, such that
phenotypes with faster proliferating rates are highly sensitive
to the drug, whereas phenotypes with slower proliferating rates
are more resistant. They concluded that different tumors require
different treatments and reported that a continuous treatment
strategy is better for homogeneous tumors, whereas adaptive
therapy performs better in heterogeneous cancer populations.

In this work, we aim to investigate whether and to what
extent intrinsic heterogeneity, with respect to cell cycle duration,
affects cancer cell growth dynamics when cytotoxic treatment
is applied. A cellular automaton model is used, assuming
that each cancer cell lies on a two-dimensional (2D) regular
lattice and is distinguished by its phenotypic properties. We
assume that the tumor population is heterogeneous consisting
of cells with different proliferation rates. Our findings are
further compared against a homogeneous population to highlight
the different behavior. Our aim is to build a simple, but

biologically meaningful, model that allows us to focus on this
form of heterogeneity and explore its potential impact on tumor
progression before, during, and after treatment. Similarly to
Gallaher et al. (11), the cells are initially seeded with two
different configurations—one randomly scattered that mimics
2D in vitro experiments and another highly compact that mimics
a central plane of a 3D tumor. We also assume that during
treatment, cancer cells may die with a given probability that
can be associated with the dose of an anticancer drug. This
probability is either applied at the exact time a proliferating cell
undergoes mitosis or randomly applied any time during the cell
life. Although many experimental works (11, 15) report that
drug-resistant cancer cells are, in general, less proliferative than
drug-sensitive cells and that probably such a different sensitivity
exists a priori in cells (before their exposure to treatment), in
our work, we assume that all cells are equally sensitive/resistant
to treatment. The rationale behind this assumption is to explore
whether such a sensitivity/resistance may naturally emerge in the
population. We investigate the spatiotemporal evolution of cells,
as well as the evolution of the distribution of their proliferation
times, as we vary the probability of a cell to die, imposing
either mitotic or random death. We study these evolutions under
different therapeutic schemes. Divergent selection forces acting
on the heterogeneous cancer cell population and the emergence
of resistant phenotypes are interestingly revealed.

MATERIALS AND METHODS

Cellular Automaton Model
We assume that tumor cells lie on a 2D regular lattice. Each
lattice site (20 × 20µm) can accommodate only one tumor cell.
A similar mathematical description has been presented (16–18).
The cells are seeded with two different initial configurations—
one circular but randomly scattered of low cell density (1%)
that mimics 2D in vitro experiments and another circular but
highly compact (80%) that mimics a central 2D plane of a dense
3D tumor. In the first configuration, an initial population of
5,000 cells is sparsely scattered throughout a circular area of
8mm radius. In the second configuration, we initially seeded
1,000 cells, tightly placed in a 0.4mm radius area. We assume
that the tumor population is heterogeneous consisting of cells
with different proliferation rates. In this work, this property is
intrinsic, inherited, and microenvironmental-independent and
thus does not change throughout our experiments. In order to
study whether our conclusions depend on differences in the
initial distribution of cells, we also assume two different initial
distributions for the doubling times; normal and uniform with
the same mean τ and variance τ /5. We assume τ equals to
24 h. We started with 500 phenotypes randomly drawn from
these distributions. Thus, 500 phenotypes are randomly drawn
from either the normal distribution N[τ ,

√
(τ /5)] or the uniform

distribution U(15.7 h, 32.3 h). A homogeneous population in
which all cells have the same doubling time equal to τ is also
explored for comparison.

For simplicity, cell motility is not taken into account. Tumor
cells can be found in one of the following states—actively
dividing, quiescent due to space competition, or dead as the result
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of treatment. We assume that when a cell dies, lysis is rapid and
an empty space is instantly created in its place. At the beginning
of the simulations, each tumor cell is randomly assigned an
age, which corresponds to the time spent in the cell cycle and
increases at each update of the model until the cell completes
mitosis and is divided. Division is possible when available free
space is found in the 2-Moore neighborhood; otherwise, the cell
becomes quiescent. The divided cells reset their age. To avoid
possible synchronization artifacts during division, particularly in
the homogeneous populations, a small zero mean noise term is
added to the age increments.

Treatment
During treatment, cancer cells may die with a given probability
that in general can be associated with the dose of an anticancer
drug. In one scenario, this probability is applied at the exact
time a proliferating cell undergoes mitosis, noted as mitotic
death probability, pm. In the alternative scenario, the probability
is applied randomly in any time during the cell cycle, even if
the cell is quiescent, noted as random death probability, pr . To
achieve the same death rate, λ for mitotic and random death
probabilities, we describe random death probability assuming a
Poisson probability distribution, where the death rate λ reflects
the probability (dpr) per unit time (dt) that a cell will die. Thus,
dpr = λdt, where λ = −µ pm and µ = ln 2/τ .

We explore different therapeutic schemes in order to
understand how heterogeneity and the cancer population evolve
during treatment, as well as after treatment. In particular, we
investigate the impact of (i) long, continuous treatment that
lasts throughout the whole experiment; (ii) switch-on/switch-off
treatment, where treatment is applied for a relatively short period
of time and then is ceased for the rest of the experiment; and (iii)
periodic switch-on/switch-off treatment.

RESULTS

We investigate the spatiotemporal evolution of cells and the
evolution of the distribution of their proliferation times, as
we vary the probability of a cell to die. Differences between
homogeneous and heterogeneous populations are explored,
as well as differences between mitotic and random death
probabilities. Each experiment has been repeated five times in
both low and highly dense initial configurations. Firstly, we
present the results where an initially low cell density is assumed
in both untreated and constantly treated settings. In these
experiments, we have chosen to present the mean and variance
of doubling times from a single experiment in order to highlight
the intra-tumoral heterogeneity. The mean and variance across
the multiple experiments (inter-experiment consistency) can be
found in the Figures S1, S2, S6. Then, we present the results
of the highly dense initial configuration. In these examples, we
present the mean and variance across the experiments. Apart
from constant treatment, switch-on/switch-off treatment, as well
as periodic switch-on/switch-off treatment, is explored. The
simulations run for 1,200 and 2,400 h, respectively, for the sparse
and dense configurations, unless a cell reaches the edge of the
computational domain L within proximity of L/10 cells.

Space Competition and Selection in
Untreated Population
Firstly, the evolution of an untreated population is explored in
an initial population of low cell density. As expected, phenotypes
with proliferative advantage grow rapidly. We observe that as
time progresses, the faster phenotypes dominate. In particular,
we observe that the distributions of doubling times are becoming
right-skewed for both the initially normal (Figure 1A) and
uniform distributions (Figure 1B). Consequently, the mean
doubling time is reduced as the system evolves (Figure 2B). The
consequence of this selection is also reflected in the growth curves
where the heterogeneous populations show slighter increases
relative to the homogeneous one (Figure 2A). Note that although
both distributions have initially the same variance, the range
of their values differs. We also observe that the plateau the
mean proliferation time reaches after some time is the result of
increased quiescence in the population. The onset of quiescence
starts at ∼t = 100 h, and after that, the population becomes
progressively compact with increased number of quiescent cells.
A snapshot of the cell distribution at t= 150 h is also illustrated in
Figure 2A. The proliferating cells are colored blue. The initially
sparse cell distribution with a lot of empty space in between
(depicted with white color) becomes significantly compact with
an increased number of quiescent cells (depicted with green
color). Thus, space competition hinders phenotypic selection,
a phenomenon that becomes particularly evident in untreated
populations where space competition becomes the only limiting
factor of growth.

Selection Forces Depend on Mitotic Death
Probability
Next, we investigate the role of applyingmitotic death probability
in an initial population configuration of low cell density.
We assume constant treatment, applied throughout the whole
experiment. As shown in Figures 3A,B, similarly with the
untreated population, we observe that the faster phenotypes
dominate in the heterogeneous populations with low mitotic
death probabilities (pm < 0.5). Figures 3A,B show the growth
curves for the homogeneous (depicted with blue color), the
initially normal (depicted with red color), and the initially
uniform distribution (depicted with yellow color) of phenotypes.
A snapshot showing the cell distribution at t = 400 h for the
initially normal distribution of phenotypes is also illustrated
in Figure 3A. This is approximately the time where the onset
of quiescence starts, which is 4-fold longer compared to the
untreated population. At this time, the mean proliferation
time reaches a plateau (Figure 3B). Thus, compared to the
untreated populations, the mitotic death delays the selection
process, although both cases eventually reach approximately the
same plateau value. The spatiotemporal evolution of the tumor
population indicatively for the initially normal distribution of
phenotypes can be seen in the Video SV1 for mitotic death
probability equal to 0.4. When the inner region of the tumor
population becomes quiescent, the selection of phenotypes in
that region freezes, trapping the evolved phenotypes. Selection is
then driven solely from the outer region.
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FIGURE 1 | The distributions of doubling times within a population at the beginning and at the end of the experiments for untreated heterogeneous cells in low initial

cell density. The simulations illustrated are from a single experiment. (A) Initially normal distribution (depicted with blue color) and how it evolves (depicted with

orange/salmon color). (B) Initially uniform distribution (depicted with blue color) and how it evolves (depicted with orange/salmon color). As time progresses, both

distributions have evidently become right-skewed.

FIGURE 2 | (A) Growth curves and (B) the evolution of the mean doubling time (mean and standard deviation values) of an untreated cancer cell population in low

initial cell density for the homogeneous (blue color), the initially normal (red color), and the uniform (yellow) distributions. The spatial distribution of cells is also shown at

t = 150 h for the initially normal distribution of phenotypes. In this snapshot, proliferating cells are illustrated with blue color and quiescent cells are green. The plateau

that the mean proliferation time reaches after some time is the result of increased quiescence in the population that hinders the selection process. The simulations

presented are from a single experiment.

As the mitotic death probability increases, the phenotypic
selection process progressively delays. When the mitotic death
probability equals to the growth probability (pm = 0.5), the
growth curve of the heterogeneous cell population, as well as
the mean doubling time, remains practically constant over time

(Figures 3C,D), indicating that there is no selection force to favor
phenotypes with either slower or faster proliferation rates in this
case. On the other hand, we interestingly observe that for high
mitotic death probabilities (pm > 0.5), in which the death rate
is larger than the proliferation rate, the mean doubling time
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FIGURE 3 | (A,C,E) Growth curves and (B,D,F) the evolution of the mean doubling time (mean and standard deviation values) of a treated cancer cell population with

(A,B) low mitotic death probability (pm = 0.4), (C,D) mitotic death probability equal to 0.5, and (E,F) high mitotic death rate (pm = 0.8). The simulations illustrated are

from a single experiment. Low initial cell density is assumed for the population. The evolution of the homogeneous (blue color), the initially normal (red color), and the

uniform (yellow) distributions is shown for each case. The spatial distribution of cells at t = 400 h is also illustrated in panel (A) for the initially normal distribution, when

pm = 0.4. In the embedded snapshot, proliferating cells are shown in blue, quiescent are green, and necrotic cells are red. Necrotic cells are uniformly distributed

within the population, yet they cannot be found within the quiescent islands. Compared to the untreated population, the mitotic death delays the selection process. As

the death rate equals the proliferation rate (C,D), the population remains practically constant over time (C). Furthermore, it is evident that there is no selection force to

favor phenotypes with either slower or faster proliferation rates (D). At high death rates (E,F), the growth curve (E) is dominated by the increased death rate and

declines over time similarly for all the distributions; yet, slower phenotypes with increased doubling time (F) are now progressively selected.
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increases over time (Figures 3E,F), indicating that phenotypes
with slower proliferation rates are now selected. The growth
curve is dominated by the increased death rate and declines
over time similarly for all the distributions (Figure 3E). The
distributions of doubling times at the end of the simulations are
illustrated in the Figure S3 for all cases. Overall, we conclude that
depending on the mitotic death probability, different selection
forces act on phenotypes, which can either favor faster or
slower phenotypes.

Random Death Probability During
Constant Treatment Always Favors Faster
Proliferating Cells and Allows the
Emergence of Resistance
We now investigate the role of applying random death
probability in an initial population configuration of low cell
density. Figure 4 shows the growth curves (Figures 4A,C,E)
and the evolution of the mean doubling time (Figures 4B,D,F)
for the homogeneous and the heterogeneous population when
the random death probability is relatively low (pr = 0.4;
Figures 4A,B), middle (pr = 0.6; Figures 4C,D), and high (pr
= 0.8; Figures 4E,F). Contrary to mitotic death probability,
we observe that faster phenotypes are systematically selected at
either low or high random death probabilities. The rationale
behind these observations is that when random death probability
is applied, all cells in a population experience a fixed death
rate that corresponds to this probability, regardless of their
proliferation rate. This means that slower proliferating cells
will be affected the most by this probability. On the contrary,
in the mitotic death probability, the death rate adapts to
proliferation rate. Thus, while growth and mitotic death rates
drive selection in opposite directions, random death rates select
phenotypes in the same direction with growth. Furthermore, as
random death can also affect quiescent cells, space competition
is reduced. This, together with the consistent filtering out
of the slower phenotypes, accelerates the selection process of
the faster phenotypes, resulting in dramatic differences in the
growth dynamics between the homogeneous and heterogeneous
populations. As can be seen in Figure 4, the selected phenotypes
drive the evolution of the population showing a differential
response period to treatment and population recurrence. For
example, when pr = 0.6 (Figures 4C,D), we can observe
substantial differences in the growth curves between the
homogeneous and the heterogeneous populations, as well as
between normal and uniform distributions. Because of the wider
range of values that the phenotypes can possess in the normal
relative to uniform distribution, very fast phenotypes are selected,
leading the cancer population to rapid recurrence. Note that the
homogeneous population responds to treatment throughout the
whole experiment. The increased sensitivity of the homogeneous
populations becomes evident without any a priori assumption
related to treatment response. In addition, we also interestingly
observed that at high random death rates (Figures 4E,F), the
initially normal distributed phenotypes possess the heterogeneity
necessary, so that resistance emerges naturally after a long period
of response, where only very few cells have managed to survive.

From these few highly proliferative cells, the population is
capable of regrowing. In order to demonstrate the consistency
of this observation, the embedded figure in Figure 4E shows
the growth curves (mean and standard deviation values) for
each distribution across five experiments. As can be seen,
recurrence is highly probable in the heterogeneous populations
when initialized with normal distribution. Note that other
mechanisms, like the Allee effect (19, 20), might play a critical
role at these extremely low densities of recurrence, probably
prohibiting the growth of these populations in real settings. The
spatiotemporal evolution of the tumor population indicatively
for the initially normal distribution of phenotypes can be seen
in the Video SV2 for random death probability equal to 0.4.
Contrary to mitotic death probability, slower proliferating cells
are not permanently trapped to quiescent regions. As random
death does not affect only the proliferating cells, there is constant
selection of phenotypes, even when the inner region of the tumor
population becomes quiescent. Furthermore, the distributions of
doubling times at the end of the simulations are illustrated in the
Figure S7 for all cases.

Spatial Selection in Dense Configurations
Under Constant Treatment
We now consider the effect of random and mitotic death
probabilities in highly dense initial configurations that resemble
a dense tumor mass. Figure 5 shows the evolution of the
mean growth curves (Figure 5A) and the evolution of the
mean doubling time (Figure 5B) across five experiments for
low mitotic and random death probabilities. Even though the
space competition is now significantly higher relative to the
low dense configuration, and the population expansion comes
solely from the tumor rim, similar behaviors are observed.
In particular, we observe the selection of faster phenotypes
at low mitotic death rates and untreated conditions, as
well as the selection of slower phenotypes at higher mitotic
death rates (Figure 5, Figures S4, S5). When random death is
applied, selection of faster phenotypes is consistently observed
(Figure 5, Figure S8). Similarly to the low dense configurations,
considerable differences are observed in the growth dynamics
between random and mitotic death probabilities, as well as
between homogeneous and heterogeneous populations, which
are explained by the variation in the selection forces that act on
the population.

However, we should note that in dense configuration, the
results of the divergent selection forces between random and
mitotic death probabilities have an additionally dramatic effect
in the expansion dynamics of the tumor. Figure 5A shows the
spatial distribution of a cancer cell population at t = 400 h,
when (a) mitotic and (b) random death probability is applied
(pm = pr = 0.4). The proliferating cells are shown with blue
color, the quiescent cells are green, and the necrotic cells are
colored red. It is evident how the consistent selection of fast
proliferating phenotypes results in tumors with increased sizes.
Furthermore, we can observe that when mitotic death is applied,
the quiescent region is more homogeneously distributed in the
inner region of the tumor mass, whereas the necrotic cells
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FIGURE 4 | (A,C,E) Growth curves and (B,D,F) the evolution of mean doubling time (mean and standard deviation values) of a treated cancer population in low initial

cell density for (A,B) low (pr = 0.4), (C,D) middle (pr = 0.6), and (E,F) high (pr = 0.8) random death rates. The simulations illustrated are from a single experiment. The

spatial distribution of cells at t = 200 h is also illustrated in panel (A) for the initially normal distribution, when pr = 0.4. In the embedded snapshot, proliferating cells

are shown in blue, quiescent are green, and necrotic cells are red. Necrotic cells are uniformly distributed within the population and can be found even within the

quiescent islands. Selection consistently favors highly proliferating cells with considerable impact on growth response dynamics. Differential response period to

treatment and population recurrence is particularly evident when middle and high random death rates are applied. The embedded figure in panel (E) shows the mean

and standard deviation of the growth curve across five experiments. After a long response period, recurrence is highly probable in the heterogeneous populations

when initialized with normal distribution.
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FIGURE 5 | (A) Mean growth curves and (B) the evolution of the mean doubling time across five experiments of a treated cancer cell population in high initial cell

density when either mitotic (pm = 0.4) or random (pr = 0.4) death probability is applied. The standard deviation values across the five experiments are also shown. The

cancer cell population grows much faster when random death is applied as compared to the mitotic death because the underlying selection forces act in the former

case on the same direction. The spatial distribution of cells at t = 400 h is illustrated in panel (A) for the initially normal distribution of phenotypes. In this snapshot,

proliferating cells are illustrated with blue color, quiescent cells are green, and necrotic cells are depicted with red color. Dramatic difference in the expansion dynamics

of the tumor between mitotic and random death is apparent. When random death is applied, necrotic cells are homogeneously dispersed within the tumor. However,

when mitotic death is applied, the necrotic cells appear only within the proliferating rim where mitosis occurs.

appear within the proliferating rim where mitosis occurs. On
the other hand, when random death is applied, necrotic cells
are homogeneously dispersed within the tumor, as random
death acts equally in both proliferating and quiescent cells.
A significant number of proliferating cells can also be found
scattered within the tumor mass, taking over the place of the
necrotic cells.

Interestingly, the selective process also affects the spatial

distribution of phenotypes, as well as the shape of the

evolved tumor, which deviates from the rounded shape of
the homogeneous tumors. As can be seen in Figure 6, slower
proliferating cells are trapped to inner regions, while highly

proliferative phenotypes take over the expanding front, similarly
to what has been observed before (11, 21). These highly
proliferating cells also drive the growth dynamics of the
tumor. The effect is even more pronounced in heterogeneous
populations initialized with normal distribution, where the
different range of possible proliferation times allows extremely
fast phenotypes to eventually dominate and change the
shape and expansion rate of the tumor, even if initially
rare in the population. In support of other works, multiple
sampling from spatially distinct tumor regions must thus
be preferred, contrary to the most common single tissue
biopsy, especially for highly heterogeneous tumors (6, 21).
The spatiotemporal evolution of the tumor population for the
initially normal distribution of phenotypes can be seen in the
Videos SV3, SV4 for mitotic and random death probability equal
to 0.4.

Divergent Selection Forces Determine
Post-treatment Dynamics:
Switch-On/Switch-Off Treatment in Dense
Configuration
To further highlight the impact the previous observations have
upon recurrence, we now try a different therapeutic scheme
where we apply treatment only the first 5 days and then we leave
the population untreated. An initially highly dense configuration
is assumed. Although the homogeneous populations have very
similar dynamics before and after treatment, with no differences
between random and mitotic death rates (Figures 7, 8), the
heterogeneous populations evolve remarkably different. Note
that the slight discrepancy in the recurrence growth curve
between mitotic and random death of the homogeneous
population at high death rates (Figure 7C) is due to the fact
that the population regrowth initiates from different starting
points with respect to population size, as illustrated in the
snapshots presented in Figure 7C. Curve fitting of the growth
dynamics shows that after that reinitialization period, where
the foci of surviving cells are reunited to form a new tumor,
the growth dynamics of the homogeneous tumors coincide
(Figures S9, S10).

In general, we observe that for low mitotic death rate
(Figures 7A,B), the post-treatment dynamics are faster in
heterogeneous populations relative to homogeneous ones
(Figure 7A), as faster phenotypes consistently dominate during
and after treatment. We can also clearly observe that during
treatment with mitotic death, selection is slower compared
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FIGURE 6 | Snapshots of heterogeneous dense tumors at t = 600 h showing the spatial distribution of phenotypes for mitotic death probability equal to 0.4. (A)

Example of an initially normal and (B) uniform distribution of phenotypes is shown. The color bar shows the corresponding doubling time (in h) of the phenotypes.

Bluish phenotypes are more proliferative, whereas yellowish phenotypes have longer doubling times. Slower proliferating cells are trapped to inner regions, while highly

proliferative phenotypes take over the expanding front.

to after treatment dynamics, whereas for random death
probabilities, the selection dynamics during and after treatment
remain similar (Figure 7B).

At higher death rates (Figures 7C,D), we observe that when
mitotic death rates are applied, the recurrence dynamics between
the heterogeneous and the homogeneous population are very
similar. This is because of the divergent selection forces that
act on the tumor population during and after treatment. On
the other hand, regrowth is faster when random death rates are
applied compared to mitotic rates. Interestingly, however, when
we compare the growth dynamics between the treated and the
untreated population (control), we observe that the selection of
slower phenotypes during treatment at high mitotic death rates
results in slower recurrent dynamics (Figure 8)—an observation
that has been seen in real tumors after antimitotic treatment (22).
Note that this is not true for random death rates that always
favor the highly proliferative phenotypes. Recurrence dynamics
are very similar relative to untreated growth dynamics when high
random probability is applied (Figure 8, Figure S9, S10).

Periodic Switch-On/Switch-Off Treatment
(Repeated Cycles)
We have previously seen that with one cycle of treatment, even at
high death probabilities, population recurrence is inevitable for
both homogeneous and heterogeneous cancer cell populations.
We further investigate the effect of a periodic switch-on/switch-
off treatment strategy on population dynamics, where treatment
is applied for 5 days followed by 5 days of vacation, and then this
cycle is repeated again and again multiple times. We applied this

treatment strategy for five cycles in an initially dense population
and explored how the population evolves.

Figure 9 shows the mean growth curves, as well as the
evolution of the mean proliferation time for the heterogeneous
and the homogeneous populations, when high death probabilities
(pm = pr = 0.8) are periodically applied. We observe that when
the death probability is applied at mitosis, tumor population
remains small and stable over time contrary to random death
probabilities that progressively increase their population. In the
latter case, a different therapeutic scheme like adaptive therapy
or schemes with shorter vacation periods could be more effective.
On the other hand, the homogeneous populations consistently
remain under control regardless of whether the probability is
applied randomly or inmitosis. This is not surprising considering
the underlying selection processes involved in each case. Yet, it
is another interesting example demonstrating how the selected
clones can determine the fate of therapy, making it either
effective or ineffective. Therapy must be adapted depending on
the selection processes.

DISCUSSION

Numerous mathematical models have accounted for
heterogeneity in the tumor population (11–13, 22–25), as it
affects various aspects of tumor evolution including growth,
invasion, and therapy failure. Among them, many models
have also accounted for the natural variability with respect to
proliferation rate (11–13, 22). However, the direct effect this
heterogeneity plays on tumor evolution without assuming any
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FIGURE 7 | (A,C) Mean growth curves and (B,D) the evolution of the mean doubling time of a treated cancer population in dense configurations for (A,B) pm = pr =

0.4 and (C,D) pm = pr = 0.8 applied the first 120 h (5 days). The vertical dotted line dictates when treatment stops. After that period, the population is left untreated.

The experiments have been repeated five times. The mean and standard deviation across the five experiments are shown for each case. The divergent selection

forces during and after treatment are evident. The spatial distribution of cells for the homogeneous tumors near the time recurrence is visible (t = 200 h) is also shown.

In this snapshot, proliferating cells are illustrated with blue color and necrotic cells are depicted with red color. Just after the dispersed foci of surviving cells are

reunited to form a new tumor, the growth dynamics of the homogeneous tumors coincide.

prior trade-off between fitness and drug sensitivity has not been
demonstrated when cytotoxic treatment is applied. Even more,
differences between therapy that acts specifically at mitosis and
therapy acting regardless of the cell cycle have not been explored,
to the best of our knowledge, for heterogeneous populations.

Utilizing a cellular automaton mathematical model, we
investigate the spatiotemporal evolution of tumor cells and
the evolution of the distribution of their proliferation times,
as we vary the probability of a cell to die from a specific
treatment. Differences between homogeneous and heterogeneous
populations are explored, as well as differences between mitotic
and random death probabilities. We also assume two different

initial distributions for the doubling times; normal and uniform.
Furthermore, the cells are initially seeded with two different
configurations—one randomly scattered that mimics 2D in vitro
experiments and another highly compact that mimics a central
plane of a dense 3D tumor. Various therapeutic schemes have
been also tested including constant, switch-on/switch-off, and
periodic switch-on/switch-off treatments in order to demonstrate
the importance of taking into account the underlying selection
forces acting on a cell population in therapy.

We showed that as the mitotic death rate increases, the
selection of faster phenotypes is inhibited, and eventually, slower
phenotypes are favored at higher mitotic death rates. On the
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FIGURE 8 | Mean post-treatment growth curves compared with the corresponding untreated (control) case in dense configurations. Treatment at high death

probability (pm = pr = 0.8) has been applied for 5 days. (A) Recurrence dynamics are slower relative to untreated growth dynamics when high mitotic probability is

applied. (B) Recurrence dynamics are similar or slightly faster relative to untreated growth dynamics when a high random probability is applied.

FIGURE 9 | Periodic switch-on/switch-off treatment in dense configuration. Treatment is applied for 5 days (depicted with white) followed by 5 days of vacation

(depicted with gray), and then this cycle is repeated five times. High death probabilities (pm = pr = 0.8) are applied during treatment. (A) The evolution of the cell

population as well as (B) the evolution of the mean doubling time. The standard deviation across five experiments is also shown. Different underlying selection forces

produce different therapeutic outcomes. Contrary to random death probabilities, homogeneous populations consistently remain under control, as well as

heterogeneous populations under mitotic treatment.

contrary, random death rates, regardless of whether they are
greater or lower than the proliferation rates, always promote
faster phenotypes. In that case, as highly proliferating cells escape,
resistance emerges even at high random death rates and under
constant treatment. Thus, without applying any prior trade-off,

resistant phenotypes emerge and drive the evolution of the
population, showing a differential response period to treatment
and population recurrence. The underlying phenotypic selection
forces are also reflected in the spatial distribution of phenotypes
within a tumor, as well as on the shape of the evolved tumor.
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Slower proliferating cells are usually trapped to inner regions,
while highly proliferative phenotypes take over the expanding
front. Similar behaviors with competing phenotypes have been
observed (11, 21). For example, in Gallaher et al. (11), sensitive
cells, which are faster, and mutant subclones in Chkhaidze et al.
(21) with fitness advantage are those taking over the outer,
growing front, whereas resistant and less fit subclones are usually
trapped within. However, we showed that at high mitotic death
rates, where fast proliferating cells are highly affected and space
competition is less evident, slower proliferating cells manage to
dominate in the population. As selection forces rapidly act on
the tumor population, the initial distribution of phenotypes also
changes rapidly, deviating from the initially normal or random
distribution. Differences between the two initial distributions are
observed; yet, they are due to their different range/interval of
doubling times.

The effect of the selection forces is becoming particularly
evident in post-treatment recurrence dynamics. When therapy
of high mitotic death rates ceases, we observe that the recurrence
dynamics are slower relative to untreated populations, an
observation that has been seen under antiproliferative treatments
in glioblastoma (22). Yet, this is not true for random death
probabilities that always favor faster proliferating phenotypes.
Interestingly, we also observed that the homogeneous
populations, as they lack heterogeneity, exhibit a complete
response to increased random death rates, contrary to the
polyclonal, heterogeneous populations where resistance
emerges during treatment. Thus, homogeneous population
can more easily remain under control. The importance of
taking into account the underlying selection mechanisms,
which are different between mitotic and random death, is also
demonstrated when the periodic switch-on/switch-off treatment
is applied. The simulations show that a heterogeneous population
can more effortlessly remain under control when mitotic death is
applied, but not when death occurs randomly in the population.
In that case, it is important to provide adaptive therapy planning
that readjusts according to the evolving proliferative capacity of
the dominant phenotypes.

Overall, our simulations demonstrate that the selection
forces acting on the heterogeneous populations may change the
outcome far from the homogeneous assumption. Even more,
depending on whether cell death occurs randomly, mimicking
a cell cycle-non-specific drug or at mitosis, different selection
forces act on phenotypes, which can either favor faster or slower
phenotypes with drastic consequences in recurrent dynamics
and therapy efficacy. In untreated populations, phenotypes with
proliferative advantage thrive, as expected. Yet, fundamental
differences are observed in the selection forces that act on
heterogeneous populations when mitotic and random death
probabilities are applied. The reason for these tremendous
differences is owed to the fact that when random death
probability is applied, all phenotypes in a population experience
a fixed death rate. Thus, faster phenotypes will be affected;
however, their increased proliferative capacity will compensate
the loss of death. But slower proliferating cells will be affected
the most by this probability. On the contrary, when mitotic death
probability is applied, the death rate is adjusted according to the

proliferation rate of each phenotype. Thus, in that case, divergent
selection forces act on heterogeneous populations, favoring either
faster or slower phenotypes, depending on the balance between
proliferation and death processes.

We should note that the current work is theoretic and
oversimplified. The work ignores the pharmacokinetics, the
spatial distribution of nutrients and drugs that is developed
in dense configurations, the phenotypic drift and clonal
evolutionary dynamics that may alter the proliferative
capacity of the daughter cells relative to their parents, the
microenvironmental heterogeneity, as well as the variety of
microenvironmental dependences and adaptation that may alter
the phenotypes. Furthermore, the work also focuses on tumor
growth driven solely by cellular proliferation, whereas migration
and invasion mechanisms could be added in the future, as well
as additional resistant mechanisms and trade-offs (11), more
complex evolutionary mechanisms (21), a realistic 3D setting
(26), and the exploration of more sophisticated therapeutic
schemes, like adaptive therapy (11). We have intentionally
chosen a simple starting point in order to better demonstrate
the impact of heterogeneity with respect to cell cycle duration
before, during, and after treatment. The aim was to gain a
better insight regarding differences between heterogeneous
and homogeneous populations, while distinguishing mitotic
from random death rates, by investigating the role of each in
cancer populations.

In our work, we have assumed that during treatment,
cancer cells may die with a given probability. This probability
can be ideally derived from biological experiments that
quantify drug-induced cancer cell death at a single-cell
level. This probability is also associated with the dose of
an anticancer drug and reflects drug pharmacodynamics.
When two drugs are combined consecutively (sequential
chemotherapeutic scheme), the probability associated with each
drug can be applied in a straightforward manner and the
effect of population heterogeneity can be easily explored.
When different drugs are combined simultaneously at the
same time interval, then aspects from the probability theory
should be considered. As an example, a recent work of
Comandante-Lou et al. (27) shows how these probabilities
can be combined for the case where the two different drugs
act independently.

We argue that it is highly critical to identify the heterogeneity
within a tumor and account for this heterogeneity when
planning a therapeutic strategy. This work shows that
during, as well as after/before treatment, strong selection
forces act on a heterogeneous tumor population driving
its post-treatment dynamics and determining the emergent
resistance, which comprises one of the major reasons for
therapy failure. Thus, before incorporating more complex
biology and trade-offs in the mathematical modeling that
inevitably exists in cancer (15), a better understanding of these
principles is important. By exploiting the underlying selection
forces, we could potentially delay recurrence and control
tumor. The method developed here provides a framework
for predicting the selection forces acting on a heterogeneous
cancer population, which may lead to models that account
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for these evolution forces and optimize the therapeutic
schemes for a specific drug compound, respectively. Based
on this framework, the implications of combination therapy
with multiple drugs, where each drug compound affects
differently the cancer population, would be also interesting to
explore and optimize accordingly in order to better control
tumor growth.
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