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Objective: To generate virtual non-contrast (VNC) computed tomography (CT) from

intravenous enhanced CT through convolutional neural networks (CNN) and compare

calculated dose among enhanced CT, VNC, and real non-contrast scanning.

Method: 50 patients who accepted non-contrast and enhanced CT scanning before

and after intravenous contrast agent injections were selected, and two sets of CT

images were registered. A total of 40 and 10 groups were used as training and test

datasets, respectively. The U-Net architecture was applied to learn the relationship

between the enhanced and non-contrast CT. VNC images were generated in the test

through the trained U-Net. The CT values of non-contrast, enhanced and VNC CT

images were compared. The radiotherapy treatment plans for esophageal cancer were

designed, and dose calculation was performed. Dose distributions in the three image

sets were compared.

Results: The mean absolute error of CT values between enhanced and non-contrast

CT reached 32.3 ± 2.6 HU, and that between VNC and non-contrast CT totaled

6.7 ± 1.3 HU. The average CT values in enhanced CT of great vessels, heart,

lungs, liver, and spinal cord were all significantly higher than those of non-contrast CT

(p < 0.05), with the differences reaching 97, 83, 42, 40, and 10 HU, respectively.

The average CT values of the organs in VNC CT showed no significant differences

from those in non-contrast CT. The relative dose differences of the enhanced and

non-contrast CT were −1.2, −1.3, −2.1, and −1.5% in the comparison of mean

doses of planned target volume, heart, great vessels, and lungs, respectively. The

mean dose calculated by VNC CT showed no significant difference from that by

non-contrast CT. The average γ passing rate (2%, 2mm) of VNC CT image was

significantly higher than that of enhanced CT image (0.996 vs. 0.973, p < 0.05).
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Conclusion: Designing a treatment plan based on enhanced CT will enlarge the dose

calculation uncertainty in radiotherapy. This paper proposed the generation of VNC CT

images from enhanced CT images based on U-Net architecture. The dose calculated

through VNC CT images was identical with that obtained through real non-contrast CT.

Keywords: convolutional neural networks, radiotherapy, dose, enhanced CT, virtual non-contrast CT

INTRODUCTION

Intravenous iodine contrast-enhanced computed tomography
(CT) is usually used in radiotherapy to improve the contrast
between tumors and normal tissues, allowing oncologists to
accurately delineate the target region and normal tissues (1–3). A
high-density contrast medium containing iodine is intravenously
injected into the patient before scanning, followed by CT
scanning to obtain enhanced CT images. In enhanced CT, specific
organs contain considerable contrast medium, giving rise to a
remarkable increase in local CT value. This condition improves
the contrast ratio of these organs but enlarges the uncertainties
in radiotherapy dose calculation (4–6). The CT values and
relative electron densities of specific organs in enhanced CT
are evidently overestimated in comparison with non-contrast
CT; thus, errors occur in radiotherapy dose calculation. Xiao
et al. (7) investigated the differences between enhanced and
non-contrast CT when applied to dose calculation under three-
dimensional conformal radiation therapy (3DCRT), intensity-
modulated radiation therapy (IMRT), and stereotactic body
radiation therapy (SBRT) and assumed the negligible difference
in 3DCRT dose calculation; thus, this method can be directly
applied to 3DCRT dose calculation. However, the minimum
dose in the planned target volume (PTV) for SBRT and IMRT
was overestimated by 2.71%, whereas the maximum dose was
underestimated by 1.36%. In the study of Li et al. (8), the
difference between the average CT values for the heart in
enhanced and non-contrast CT was 136.4 HU; the γ passing
rate was between 96.54 and 99.99% under 3% absolute dose
difference/3mm distance-to-agreement criteria for lung cancer
patients; thus, enhanced CT can give rise to minimal dose
calculation difference for lung cancer patients. Hwang et al. (9)
investigated the influence of enhanced CT on dose calculation of
proton beam radiotherapy and noted that the distal range error
of proton beam caused by enhanced CT reached as high as 1 cm.
Thus, the CT values of heart and great vessels must be corrected
to apply enhanced CT to proton beam radiotherapy.

The direct use of enhanced CT in radiation dose calculations
can lead to errors, which are usually avoided in two ways. In
the first method, rigid registration of enhanced and non-contrast
CT images is conducted for the patient, and PTV is delineated
in the enhanced CT image and mapped to the non-contrast
CT image. Next, dose calculation is performed on the non-
contrast CT image. This method requires the patient to accept
radiation of CT scanning twice. Moreover, the registration of the
two images will generate additional errors, thereby enlarging the
radiotherapy uncertainty. In the second method, the enhanced
region influenced by contrast medium is manually delineated

and overrides a certain electron density, and dose calculation
is directly performed on the enhanced CT image. This method
is time consuming and seriously affected by human experience.
The deep learning technology based on convolutional neural
networks (CNN) has been extensively applied to medical image
processing (10–15). Researchers have achieved ideal results using
deep learning in various fields, such as image segmentation
(16, 17), CT image denoising and artifact reduction (18), image
registration (19, 20), and radiotherapy response prediction (21).
Zhang and Yu (22) introduced CNN to obtain prior image and
desirable results in metal artifact reduction in CT. For magnetic
resonance (MR)-guided radiotherapy, Fu et al. (23) used 2D and
3D CNNs to generate pseudo-CT image from the MR image of
the T1 phase; Gupta et al. (24) used U-Net neural network to
generate a pseudo-CT image from a MR image with sagittal view
and calculated the dose distribution based on pseudo- and real
CT images. However, the use of deep learning method in image
transformation from enhanced CT to non-contrast CT has not
been studied.

In this study, a method of generating VNC CT image from
enhanced CT image through U-Net (25) was proposed. Dose
distribution was calculated based on non-contrast, enhanced, and
VNC CT images, and their differences were compared.

MATERIALS AND METHODS

CT images of several patients who underwent non-contrast and
enhanced CT scanning of the chest were selected. The CT images
were scanned on Siemens CT (SOMATOM Force, Germany).
The scanning parameters were as follows: tube voltage, 110
kVP; tube current, 400mA; layer thickness, 3mm; scanning
spatial resolution, 0.72 × 0.72 mm2 to 0.97 × 0.97 mm2; size
of reconstructed image, 512 × 512. The patients first received
non-contrast CT scanning while retaining their body positions.
The nurse performed intravenous contrast agent injections using
a high-pressure pump for enhanced CT scanning in venous
phase. The time interval between enhanced and non-contrast
CT scanning was <3min. The patients held their breath after
inspiration in the non-contrast and enhanced scanning process.
Thus, the deformation difference in the two images caused by
breathing movement was as minimal as possible.

Non-contrast CT images from each group of CT images were
captured as fixed images, whereas enhanced CT images were used
as moving images to conduct 3D rigid registration of CT image
through 3D affine transformation. After registration, the images
were reviewed by a senior radiotherapy oncologist who observed
location differences among organ tissues in the non-contrast
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and registered enhanced CT images and excluded images with
considerable deformation errors. Consequently, the CT images
of 50 patients were selected, and each group of images included
60-slice non-contrast and 60-slice enhanced CT images.

The images were trained using U-Net architecture. U-Net
(25), which was proposed in biomedical image segmentation
task for the first time, has been extensively used by virtue of
small training data requirements and good effect. Figure 1 shows
the network structure. U-Net is a left–right symmetrical neural
network structure containing encoder and decoder parts. Four
downsampling processes were used to extract image features in
the encoder part, and the decoder part contains four upsampling
processes that recover the feature map to the original image
resolution. Convolution kernels (3 × 3) were used at a stride of
one. Zero padding was conducted before the convolution. Thus,
the image size was unchanged before and after convolution. The
convolution layer was followed by batch normalization and ReLU
activation.Maximum pooling with a 2× 2 window and a stride of
two was carried out in the encoder part, whereas a deconvolution
at stride of 1/2 was conducted in the decoder part. The enhanced
CT image was considered the input and the corresponding non-
contrast CT image the output. The CT images of 40 patients,
including 2,400-slice non-contrast and 2,400-slice enhanced CT
images, were obtained as the training data. Data augmentation
was implemented by random rotation of image and also by
randomly cropping a section of each image for training. The
remaining images of 10 patients were used as the test data. The
sum ofmean absolute error (MAE) andmean square error (MSE)
served as loss function:

MAE (X, Y) =
1

n

n∑

i=1

|Xi − Yi|

MSE (X, Y) =
1

n

n∑

i=1

(Xi − Yi)
2

L (X, Y) = MAE (X, Y) +MSE(X, Y)

where X and Y are the compared CT images, and Xi represents
the CT value of the i(th) pixel in CT image. Minibatch gradient
descent optimization algorithm was adopted in the training with
a batch size set to 12.

Treatment Planning
The test data included ten esophagus cancer patients who
received radiotherapy. The non-contrast and enhanced CT
images of the ten patients and their VNC CT images, which were
generated through U-Net, were imported into the commercial
treatment planning system (Monaco 5.11, Elekta, Sweden).
Senior oncologists delineated the PTV and important protective
organs, including the heart, great vessels, lungs, liver, and spinal
cord on the non-contrast CT images. The delineated PTV and
protective organs were replicated in enhanced and VNC CT
images to compare the differences in the organs in terms of the
average CT values on the three types of CT images.

A treatment planning study was performed in Monaco
5.11. For each patient in the treatment planning system, an
irradiation plan was designed with Elekta Infinity accelerator

whose multileaf collimator consists of 80 pairs of leaves (width:
0.5 cm). Volumetric modulated arc radiotherapy plan was
designed, and each PTV was given at the prescribed dose of
60 Gy/30 fractions. Three irradiation fields were designed in
planning (gantry angle from 181 to 220◦, 320 to 40◦ and 140
to 180◦) to avoid the lung area as shown in Figure 2. Each field
contained three arcs, and themaximumnumber of control points
on each arc was set at 200. Monte Carlo algorithm was used
in dose calculation, computational grid size was set at 3mm,
and calculation uncertainty was 2% at each control point. The
radiotherapy plan was designed and optimized on the non-
contrast CT images. During the optimization, 95% of PTV was
covered by prescribed dose (60Gy), the percent volume of lung
covered by 20Gy was <30%, and the maximum dose of spinal
cord was <45Gy. With these primary constraints satisfied, the
average dose of protective organs were set as low as possible.
After optimization, the dose distribution was calculated in the
non-contrast CT images. The irradiation field was copied to
enhanced CT and VNC images, and dose was directly calculated
without plan optimization. The dose distribution differences
in the three CT images were compared. Wilcoxon signed-rank
test was adopted for comparison of the average CT and mean
dose values.

RESULTS

The training of U-Net was stopped after 1,000 epochs, and the
total number of iterations was 200,000. The loss function in the
training process reached a plateau (Figure 3).

The enhanced CT images in the test data were inputted into
the trained U-Net to generate VNC CT images. Figure 4 shows
the real non-contrast, enhanced, and VNC CT images at the left,
middle, and right columns, respectively. The brightness values
of enhanced CT images in great vessels, heart, and liver were all
notably higher than those of non-contrast CT images. However,
the VNCCT images were similar to non-contrast CT images. The
window level and width in the CT images reached 40 and 400
HU, respectively.

Figure 5A shows the statistical histogram of CT value
difference between the enhanced and non-contrast CT images
of a patient. The difference in the value image was obtained
by deducting the CT value of a non-contrast image from that
of an enhanced image. The number of pixels in the difference
value image in each interval of CT value was calculated with
10 HU as a unit. A histogram concentrating on 0 HU, indicates
a high similarity between two images. If the two images were
exactly the same, then all pixels were distributed within the
unit corresponding to 0 HU. Most of the CT value differences
between the enhanced and non-contrast images were distributed
within a positive interval, and numerous pixels were distributed
at 100 HU or higher. Several organs adsorbed the contrast
medium in the enhanced image. Thus, the CT value was notably
larger than that in the non-contrast image. Figure 5B shows the
statistical histogram of CT value differences between VNC and
non-contrast CT images. Pixels were under the concentration
distribution of 0 HU in the histogram. Several pixels were >30
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FIGURE 1 | U-Net architecture.

FIGURE 2 | Arc irradiation field in radiotherapy plan.

HU, and the CT value difference between VNC and non-contrast
CT images was minimal. The MAE of enhanced and VNC CT
images in HU values in the test data was calculated, excluding
the in-vitro air region, with a non-contrast CT image as reference
image. The MAE of enhanced and VNC CT image reached 32.3
± 2.6 and 6.7± 1.3 HU, respectively.

Table 1 lists the average CT values for several organs in
enhanced CT, VNC, and non-contrast CT images. A senior
radiotherapy oncologist delineated the organs, such as heart,

FIGURE 3 | Changes in loss function value during training with the number of

iterations.

great vessels, lungs, liver, and spinal cord, in the non-contrast,
enhanced, and VNC CT images of ten patients and calculated
the average CT values of the organs. The CT values of the
heart, great vessels, lungs, liver, and spinal cord in the enhanced
CT images were all significantly greater than those in the non-
contrast CT images (p < 0.05), where the average CT value
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FIGURE 4 | Comparison of three CT images in the same slice. Real non-contrast CT, enhanced CT, and VNC images generated through U-Net at the left, middle, and

right columns, respectively.

differences of great vessels reached the maximum of up to 97
HU. The average CT value difference of the heart reached 83
HU, whereas those of lungs, liver, and spinal cord totaled 42, 40,
and 10 HU, respectively. VNC and real non-contrast CT images
showed no significant difference in the HU value. The difference
in average CT values of the lungs between the two images was 4
HU, whereas those of heart, great vessels, liver, and spinal cord
were all <2 HU.

The dose distributions of PTV and organs in the three
types of CT images were calculated. Non-contrast CT dose was
used as the reference to compare the relative dose difference
in enhanced and VNC CT images. The three types of images
exhibited no statistical difference in the comparison with the
maximum and minimum doses of PTV and maximum dose of
spinal cord. Enhanced and non-contrast CT presented statistical
differences in the mean doses of PTV, heart, great vessels, and
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FIGURE 5 | Statistical histogram of CT value differences. (A) Histogram of CT value differences between enhanced and non-contrast CT images. (B) Histogram of CT

value differences between VNC and non-contrast CT image.

TABLE 1 | Average CT values of different organs in the three types of CT images.

Average CT values of organs (HU)

Heart Great vessels Lungs Liver Spinal cord

Non-contrast CT 26.5 ± 5.2 42.6 ± 2.3 −698.6 ± 65.8 52.4 ± 4.6 31.2 ± 2.3

Enhanced CT 109.2 ± 16.2 139.3 ± 14.8 −656.4 ± 76.3 92.2 ± 8.7 41.1 ± 3.7

Virtual non-contrast (VNC) image 25.2 ± 6.8 41.3 ± 3.9 −702.4 ± 72.7 52.8 ± 6.5 32.6 ± 2.7

lungs (p < 0.05). Table 2 shows that the mean doses of enhanced
CT for these organs were all remarkably lower than those in
non-contrast CT image, where the relative dose difference of
great vessels was the maximum, reaching as high as 2.1%. The
values for the other organs were all between 1 and 2%. VNC
and non-contrast CT images exhibited no statistically significant
difference in the mean dose. Figure 6 shows the dose volume
histogram of the three types of CT images for the organs of a
typical patient. The dose lines for organs in the VNC and non-
contrast CT images are superimposed. A remarkable difference
can be observed between the dose lines of the enhanced and
non-contrast CT image. This difference was especially evident
in PTV (green) and great vessels (pink). Considering the dose
distribution calculated for non-contrast CT image as reference,
the γ passing rates of dose in enhanced and VNCCT images were
calculated under 2% absolute dose difference/2mm distance-
to-agreement criteria. The average γ passing rate of the VNC
CT images was significantly higher than that of the enhanced
CT image (0.996 vs. 0.973, p < 0.05). Figure 7 shows a typical
cross-sectional γ distribution. The γ distribution obtained for the
enhanced CT image showed that considerable dose differences
existed around the high-dose region from the non-contrast
CT image, but the dose difference from the VNC CT image
was negligible.

DISCUSSION

The CT values of certain organs were higher than those in non-
contrast CT image due to the influence of contrast medium in

TABLE 2 | Relative dose differences in enhanced and VNC CT images compared

with that in non-contrast CT image.

Relative dose difference from non-contrast CT (%)

Mean dose of

planned target

volume

Mean dose

of heart

Mean dose of

great vessels

Mean dose

of lungs

Enhanced CT −1.2 ± 0.5 −1.3 ± 0.4 −2.1 ± 0.7 −1.5 ± 0.4

VNC image 0.1 ± 0.2 −0.1 ± 0.2 −0.2 ± 0.1 −0.2 ± 0.1

enhanced CT image, thereby causing inaccurate dose calculation.
Although Choi et al. (4) deemed that the dose difference caused
by enhanced CT was smaller than 1% when applied to dose
calculation in head and neck tumor IMRT, the dose differences
in parotid gland and spinal cord showed no significance. Thus,
this difference caused no influence on clinical dose evaluation.
However, this phenomenon is only restricted to specific body
parts of tumor patients. High-precision radiotherapy techniques
may amplify the effect of enhanced CT on radiation dose
calculation. Xiao et al. (7) pointed out in their study that the
influence of enhanced CT on IMRT and SBRT dose calculation
was significantly greater than that on 3DCRT. Shin et al. (26)
observed that in proton beam radiotherapy dose calculation,
the deviation of calculated distal range in the contrast medium
from measured range in water reached as high as 3.65 cm in
enhanced CT, and 1 cm distal range deviation was produced
in the patient plan. The influence of contrast medium must
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FIGURE 6 | Dose volume histogram for the organs calculated using the three types of CT images.

FIGURE 7 | γ passing rate distribution on enhanced and VNC CT images with the dose of non-contrast CT image used as the criterion. (A) Dose distribution on the

non-contrast CT image, (B) γ distribution of the enhanced CT image, and (C) γ distribution of the VNC CT image.

be corrected when enhanced CT is applied to radiotherapy
dose calculation in high-precision radiotherapy-like proton
radiotherapy and SBRT.

In this paper, VNC CT images were generated from enhanced
CT images in the venous phase using U-Net, and the CT
value and dose distribution differences among real non-contrast,
enhanced, and VNC CT images were compared. In our study,
changes in the CT value of heart and great vessels caused by
enhanced CT reached the maximum, which agrees with the
study result of Hwang et al. (9). The CT values of organs in
generated VNC CT images showed no significant differences
from those in real non-contrast CT images. The dose calculation
in enhanced CT caused significant deviations in the mean doses
of heart, great vessels, lungs, and PTV, with the maximum

mean dose deviation reaching as high as 2.1% for the great
vessels and 1.2% for PTV; these values were greater than
those obtained by Xiao et al. (7) and Li et al. (8) (all were
<1%) and similar to the result on abdomen, as indicated
in the research of Shibamoto et al. (5). These findings are
related to tumor location, layout of irradiation field, and dose
calculation accuracy. Esophagus cancer radiotherapy plan was
adopted in this study, and the irradiation field mostly passed
through the heart and great vessels, thereby causing substantial
dose differences. In addition, dose distribution was calculated
through Monte Carlo algorithm, and calculation uncertainty
was set at 2% at each control point to improve the dose
calculation accuracy. A small difference was observed between
the doses calculated for the VNC and real non-contrast CT
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images. The mean doses for the organs and PTV exhibited no
remarkable differences.

Although the VNC images generated in this study reduced
the difference between enhanced and actual non-contrast CT
images to a substantial degree, their MAE with real non-contrast
CT images (air part in-vitro not included) was still 6.7 HU,
which might be caused by various factors. The CT images of
40 groups of patients were used to train the network in this
study. Increasing the training data may improve the accuracy
of image conversion. The original U-Net architecture, which
is mainly applied to image segmentation, was used for image
generation in this study; thus, the precision was limited to a
certain degree. The training accuracy may be improved using
specific U-Net-based improved networks (27–29) or generative
adversarial network (30). In addition, this part of MAE might be
derived from deformation differences existing between enhanced
and non-contrast CT images after registration. Although the
time interval between the two types of CT scanning (<3min)
was controlled in this study, the patients held their breadth
in scanning, and the senior oncologists excluded images with
large deformation differences. However, the deformation error
caused by organ movement was unavoidable. On the one hand,
deformation difference caused errors in network training, thus
resulting in the insufficient accuracy of the training network.
On the other hand, the deformation difference was transferred
from enhanced CT to VNC image in the test process, and
several organ contours between VNC and real non-contrast CT
images showed no complete overlap, which might have resulted
in increased MAE.

CONCLUSION

The CT values of organs, including great vessels, heart, and liver,
in enhanced CT images were remarkably greater than those in
non-contrast CT images. Dose calculation based on enhanced
CT will reduce the accuracy in radiotherapy. The VNC images
generated from enhanced CT through CNN approximated their

real non-contrast CT counterparts. The dose distribution can be
accurately calculated based on the VNC images.
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