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Despite the dramatic advancements in pelvic radiotherapy, urinary toxicity remains

a significant side-effect. The assessment of clinico-dosimetric predictors of radiation

cystitis (RC) based on clinical data has improved substantially over the last decade;

however, a thorough understanding of the physiopathogenetic mechanisms underlying

the onset of RC, with its variegated acute and late urinary symptoms, is still largely

lacking, and data from pre-clinical research is still limited. The aim of this review is

to provide an overview of the main open issues and, ideally, to help investigators in

orienting future research. First, anatomy and physiology of bladder, as well as the

current knowledge of dose and dose-volume effects in humans, are briefly summarized.

Subsequently, pre-clinical radiobiology aspects of RC are discussed. The findings

suggest that pre-clinical research on RC in animal models is a lively field of research

with growing interest in the development of new radioprotective agents. The availability

of new high precision micro-irradiators and the rapid advances in small animal imaging

might lead to big improvement into this field. In particular, studies focusing on the

definition of dose and fractionation are warranted, especially considering the growing

interest in hypo-fractionation and ablative therapies for prostate cancer treatment.

Moreover, improvement in radiotherapy plans optimization by selectively reducing

radiation dose to more radiosensitive substructures close to the bladder would be of

paramount importance. Finally, thanks to new pre-clinical imaging platforms, reliable and

reproducible methods to assess the severity of RC in animal models are expected to

be developed.
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INTRODUCTION

Despite dramatic advance in pelvic radiotherapy, mainly due
to the implementation of image-guided intensity-modulated
(IMRT) techniques, acute and late urinary toxicity (radiation
cystitis [RC] or actinic cystitis) remains a significant side-
effect, especially in the case of high-dose schedules such as
those used for prostate and gynecological cancer treatment
(1, 2). The assessment of clinical, molecular and/or genetic
predictors of urinary toxicity has improved substantially over
the last decade, also by use of data from large cohorts of
prospectively monitored patients treated with external beams
or brachytherapy (3–7). Nevertheless, a thorough understanding
of the pathophysiology at the base of acute and late radiation-
induced urinary symptoms, such as urgency, nocturia, urethral
stenosis, incontinence, hematuria, etc., is still largely lacking, as
well as robust pre-clinical data based on animal models. The
advent of micro-irradiators, capable of delivering radiotherapy
even to small animals with micrometric resolution, and the
simultaneous rapid advancement of imaging methods, might
lead to big advancements into this field. Animal models of
radiation-induced bladder toxicity might improve the current
understanding of physio-pathogenetic mechanisms at the base
of radiation induced cystitis and expedite the detection and
testing of possible radioprotective agents aimed at reducing
such damage.

The aim of the current paper is therefore to review this
suboptimally explored field of research, with the aim of
providing both basic researchers and radiation oncologists an
overview of the main open issues and, ideally, to assist them
in orienting future research. First, normal bladder anatomy
and physiology, radiation dose and dose-volume effects are
briefly summarized. Then, the potential of modern radiobiology
“tools” and the realization of robust and reproducible animal
models of radiation-induced cystitis, are described. The most
promising approaches aimed at preventing/minimizing RC are
then discussed, by systemically reviewing both historical and
recent findings on animal experiments. Finally, suggestions for
future research will be explored.

Anatomical Features
The urinary bladder collects urine from the ureters and,
when sufficiently filled, empties through the urethra. Two
different parts can be distinguished: the bladder body,
located above the inter-ureteric crest, and the base, composed
of the trigone, the bladder neck and the urethro-vesical
junction (8).

The urinary bladder is a hollow smooth muscle organ made
up of 4-folds. The most external one is the adventitia, a serous
layer. Below, the detrusor muscle, a thick muscular layer made
up of smooth muscle cells and extracellular matrix, rich in
collagen and elastin, allows bladder emptying. Three layers of
muscular cells, differently distributed between bladder body
and neck, exists: outer longitudinal, circular medial and inner
longitudinal (8, 9). The submucosa is the smooth connective
tissue laying between the detrusor muscle and the inner mucosal
layer. It is rich in elastin and collagen, mostly types 1 and 3,

mixed with a proteoglycan matrix which attracts water, giving
the tissue high elasticity (8). Finally, the most internal layer,
the mucosa is structured in three parts from the outer to the
inner: muscolaris mucosae, a thin muscular layer dividing the
submucosa from the mucosa; lamina propria, a connective layer,
rich in blood vessels and nerve endings, which structurally
and functionally supports the urothelium; and urothelium,
a pseudostratified epithelium where basal, intermediate and
umbrella cells can be identified (8). Each umbrella cell covers
many intermediate cells, and their shape resembles an umbrella;
they are in direct contact with urine and flatten when the
bladder fills (10). Most of their membrane apical surface (almost
80%) is covered with protein plaque whose precise composition
is unclear, but a main component seems to be protein called
Uroplakin (9). Together with the glycosaminoglycan (GAG)
layer over the urothelium and the tight junctions between
umbrella cells, the protein plaque creates the urine-plasma
barrier and probably hampers bacterial adherence (9, 11).
Another function of urothelial cells seems the detection of
bladder volumes and strain, through a direct signaling on
afferent nerves or indirect communication with interstitial
cells (9).

Physiology and Mechanical Features
Storage of urine and voiding represent the two most important
functions of the urinary bladder, involving extremely complex
interactions between its structural components and the
nervous system.

Urine storage occurs at low pressure, and the bladder behaves
passively (8, 9). During filling, the smooth muscle cells have to
relax, elongate and rearrange. Laplace’s law, assuming spherical
shape, incompressible wall and an isotropic homogeneous
stretch, accurately describes the bladder mechanics during filling:
wall tension, intravesical pressure and bladder size are directly
related (8, 9). During bladder filling, intravesical pressure is
relatively constant, avoiding urine outflow to the upper urinary
tract, and bladder is slowly stretched while volume increases
(8, 9, 11, 12). A small increase in bladder pressure during
filling is caused by a small increase in bladder wall tension,
due to the viscoelastic response of the extracellular matrix
when collagen fibers, initially folded, begin to stretch (12,
13). The viscoelastic property of the bladder wall is directly
reflected in bladder compliance (C), defined as the change in
volume (V) relative to the corresponding change in intravesical
pressure (P). High compliance indicates that bladder volume
could increase during filling without a significant pressure
surge (9).

During the active micturition phase, smooth cells contract
rapidly and synchronously throughout the bladder (8, 9).
Immediately prior to voiding, after parasympathetic nerve system
activation, the sphincters relax, the detrusor contracts and
internal pressure increases (9, 12, 14). Contraction of muscle cells
occurs with the interaction of α-myosin and actin molecules,
triggered by intracellular calcium concentration increase and
calmodulin activation. Thanks activation of muscarinic M3
receptor by acetylcholine, intracellular calcium is released by
the opening of membrane nifedipine-sensitive L-type Ca2+
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channels, by the increase in inositol 1,4,5-trisphosphate (IP3)
production with consequent release of calcium from the
sarcoplasmic reticulum, and by the activation of ryanodine
receptors (9).

In addition, cellular framework and membrane attachments
are provided by other cytoskeletal proteins, such as non-muscle
β- and γ -actins, filamin, calponin and intermediate filaments
(8, 9, 11).

All of these mechanisms can be significantly altered and
impaired by irradiation (See below 2.5.2 Radiation damage and
bladder dysfunction).

Clinical Doses and Thresholds in Humans
Although both state-of-the-art imaging guidance and intensity
modulated techniques have been developed to allow better
radiation dose distribution and improve treatment safety, when
radiation is delivered to pelvic organs, the involvement of healthy
portions of the bladder is inevitable. Therefore, a significant
fraction of irradiated patients experience bladder radiation-
induced side effects. The onset of RC significantly affects
patients’ quality of life, as there are no recommended standard
management treatments (15). Radiation dose, fraction, and field
size, as well as age at radiation treatment, genetic variations,
concurrent therapies and comorbidities such as diabetes and
immunodeficiency are considered risk factors for developing
RC (16).

In particular, several recent reviews (17–20) have outlined
how radiation dose correlates to the risk of urinary toxicity.
Evidence of a quite rapid increase of the risk of Grade 3
urinary toxicity according to the Common Toxicity Criteria
for Adverse Events (CTCAE, e.g., urethral stenosis and/or
bladder neck stricture requiring surgical intervention, gross
hematuria requiring blood transfusion and/or hyperbaric oxygen
therapy, urinary incontinence requiring treatments such as
invasive treatment) (21) for 2-Gy equivalent doses (EQD2) to
the whole bladder above 50–55Gy have been demonstrated
(22). Segments of the urinary tract can receive much higher
doses of radiation during bladder, prostate and gynecologic
cancer radiotherapy, and dose-volume effects for several urinary
symptoms have been demonstrated (23). The bladder shows
the behavior of a prevalently serial organ, being extremely
sensitive to even small volumes receiving high doses, such
that any procedure leading to a reduction of bladder volumes
receiving EQD2 doses ≥75–78Gy or ≥8–12 Gy/week may
significantly decrease the risk of toxicity (18). Here, image-
guided radiotherapy (IMRT) reduced bladder areas overlaying
the planning target volume (PTV) and hence lowered urinary
toxicity risk. A spatial effect was also highlighted in the trigone,
the most radiosensitive bladder substructure, for which the
mean dose delivered was proven to be strongly associated
to a higher risk of severe acute and late urinary damage
(19). More recently, growing evidence of bladder sensitivity
to fractionation suggested an α

β
value (a parameter of the

sensitivity of both tumor and healthy tissues to fractionation)
significantly lower than previously hypothesized, in the range of
1Gy. The prevalent dose-effect in hypofractionated protocols is
consistently associated with the risk of severe late toxicities such

as gross hematuria, urethral stenosis and severe incontinence
(21), a risk which rises considerably for prescribed EQD2
radiation doses to the PTV above 80–85Gy (calculated for an α

β

ratio of 1 Gy).

Image-Guided Small Animal Irradiation
Systems
The use of image-guided small animal irradiation systems is
rapidly increasing in preclinical and translational radiotherapy
research (24, 25). Recent technological developments allow the
possibility of mimicking in vivo the main steps of clinical image-
guided radiotherapy, from CT images to treatments, and the
evaluation of the effects of radiation on tumor and healthy
tissues. The main difference with respect to the clinical setting
is that the entire procedure, comprising CT imaging, dose
planning and delivery, is performed within about 20min, while
the animal is under anesthesia. This strict time limitation is
necessary to reduce the effect of hypothermia, as well as to
increase the number of animals that can be treated in a single
experimental session.

Considering the size of the animals and the small volumes
to be treated, lower photon energy beams generated using a
conventional x-ray tube working at a tension up to about 200–
250 kVp (instead of MV energies needed for treating humans)
are used. The same x-ray tube is normally employed to acquire
CT images of the animal, with a tension range between 40 and
80 kVp.

Two small animal image guided irradiators are currently
commercially available: SARRP (Xstrahl, Atlanta, GA, USA) and
XRAD225Cx SmART (PXI North Branford, CT, USA). The two
systems are similar in terms of x-ray energy and differ mainly in
terms of the geometry of CT acquisition. There are also home-
made solutions and prototypes developed by several research
groups (26–29). An exhaustive description of these prototypes is
beyond the scope of this review.

Given the size of mice and rats, the downscaling of the
imaging, planning and dose delivery procedures on such small
animals is not a trivial issue. As mentioned in a recent ESTRO
ACROP guideline (30), challenges include how to perform
accurate and precise small field dosimetry and how to verify dose
distributions on such small fields.

With regard to the two available commercial systems, the
dose is calculated using dedicated treatment planning systems
(TPS) based on Superposition–Convolution (31) and Monte
Carlo simulation (25). An example of a planned treatment to the
entire rat bladder is shown in Figure 1. Here, the TPS allows the
calculation of dose volume histogram (DVH), visualization of the
beams, dose distributions etc., as in clinical TPS.

In order to obtain a better delineation of the target volume
it is also possible to merge the planning CT image with
images acquired with different modalities, such as Magnetic
Resonance (MR) (32), Positron emission tomography (PET)
(33), single photon emission tomography (SPECT) (34) and
bioluminescence imaging (35, 36). Importantly, the use of
multimodal imaging can significantly increase planning time,
while reducing system throughput.
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FIGURE 1 | The image shows an example of a planned treatment to the entire rat bladder. The TPS allows the calculation of dose volume histogram (DVH), the

visualization of the beams, the dose distributions, etc., similar to a clinical TPS.

TABLE 1 | Search and exclusion strategy used in the bibliographic research on scopus for the current review.

Search and exclusion strategy Input in the research platform Scopus

Search step 1

Multiple search in titles, abstracts and keywords of the following subjects: TITLE-ABS-KEY(

3. Pre-clinical small animal research “preclinical” OR “rat” OR “mice”

4. External radiotherapy (X-rays therapeutic beam) “radiotherapy” OR “radiation injuries” OR “radiation dose” OR

“radiation-protective agents” OR “ionizing radiation”

5. Urinary tract “bladder” OR “urethra”

6. Models of radio-induced toxicity “model” OR “tolerance” OR “toxicity” OR “controlled study” OR

“dose response”)

Exclusion step 1

Restriction to the only medical subject area SUBJAREA (medi)

Exclusion step 2

Limitation to works published in english LIMIT-TO (LANGUAGE, “English”)

Exclusion step 3

Reinforcement of the exclusion criteria for subjects outside the scope of the current

review:

AND NOT(

7. Bladder cancer “bladder cancer” OR “bladder carcinoma”

8. Clinical studies OR “clinical trials” OR “case report”

9. In vitro experiments OR “in vitro”

10. Internal radiotherapy OR “radionuclide” OR “radioactivity” OR “PET” OR “intraoperative”

11. Pharmaceutical studies OR “radiopharmaceutical” OR “pharmacodynamics”

12. Non-ionizing radiation OR “electromagnetic”)

At the end of the first examination through the evaluation of 78 abstracts, 30 papers were excluded based on the established criteria, resulting in 48 full papers (4 of which are reviews)

published in the period 1985–2019.

LITERATURE REVIEW

Methods of Bibliographic Research
In October 2019, the peer-reviewed scientific literature was
scrutinized by S.Z. and A.B. for pre-clinical research on in-
vivo small animal (mouse and rat) models of radiation cystitis.
The research platform Scopus (Elsevier tool) was used: the
search strategy and the multiple keywords combinations used are
detailed in Table 1. Eligibility was limited to documents in the
medical area published in English. Specific exclusion criteria were
used to avoid non-pertinent subjects, such as studies relative to
bladder cancer, radioactive nuclides or non-ionizing radiation,

in vitro experiments, pharmaceutical or clinical trials. Of the
initial 78 abstracts reviewed, 30 were excluded on the base of
the above mentioned criteria, resulting in 48 full papers (4
of which are reviews) published between 1985 and 2019. The
articles, despite reporting very different end-points and methods,
are grouped into three main topics (i.e., Radiation damage
and bladder dysfunction; Pathology and preclinical models;
Radioprotective agents) and are summarized in Tables 2–4,
respectively. Table 5 includes five studies on abscopal/bystander
effects retained for completeness, although they are not discussed
in the current review.
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TABLE 2 | Chronological summary of the pre-clinical cystometric studies about radio-induced toxicity on the normal bladder.

References Animal model

(strain)

Dose set-up Endpoint (method) Toxicity timing after RT Findings

Knowles et al.

(37)

Female rat

(Wistar)

20-40Gy in 1 fr. to

ureter/trigone delivered

by 300 kV X-rays

machine through a

ventral beam

Hydronephrosis

(intravenous

urography)

Death: <40 days

Hydronephrosis: >42 days

Rate at 23.4Gy to ureter =

14/16

Rate at 25Gy to trigone = 9/11

Many rats died with 37.4Gy to

ureter; No death associated with

40Gy to trigone

Lundbeck

et al.

(38)

Female Mouse

(C3D2F1/Bom)

20Gy in 1 fr. delivered

by 250 kV X-rays

machine

Reservoir function

(transurethral

cystometry)

No change in the control group

within 200 days.

Biphasic change in the irradiated

group

Evidence of biphasic change in

the bladder reservoir function:

acute and late damage

Lundbeck

et al.

(39)

Female mouse

(C3D2F1/Bom)

5–30Gy in 1 fr.

delivered by 250 kV

X-ray machine through

a ventral beam

Reservoir function

(transurethral

cystometry)

Acute response: 10–14 days

(Functions restored after another

month)

Late response: dependent on

the dose

RD50 = 17.2Gy for the acute

response.

Late toxicity time was

dose-dependent: 10–15Gy,

20Gy, 25–30Gy groups were

significant different

Stewart et al.

(40)

Female mouse

(C3H/Hen

Af-nu+)

8–16Gy repeated after

1 day or 3 or 9 months

and delivered by 250

kV X-ray machine

through a ventral beam

Functional damage

(transurethral

cystometry)

Early damage: 2 weeks

(reirradiation at 9 months after

16Gy)

Late damage: undirect

relationship with the dose

administered in the first

treatment and no dependency

upon time between treatments

Prolonging the overall treatment

time does not result in the

prevention of late radiation injury

in the bladder

Stewart et al.

(41)

Female mouse

(C3H/Hen

Af-nu+)

10–30Gy in 1 fr.

delivered by 250 kV

X-ray machine through

a ventral beam

Functional damage

(transurethral

cystometry)

Acute response: 5–21 days

(duration: <1 week)

Late response: 16–40 weeks

Acute response rate (20–30Gy):

20–40%

Late response rate (10–15Gy):

<20%

Bentzen et al.

(42)

Female mouse

(C3D2F1/Bom)

1 to 10 fractions for an

overall time of 4–4.5

days and a total dose

of 5-60Gy delivered by

250 kV X-ray machine

Reservoir function

(transurethral

cystometry)

Late response: >30 days

Latent period: 35–401 days

α/β = 5.8 Gy

Late radiation injury in the mouse

urinary bladder was not highly

sensitive to change in dose per

fraction

Dörr et al.

(43)

Female Mouse

(C3H/Neu)

Single-dose or

fractionated irradiation

delivered by Seifert

Isovolt 320/20 X-ray

machine

Reservoir function

(transurethral

cystometry)

Early response 7–25 days after

≥10Gy in 1 fr.

Duration of the response: 3–9

days

α/β = = 11.1-12.4 Gy (acute

responding tissue)

Vale et al.

(44)

Female rat

(Wistar)

10, 15, 20, 25Gy in 1fr.

delivered by Pantak

320- kV X-ray

generator

Reservoir function

(transurethral

cystometry)

First reduction: 4 weeks

Second reduction: 3–4 months

and persistent at 6 months

Biphasic reduction for 15–25 Gy

Dörr et al.

(45)

Female Mouse

(C3H/Neu)

Four equal-sized dose

fractions were applied

with intervals of 0–8 h

and delivered by Seifert

Isovolt 320/20 X-ray

machine

Reservoir function

(transurethral

cystometry)

Acute response: <30 days

Half-time of repair = 1.2 h

ED50 = 18.2Gy for single dose

ED50 = 28.1Gy for 8h protocol
α
β
= 10.4 Gy

Dörr et al.

(46)

Female mouse

(C3H/Neu)

19Gy in 1 fr. delivered

by Seifert Isovolt

320/20 X-ray machine

Reservoir function

(transurethral

cystometry)

Complete recovery <30 days,

followed by a symptom-free

latent time of about 15 weeks

No changes in the diurnal

pattern were observed.

In the late phase, the absolute

capacity and the amplitude of

fluctuations decreased

Dörr et al.

(47)

Female mouse

(C3H/Neu)

Graded single dose

delivered by Seifert

Isovolt 320/20 X-ray

machine

Reservoir function

(transurethral

cystometry)

Acute response:

- 1–15 days (I wave) with mean

latent time = 7.1 days

- 16–30 days (II wave) with mean

latent time = 23.3 days

ED50 = 21.7Gy (I acute wave)

ED50 = 19.3Gy (II acute wave)

ED50 = 18.7Gy (late response)

Response during the second but

not the first acute wave

correlated with the late response

(p = 0.0008)

(Continued)
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TABLE 2 | Continued

References Animal model

(strain)

Dose set-up Endpoint (method) Toxicity timing after RT Findings

Dörr et al.

(48)

Female Mouse

(C3H/Neu)

(i) 1 to 10 fr. applied

within 5 days.

(ii) 4 equal-sized dose

fractions applied with

intervals of 0–8 h and

delivered by Seifert

Isovolt 320/20 X-ray

machine

Reservoir function

(transurethral

cystometry)

Half time of repair: 0.39 h

Latent time to chronic functional

changes: 12–40 weeks inversely

dependent on the BED

(i) repair capacity: α
β
= 4.4Gy

(ii) repair kinetics: α
β
= 3.7 Gy

Dose fractionation sparing effect

was in the lower range of tissues

with a chronic response

Jaal et al.

(49, 50)

Female Mouse

(C3H/Neu)

20Gy in 1fr. delivered

by Seifert Isovolt

320/20 X-ray machine

through a ventral beam

Reservoir function

(transurethral

cystometry)

Rate = 40% for days 0–15

Rate = 64% for days 16–30

Rate = 71% after 180 days

Irradiation induced significant

acute and chronic reduction in

bladder capacity by >50%

Rajaganapathy

et al. (51)

Female rat

(Sprague-

Dawley)

20, 30, 40Gy in 1fr.

delivered by SARRP

unit through three

ventral beams

Micturition frequency

(metabolic cage)

Early response: 6 weeks 40Gy caused reductions in the

mean inter-micturition interval by

∼20 min

Zwaans et al.

(52)

Female Mouse

(C3H/HeN)

20Gy in 1fr. delivered

by SARRP unit through

two ventral beams

Micturition frequency

(metabolic cage)

Late response: starting at 17

weeks

Micturition frequency in irradiated

mice was significantly increased

compared to controls. The

radiation exposure attenuated

the urothelial integrity long-term

Giglio et al.

(53)

Female rat

(Sprague–

Dawley)

20Gy in 1fr. delivered

by 6 MeV linac through

two side- field

Functional damage

(metabolic cage)

14 days Irradiation led to urodynamic

changes.

Water intake and micturition

frequency were found not to be

correlated

In these studies the endpoint is the functional damage in terms of reservoir function (reduction in the bladder capacity by >50% at a fixed intravesical pressure) and/or micturition

frequency.

RT, radiotherapy; RD50, response dose 50%; ED50, radiation dose producing damage in the 50% of cases; dose BED, biologically effective dose; H&E, Hematoxylin & Eosin; SARRP,

small animal radiation research platform.

Contribution of Animal Models to the
Understanding of the Physio-Pathogenesis
of Radiation Cystitis
High energy ionizing radiation affects various bladder cell types,
among which urothelial, neuronal, detrusor, and vascular smooth
muscle cells; pre-clinical research in the last decades has tried
to clarify these processes. At a molecular level, RT-induced
injury can be triggered either via direct damage to DNA or
other cellular macromolecules (i.e., protein, lipids etc.) causing
early cell death and/or functional deficiency, or via an indirect
activity, breaking down water atoms into free oxygen radicals
and producing oxidative stress (82). The release of free oxygen
radicals can cause cell membrane lipid peroxidation or react
with DNA, leading in both cases to DNA damage, replication
failure and cell death (3). Subsequently, a number of downstream
abnormalities of the bladder wall might occur at multiple levels,
which can be classified into three consequential phases: (a) an
early or acute phase of inflammation, which occurs during or just
after the completion of a conventional therapy protocol such as
2Gy per 5 days/week to a total dose of 60–70Gy in 6–7 weeks;
(b) a symptom-free phase; (c) a late non-reversible, fibrotic phase
that develops gradually and can be detected from 6 months
to years after RT (48, 83). The former response is transient
and often resolves in a few weeks or months. Its symptoms

are caused by the activation of the pro-inflammatory cascade.
In particular, one of the early stage events is the increase of
the inflammatory, proliferative and pro-apoptotic nuclear factor-
kappa B (NF-κB), which stimulates endothelial cyclooxygenase
(COX2) expression and arachidonic acid conversion into
prostaglandins in endothelial cells, determining vasodilatation
and increased muscle tone (edema and hyperemia) (60). NF-κB
activation might bring to the increase in membrane urothelial
intercellular adhesion molecule 1 (ICAM-1) levels in the vascular
endothelial cells, prompting and supporting leucocyte infiltration
in the lesion (49, 50). These events result in a functional
impairment of the organ, and patients therefore experience
symptoms such as increased frequency, urgency and dysuria (47).
After a symptom-free period, the duration of which is highly
variable, a late chronic response might develop. In this phase,
at molecular level, uroplakin 3 downregulation on the luminal
surface of the bladder urothelium, together with loss of superficial
urothelial cells (umbrella cells), produces the disruption of
urine-plasma barrier and thus an increased permeability (59,
84, 85) leading to a chemical irritation of the bladder wall
caused by urine components. Furthermore, transforming growth
factor beta-1 (TGF-β1) expression increase, and the subsequent
accumulation of extracellular matrix and collagen deposition
eventually supports the development of fibrosis (86, 87).
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TABLE 3 | Chronological summary of the pre-clinical immunohistochemical studies about radio-induced toxicity on the normal bladder.

References Animal model

(strain)

Dose set-up Endpoint (method) Toxicity timing after RT Findings

Stewart et al.

(41)

Female mouse

(C3H/Hen

Af-nu+)

10-30Gy in 1 fr.

delivered by a 250

kV X-rays machine

through a ventral

beam

Morphological

changes

(hematoxylin eosin

staining)

2 weeks: no changes

7–12 months: epithelial

denudation, hyperplasia,

necrosis, fibrosis

The late damage was

characterized by epithelial

denudation and focal

hyperplasia; fibrosis and

ulceration were also detectable

at higher doses (20–30Gy)

Vale et al.

(44)

Female rat

(Wistar)

10, 15, 20, 25Gy in

1fr. delivered by

Pantak 320- kV

X-ray generator

Morphological

changes (H&E,

toluidine blue

staining)

6 months Evidence of increase mast cell

density. Fibrosis in 9/18 rats

Crowe et al.

(54)

Female rat

(Wistar)

15 and 25Gy in 1 fr.

delivered by Pantak

HF 320 X-ray

generator

Changes in

neuropeptides

6 months Increase in the density of NPY,

SP- and TH-immunoreactive

nerves in the urinary bladder

Kraft et al.

(55)

Mouse (sex

n.a.) (C3H/Hen

Af-nu+ and

C3H/Neu)

25 or 19Gy (ED80

40 weeks after RT)

Morphological

changes (TGF-β

expression and

collagen content)

Increase in TGF-β:

90–360 days

Increase in collagen I and

III: >180 days

TGF-beta expression and

connective tissue metabolism

were important factors

determining reduced bladder

function after irradiation

Kruse et al.

(56)

Female mouse

(C3H/Hen

Af-nu+)

20Gy to rectum

16Gy to kidney

delivered in 1 fr. by

250-kV X-ray

Telangiectasia

(microarray analysis

of RNA isolated from

pre-irradiated

kidney/ rectum)

10–20 weeks Identification of genes expressed

in tissues with manifest vascular

damage

Kanai et al.

(57)

Rat (Sprague-

Dawley)

Mouse

(nNOS−/−,

iNOS−/−,

eNOS−/−,

C57BL10)

0–50Gy in 1 or more

fr. (1–3 days interval)

delivered by 6 MeV

linac

Umbrella cells

ulceration

n.a. mtNOS was in the

cardiomyocytes and urothelial

cells, and can be either

protective or detrimental

Jaal et al.

(49, 50)

Female mouse

(C3H/Neu)

20Gy in 1fr.

delivered by Seifert

Isovolt 320/20 X-ray

machine

Morphological

changes (ICAM-1

expression)

Increasing signal at day

2–4 and 16–28

Permanent signal

between 90–360 days

Irradiation induces significant

early and late deregulation in

ICAM-1 expression levels,

preceding bladder functional

response

Jaal et al.

(58)

Female Mouse

(C3H/Neu)

20Gy in 1fr.

delivered by Seifert

Isovolt 320/20 X-ray

machine

Vasodilatation

(COX-2 in blood

vessels)

Early: 4–16 days

Late: 90–360 days

COX-2 dependent inflammatory

response in the bladder wall

during the early phase after

radiation

Jaal et al.

(59)

Female mouse

(C3H/Neu)

20Gy in 1fr.

delivered by Seifert

Isovolt 320/20 X-ray

machine

Decrease in n◦ of

umbrella cells (UP-III)

Early phase: 0–31 days

Initial late phase: 90, 120

days

Irradiation resulted in

morphological impairment of the

urothelial barrier

Jaal et al.

(60)

Female Mouse

(C3H/Neu)

20Gy in 1fr.

delivered by Seifert

Isovolt 320/20 X-ray

machine

Amount of collagen

(Masson’s

Trichrome)

In the entire late phase,

but most pronounced at

day 120 and 180

Suggested neovascularization in

the late phase of

radiation-induced bladder

damage

Soler et al.

(61)

Female rat

(Lewis)

20Gy in 1fr.

delivered by Cesium

isotope-based

irradiator collimated

by shield on bladder

Amount of collagen

(Masson’s

Trichrome) and

vascularization

(VonWillebrand

factor)

1.5 and 3 months Anti-Angiogenesis therapy is

proposed to prevent and/or treat

the pathology of radiation cystitis

Xu et al.

(62)

Male mouse

(NCRNU)

5Gy in 5 fr. delivered

by 250 kV X-ray

machine

Ultrastructural and

mitochondrial

damage

60 days Parthenolide enhanced

radiosensitivity of prostate

tumors but protects healthy

tissues (bladder) from radiation

(Continued)

Frontiers in Oncology | www.frontiersin.org 7 October 2020 | Volume 10 | Article 527121

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zuppone et al. Pre-clinical Research on Bladder Toxicity

TABLE 3 | Continued

References Animal model

(strain)

Dose set-up Endpoint (method) Toxicity timing after RT Findings

Ozbilgin et al.

(63)

Male mouse

(Swiss Albino)

10Gy in 1 fr.

delivered by Co60

RT

Morphological

changes (H&E),

POMC

immunoreactivity

24 h, 48 h, and 7 days No morphological alterations.

Expression of POMC on the

urothelium seems to spare

bladder from radiation injuries

Ozbilgin et al.

(64)

Male mouse

(Swiss Albino)

10Gy in 1 fr.

delivered by Co60

RT

Reaction of versican

and HB-EGF

7 days Increase of versican and HB-EGF

concentrations may play a role in

the side effects of RT

Ozbilgin et al.

(65)

Male mouse

(Swiss Albino)

10Gy in 1 fr.

delivered by Co60

RT

COX-1 and COX-2

immunoreactivity

24 h, 48 h, and 7 days The expression of COX-1 and

COX-2 seems to prevent bladder

damage from radiation

Giglio et al.

(53)

Female rat

(Sprague–

Dawley)

20Gy in 1fr.

delivered by 6 MeV

linac through two

side- field

Extensive immuno-

histochemical

characterization

16 h−14 days Irradiation may suppress

important immunoregulatory

pathways

Rajaganapathy

et al.

(51)

Female rat

(Sprague-

Dawley)

20, 30, 40Gy in 1fr.

delivered by SARRP

unit through three

ventral beams

Morphological

changes (H&E)

Early response: 6 weeks Evidence of degenerative type

epithelial changes, urothelial

swelling and hyperplasia

Zwaans et al.

(52)

Female Mouse

(C3H/HeN)

20Gy in 1fr.

delivered by SARRP

unit through two

ventral beams

Morphological

changes (H&E)

Fibrosis (Masson

Trichrome)

Mast cells (toluidine

blue staining)

Starting at 17 weeks after

treatment

Pathological changes included

fibrosis, inflammation, urothelial

thinning, and necrosis. The

radiation exposure attenuated

the long-term urothelial integrity

RT, radiotherapy; ICAM-1, intercellular adhesion molecule 1; mtNOS, mitochondrial nitric oxide synthase; COX, cyclooxygenase; UP-III, uroplakin-III; POMC, Proopiomelanocortin;

HB-EGF, heparin-binding EGF-like growth factor; ICAM-1, irradiation on intercellular adhesion molecule 1; H&E, Hematoxylin & Eosin; SARRP, small animal radiation research platform.

Histologically, several phenomena can be detected, such
as a combination of urothelial cell denudation and tumor-
like epithelial hyperproliferation, vascular damage and
hemorrhaging, submucosal telangiectasia, fibrin deposition,
formation of ulcers, loss of smooth muscle cells, influx of
fibroblasts, collagen accumulation and, eventually, fibrosis
(17, 47). All these anomalies lead eventually to hematuria and
a permanent reduction of the bladder compliance, which could
ultimately result in an impaired ureteric emptying and, thus,
renal dysfunction. Moreover, voiding failure can also derive
from the progressive underactivity of detrusor muscle, which
subsequently becomes acontractile.

Due to the complexity of this condition, current non-invasive
treatment options have limited effectiveness and, in certain
extreme scenarios, radical cystectomy is required (52).

The establishment of reliable preclinical models mimicking
urothelial toxicity (UT) and aimed at understanding all
the molecular processes involved in disease progression is
fundamental for testing “tailored” therapies. To date, mice and
rats have been commonly used for RC modeling, and a positive
correlation has been seen between radiation dose (usually in
the range of 5–40Gy) and urothelial changes at early or late
post-irradiation time points. However, different experimental
methods, endpoints, irradiation doses, dose distribution and
sources along with different animal species have been used.
Therefore, the full comprehension of RT-induced UT and the
availability of comprehensive models that faithfully recapitulate
all the pathological paths still represent an unmet need.

Interestingly, dose and fractionation effects were mostly
investigated in older studies (Table 2) using single fraction
or minimally fractionated protocols. No studies on dose
and fractionation using modern micro-irradiators have been
published to date. Similarly, there are no specific studies dealing
with the quantification of bladder volume effects and/or the
existence of more sensitive sub-structures.

Each research group developed its own animal model using
different strains of rats or mice, as listed in Tables 2–4.
Despite this variability, the general practice was to use a single
radiation dose of 20Gy, roughly corresponding to a fractionated
radiotherapy treatment delivering 60Gy in 30 fractions over 6
weeks (4, 44). Several cystometric studies showed that 20Gy is
a dose sufficient to observe in at least 50% of animals (47, 49, 88),
a biphasic response in the acute phase (88) at about 7 and 23
days after RT, respectively (47), and a late phase starting at 4–6
months (44, 49, 83). Interestingly, Dörr et al. highlighted a strong
correlation between damage in the second (but not in the first)
acute wave and late damage (47).

Some works also studied radiation doses over 20Gy delivered
in 1 fraction (41, 44, 47, 51, 89). This dose escalation was
associated with a higher toxicity rate (41) and more severe
symptoms in terms of bladder dysfunction (51), degenerative
type of epithelial changes (41) and increase of mast cell density
(44). Regarding the late response, the latent time was found to be
inversely dependent on the dose (48, 89).

The effects of fractionated radiotherapy were investigated
in several works (42, 48, 90). Dörr et al. demonstrated that
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TABLE 4 | Chronological summary of the pre-clinical studies about radioprotective effects on the normal bladder.

Reference Animal model

(strain)

Set-up Endpoint (method) Toxicity timing after

RT

Findings

Edrees et al.

(66)

Female mouse

(C3H)

13–25Gy in 1 fr. delivered by

250 kV X-ray machine + Cy

Micturition frequency

(cystometry), incidence

of haematuria

5 months (rad)

1 week (Cy)

Early and 9–12 month

(rad+Cy)

Cy administered up to 9 months

before or after irradiation induced

more severe bladder damage than

X-rays alone

Malkinson

et al.

(67)

Male mouse

(B6D2F1)

2–4.5 Gy/fr. x 10–15 fr. after

PGs administration

Murine hair loss Immediately after the

fractionated RT

PGs may provide protection of tissue

as bladder mucosa

Horsman et al.

(68)

Female mouse

(CDFl and

C3H)

Nicotinamide injected after

local irradiation delivered by

250 kV X-ray irradiator

i) Moist desquamation

ii) Reservoir function

(transurethral

cystometry)

i) 11–30 days

ii) 9 months

Best radiosensitization with minimal

effect on normal tissues (bladder) at

time of nicotinamide peak plasma

drug concentrations

Kanai et al.

(69)

Female rat

(Sprague-

Dawley)

35Gy in 1 fr. delivered by 6

MeV linac + MnSOD

transgene injection 24 h

before RT

Transepithelial

resistance and

permeability damage

on detrusor function

1, 48, and 96 h

7 and 24 days

6 months

MnSOD transgene allows

transepithelial resistance and

permeability to recover within 4

weeks and shows baseline pressures

and more stable voiding patterns after

6 months

Jaal et al.

(70)

Female mouse

(C3H/Neu)

Graded radiation doses

delivered by Seifert Isovolt

320/20 X-ray machine +

rHuKGF

Reservoir function

(transurethral

cystometry)

Early phase response:

1–30 days

Late phase response:

60–360 days

Early: ED50 from 20 to 27Gy

Late: ED50 from 16 to 22Gy

rHuKGF administration before

irradiation modified early and late

radiation effects

Dinçbaş et al.

(71)

Male rat

(Wistar)

25Gy in 5 fr. delivered by Co60

teletherapy unit + AF + GEM

Bladder fibrosis (H&E) 4 months AF may have a beneficial effect in

limiting the radio-sensitizing effect of

GEM

Rocha et al.

(72)

Rat (sex n.a.)

(Wistar)

11.64Gy in 1 fr. delivered by 6

MeV linac + L-glutamine

Amount of collagen

(Masson’s trichrome,

Picro Sirius Red)

Immuno-histochemistry

15 days L-glutamine seems to prevent

bladder wall damage

Costa et al.

(73)

Male rat

(Wistar)

10Gy in 1 fr. delivered by 10

MeV linac + L-arginine

Morphologic change of

blood vessels in the

wall (H&E, expression

of VEGF and FGF)

16 days L-arginine was radioprotective

Rajaganapathy

et al. (51)

Female rat

(Sprague-

Dawley)

40Gy in 1fr. delivered by

SARRP unit + liposomal

tacrolimus

Micturition

frequency(cystometry)

Morphological changes

(H&E)

2 and 6 weeks Lipo-tacrolimus treated rats show an

increased post- irradiation IMI and

minimal edematous changes

Horsman et al.

(74)

Male and

Female Mice

(CDF1)

Graded radiation doses +

VDA(CA4P)

Reservoir function

(transurethral

cystometry)

9 months ED50 = 14Gy for bladder

VDA has no effect on the early (skin)

or late (bladder and lung) tissues

responding to radiation

Oscarsson

et al. (75)

Female rat

(Sprague-

Dawley)

20Gy in 1 fr. delivered by 6

MeV linac + with and without

20 sessions of HBOT

Oxidative stress and

pro-fibrotic factors

28 days HBOT may prevent radiation-induced

changes

Sarsarshahi

et al. (76)

Female mouse

(C3H/Neu)

14-24Gy in 1 fr. delivered by

YXLON Maxishot device +

bortezomib

Reservoir function

(transurethral

cystometry)

Acute response: 6–9

days

Late response: 21–24

days

Daily bortezomib injections between

days 0–15 resulted in a significant

decrease in responders

Several agents were tested in combination with radiation and the effect was measured using various techniques.

RT, radiotherapy; Cy, Cyclophosphamide; PGs, prostaglandins; MnSOD, Manganese superoxide dismutase gene therapy; VEGF, vascular endothelial growth factor; FGF, Wbroblast

growth factors; AF, amifostine; GEM, gemcitabine; H&E, hematoxylin & eosin; rHuKGF, palifermin; HBOT, hyperbaric oxygen therapy; CA4P, combretastatin A-4 phosphate; VDA, vascular

disrupting agents; SARRP, small animal radiation research platform; IMI, inter- micturition intervals IMI.

when radiation is delivered in equal-sized dose fractions, the
radiation dose producing the damage in 50% of animals (ED50)
is higher than in single dose irradiation. Furthermore, ED50
was shown to be sensitive to the interval between fractions
(90). Other studies highlighted that the sparing effect obtained

by dose fractionation results in a lower risk of chronic
response (42, 48).

Stewart et al. evaluated the recovery of bladder at late
time points and the consequent re-irradiation tolerance in
mice and highlighted a possible indirect correlation between

Frontiers in Oncology | www.frontiersin.org 9 October 2020 | Volume 10 | Article 527121

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zuppone et al. Pre-clinical Research on Bladder Toxicity

TABLE 5 | Chronological summary of the pre-clinical studies about bystander and abscopal effects: the clonogenic the survival of brain cells after pencil beam and/or

microbeam in-vivo irradiation (usually using a synchrotron) is compared with that of the corresponding not-targeted bladder cells.

Reference Animal model

(strain)

Set-up Endpoint (method) Euthanasia timing

after RT

Findings

Singh et al.

(77)

Female

mouse

(C57BL6 and

Balb/c)

Whole body

irradiation (Co60

source) at single and

serial low dose

(20mGy-2Gy)

RIBE

(clonogenic survival)

24 h Genotype determined the type of

bystander signal/response

Fernandez-

Palomo et al.

(78)

Rat (sex n.a.)

(Wistar)

17.5, 35, 70, 350Gy

delivered by

synchrotron on one

brain hemisphere

RIBE

(clonogenic survival)

4, 8, 12 h Both MRT and HSR yielded a

demonstrable abscopal effect

after high doses of irradiation

Mothersill et al.

(79)

Male rat

(Wistar)

Whole body MRT

and HSR on one

brain hemisphere

(35 and 350Gy

skin-entry doses)

RIBE

(proteomics,

clonogenic survival)

48 h

(hours in cage with

uneradicated rats)

Evidence of strong RIBE signal in

the contra-lateral brain

hemisphere and weaker effects

in the distant bladder of the

irradiated rats. Proximity to an

irradiated animal induced

signaling changes in an

un-irradiated partner

Fernandez-

Palomo et al.

(80)

Male rat

(Fisher)

MRT (20 or 200Gy

skin-entry doses) on

one brain

hemisphere with

inoculated F98 cells

RIBE/abscopal

effects

(calcium flux, role of

5HT, clonogenic

survival and

proteomic profil)

48 h

(hours in cage with

unirradiated rats)

Membrane related functions

were critical for true RIBE

expression. Bystander effects (in

partner animals) were not the

same as abscopal effects (in the

irradiated animal)

Fernandez-

Palomo et al.

(81)

Male/female

mouse

(NU-Foxn1nu)

PB (200 or 1,000Gy

skin-entry doses)

and MRT (22Gy or

110Gy) on one brain

hemisphere with and

without glioma

injected 7d earlier

RIBE/abscopal

effects

(calcium flux,

clonogenic survival)

2, 12, 48 h Calcium data did not support a

calcium channel mediated

mechanism. The presence of a

tumor reduced or reversed the

effect. The immune response

played a role.

Thus, in this field of research the normal bladder does not deal with any direct radiation effect.

RT, radiotherapy; RIBE, radiation-induced bystander effects; PB, Pencil Beam; MRT, microbeam irradiation; HSR, homogenous synchrotron radiation.

long-term injury and radiation dose administered in the first
treatment; furthermore the prolongation of the interval time
between treatment did not prevent late radiation damage in the
bladder (40).

In vivo Functional Evaluation
As in clinical setting, also small animals functional assessment of
radiation cystitis can be undertaken. Cystometric evaluation, in
both mice and rats (Table 2) represents the state of the art for
quantifying in vivo functional bladder impairment.

Historically, one of the first attempts at assessing urinary
frequency was reported in 1978 by Stewart et al. by placing an
irradiated mice in a metabolic cage and counting the number
and size of urine patches on a paper moving under it (91).
Subsequently more precise technologies have been developed
(38). Various cystometric models exist, but catheterizing the
animals and placing them in metabolic cages is generally
necessary. The bladder catheter is connected to a pressure
transducer and a microinjection pump. Micturition volumes
are recorded with a fluid collector under the metabolic cage.
A room-temperature saline solution can be instilled into the
bladder constantly at different rates depending on the aims of

the investigator. Thus, bladder basal pressure, threshold pressure,
flow pressure, maximum micturition pressure, micturition
volume and micturition interval can be directly recorded. When
malemice or rats (which display slight differences among species)
are used, due to the anatomic structure of the urethra in
the rodents, surgical implantation of the catheter is generally
necessary if bladder catheterization is required; the catheter
is positioned at the dome of the bladder and then tunneled
subcutaneously to an interscapular region incision (or, less
frequently, to the abdomen).

Many examples of the application of this technology in
radiation cystitis setting may be found in the literature (Table 2).
Lundbeck et al. reported one of the first attempts in female
mice (doses delivered from 5 to 40Gy), showing a reduction
of reservoir function starting from 20Gy in both acute (peak
at 14 days) and late phase (300 days follow up) (89). Stewart
et al. ascertained an increased urinary frequency and a reduced
bladder capacity in a mouse model (female mice of strain
C3H) after irradiation from 10 to 30Gy in both early and late
time settings (6 to 53 weeks after treatment, each animal was
examined every 4/6 weeks) (41). Vale et al. after irradiating
four equal groups of nine female Wistar rats at 10, 15, 20 and
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25Gy, performed a weekly cystometric evaluation until 2 months
after irradiation and subsequently once every 3 weeks up to 6
months. A biphasic reduction of at least 30% in the bladder
compliance index (calculated as volume injected to induce an
increase in intravesical pressure of 5 cmH20) was obtained at
4/6 weeks and at 6 months after irradiation in all groups of
animals receiving at least 15Gy (44). Dörr et al. evaluated bladder
reservoir function in female mice through cystometry in the dose
fractionation setting: four equal-sized doses per fraction with
increasing intervals of 0–8 h were applied to female mouse (strain
CH3) bladders, and bladder capacity was measured 3 times 2
weeks before irradiation and at 3–4 day intervals during the
initial 30 days after irradiation, obtaining a clear dose-response
relationship (44, 48, 90).

In conclusion, all the authors seemed to agree that acute
damage is confined to only a few days after irradiation,
irrespective of the dose delivered, while late toxicity could
emerge at different time lapses and with intensity depending on
radiation dose and fractionation; in addition, cystometry has to
be considered as a feasible, easy to interpret and reliable way to
assess RC functional impairment.

Histopathological Model of RC
Several animal models, employing both mouse and rat, have
been developed with the aim of investigating the pathological
modifications that occur in the bladder after irradiation but
a “standard” universally recognized RC model is still lacking.
To standardize the evaluation of histologic patterns, which are
meant to be surrogates of the functional status of the bladder,
morphological scores have been used.

To date, hematoxylin and eosin (H&E), indisputably remains
themost informative staining employed, allowing the recognition
of macroscopic signs of both early acute and late histological
changes. Rajaganapathy et al. described the alterations of the rats’
bladder wall 6 weeks after radiation (early inflammatory phase)
through an analysis of the organ sections stained with H&E. In
their study it was possible to discriminate several pathological
features at three different radiation doses (20, 30, and 40Gy). No
sign of inflammation could be detected at the lowest dose (20Gy),
while edematous changes, immune cell infiltration, ectasic blood
vessels in the lamina propria and hyperplasic urothelium were
evident following 30Gy irradiation. In addition, the staining
highlighted degenerative-type epithelial changes, urothelial cell
swelling and small nests of urothelial cells in the lamina propria
surrounding blood vessels after 40Gy radiation (51). Zwaans
et al. in their mouse model of chronic radiation-induced cystitis
used a scoring method to show the presence of urothelial
thinning, ischemic necrosis and inflammation on H&E-stained
slide, while Masson trichrome staining, which allows for a better
visualization of both collagen deposition and smooth muscle
fibers, was employed to score fibrosis (52). Both an intensity-
based score (52) or a percentage of bladder wall area score (92),
have been used to assess fibrosis.

In order to support such histopathological evidences,
immunohistochemical staining can be employed to better
visualize features such as urothelium loss and loss of smooth
muscle (e.g., with markers COX-1/2 and UP-III) (52, 65).

Morphological scores have been implemented, for example, by
Zwaans et al. using a simple “positive vs. negative” staining
assessment (52), and by Jiang et al. using integrated optical
density (92).

Many of the single histological features present in the animal
models of RC, such as inflammatory infiltrate, submucosal
fibrosis, surface ulceration and nests of urothelial cells within the
lamina propria referred to as “pseudocarcinomatous urothelial
hyperplasia,” have also been described in humans by several
research groups (93, 94). Moreover, histopathological changes
in the human irradiated bladder have also been divided into
“early” (predominant <12 months after irradiation) and “late”
(predominant >12 months after irradiation) changes, consistent
with the proposed model of RC progression in the animal
model (52, 93). However, there are some subtle differences: for
example, fibrosis has seldom been reported in humans as an
early change that persists into the chronic phase, while in small
animal models it occurs in the late phase only (95). This implies
that even given the extensive experimentation on animal models,
there are some limitations in the application of this knowledge
to humans to be considered when planning clinical trials and
experimental treatments.

Radioprotective Agents
Great effort has been spent in finding new radioprotective agents
(RA) to improve the range of clinical options for themanagement
of radiotherapy-induced toxicity. An RA is natural compound
or an artificially synthetized substance able to prevent radiation
induced acute and late effects. In other words, RA should
protect patients’ healthy tissues during treatment and prevent
the development of detrimental effects (96). According to the
timing of their administration, it is possible to distinguish three
classes of RAs. The first class includes agents intended for the
prophylaxis of RT injuries, and is therefore administered before
exposure to the radiation dose (97). This category comprises
compounds with sulfhydryl groups, antioxidant properties or
free radical scavengers (98). The second class of RA is represented
by mitigators, administered during or shortly after RT, before
symptoms appear, and are aimed at minimizing toxicity by
preventing or reducing radiation damage on cells or tissues
(99). These mitigators are, in fact, directed at hindering a series
of cellular insults that stimulate proliferation and immune-
inflammatory responses, including DNA repair, apoptosis and
regulation of signal transduction cascades (100). The third
heterogeneous group comprises symptomatic treatments given
after RT.

Currently, the clinical management of RC includes both
systemic and local treatments mostly focused on pain and
symptomatic relief, which, however, neither prevent the
development of RC nor reverse it in case of assumption
after RT administration. The approved therapies may vary
depending on the degree and the phase of radiation induced
bladder damage. Anticholinergic agents and β3-adrenergic
receptor agonists, for instance, are used to attenuate acute
phase symptoms such as frequency and urgency. On the other
hand, a wide range of drugs are systemically administered
to cope with RT induced chronic response. Examples of
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this class of pharmaceuticals are represented by WF10, also
known as Tetrachlorodecaoxygen (TCDO), a formulation given
intravenously able to stimulate natural immunity in order to
reduce inflammation; sodium pentosan polysulphate (SPP),
a synthetic sulphated polysaccharide that decrease urothelial
permeability by replacing defective glycosaminoglycans;
tranexamic acid, used to inhibit fibrinolysis and prevent clot
urinary retention in patients with hemorragic cystitis (95).

Nevertheless, although systemic treatments are non-invasive
and avoid inpatient hospital admission, these therapies had
low efficacy often accompanied by dose-dependent toxicity.
For this reason, local treatments and bladder irrigation are
considered the first line of intervention in all grades of the disease
(101), aiming at protect the urothelium, arrest focal bleeding
points and remove blood clots. Several agents are employed
as intravesical therapies and directed at improving bladder
compliance (102) including formalin, aluminum salts, hyaluronic
acid, prostaglandins, botulinum toxin, polydeoxyribonucleotides
and early placental extract (83, 95).

In recent years, hyperbaric oxygen and laser ablation have also
emerged as non-invasive management options able to produce
symptom relief and stop the progression of the pathologic
process. They are, however, cumbersome for patients, requiring
lengthy treatments and, in case of ablation a performance status
that typically patients with radiation-induced cystitis do not
have (83, 95, 103).

To date, many compounds have promised improvements
in preclinical radioprotection research, most belonging to the
third treatment category of RAs. For instance, Bortezomib, a
potent proteasome inhibitor currently used in clinics for multiple
myeloma treatment, is implicated also in the blockade of NF-
κB (104–108) and therefore it was recently investigated in a
radiation induced urinary bladder dysfunction mouse model
(76). The study employs a daily subcutaneous dose of 0.02 mg/ml
of Bortezomib given between days 0–15 or 15–30, at the two acute
radiation-induced bladder inflammatory waves, after a single
graded radiation dose. The aim was to identify the window
of time in which the drug was more effective. At cystometry
evaluation the most favorable outcome was obtained in case of
drug administration at the first acute inflammatory wave (days
0–15), with no significant variation when given in the second,
meaning that distinct mechanisms are involved in the acute
phases. In 2018, Ikeda et al. investigated the effect of the hormone
relaxin in reversing radiation induced bladder fibrosis in adult
female C57Bl/6 mice (109). Relaxin is a 6 kDa hormone involved
in the relaxation of uterine smooth muscle and in the softening
of the pubic symphysis during pregnancy. Although a relaxing
effect of the hormone on the bladder has not been demonstrated
yet, its receptors were found to be expressed on detrusor cells
as well as in the lamina propria and, to a lesser extent, the
urothelium. In this study, relaxin 2 was administered to 7-week
post-irradiated animals (10Gy radiation dose) at a concentration
of 400µg/kg/day for 2 weeks. As a result, the treatment increased
bladder compliance and bladder wall force generation. The
hypothesized mechanism of action involved the activation of
specific pathways associated to the activation of relaxin receptors;
the stimulation of neoangiogenesis through the phosphorylation
of AKT, the expression of platelet derived growth factor

(PDGF) and vascular endothelial growth factor (VEGF), the
enhancement of contractile function mediated by increased
Cav1.2 (i.e., L-type Ca2+ channel) and the arrest of profibrotic
TGF-β signaling (110) induced by ERK1/2 phosphorylation and
upregulation of neuronal Nitric Oxide Syntase (nNOS) and
cyclic guanosine monophosphate (cGMP) levels. Tacrolimus, a
calcineurin inhibitor that prevents the growth and differentiation
of T cells by indirectly blocking IL-2 expression was tested in a
RC rat model in which animals received a high radiation dose
(40Gy). In this study, due to its hydrophobic nature, in order
to improve drug solubility and delivery and reduce systemic
toxicity, Tacrolimus was encapsulated into liposome (51). A
significant improvement on the inter-micturition interval was
achieved (111). L-arginine, due to its anti-oxidant and anti-
inflammatory properties (6, 112, 113), as well as due to its
proposed protective effect on endothelium by the stimulation of
endothelium-derived relaxing factors (114), was tested in several
preclinical studies on pelvic radiation-induced bladder toxicity.
In these studies, the amino acid administration triggered nitric
oxide formation in animals with impaired endothelial function at
basal levels (115), reduced radiation-induced diarrhea in around
40% of rats (116), and prevented bladder modification, restoring
the morphology of blood vessels by recovering VEGF and FGF
expression in the bladder wall (73).

CONCLUSION AND FUTURE
PERSPECTIVES

A brief summary of the revised literature is reported in
Table 6, along with summarized conclusions. The current review
has underlined renewed interest in pre-clinical research on
radiation induced urinary toxicity and the bladder response
to radiotherapy. In particular, a considerable interest in the
development and testing of RA has been increased in recent
years, especially for high risk conditions such the use of
high doses, as for prostate cancer, and the existence of
baseline risk factors, i.e., genetic predisposition or clinical
factors (e.g., impaired baseline urinary function, adjuvant
or salvage irradiation after prostatectomy). Importantly, a
greater effort should be spent in the translation of pre-
clinical results into clinical trials. Nonetheless, further pre-
clinical studies are needed to clarify the applicability and
therapeutic advantages of radioprotective agents in the treatment
of radiation cystitis. Future goals will be the identification of
novel molecules and strategies to pursue in order to guarantee
a broader efficacy at a cellular, tissue, organ and whole
organism level.

Despite the availability of micro-irradiators, animal studies on
bladder radiation focusing on dose, fractionation and volume
effects, are largely lacking. Such investigations deserves greater
attention for several reasons, e.g., given the growing interest
in hypo-fractionation and ablative therapies, investigations
mimicking these situations might help in better understanding
the mechanisms of bladder radiation response in these extreme
condition; or given some evidences (20) of high sensitivity
to moderate hypofractionation (2.3–3.0 Gy/fr), experiments on
animal models on this subject might shed light on the issue.
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TABLE 6 | Brief summary of the revised literature with some conclusions; unmet needs; future perspectives.

Findings from literature Conclusions Future perspectives

Bladder mechanism

Radiation effect at the molecular level (direct and

indirect damage to DNA) is followed by downstream

abnormalities of bladder wall in three phases:

1) Early/acute phase: reversible

→Increase of NF-κB

→COX2 and prostaglandin expression

→Vasodilatation, increased muscle tone

→hyperemia, edema

→increase of ICAM-1

→leucocyte infiltration

→inflammatory symptoms (frequency, urgency,

dysuria)

2) Symptom-free phase

Late phase: persistent, fibrotic

→UP-III downregulation and loss of umbrella cells

→increase of permeability

→chemical irritation from urine components

→Increase of TGF-β1 expression

→accumulation of extracellular matrix and

collagen deposition

→development of fibrosis

→hematuria, permanent reduction of bladder

compliance, voiding failure

The full comprehension of RT-induced

urothelial toxicity and the availability of models

that faithfully recapitulate all the pathological paths,

both early and late phases, still represent an

unmet need.

The establishment of reliable preclinical models

mimicking urothelial toxicity is fundamental for

testing more “tailored” novel therapies.

Given the current interest in hypo-fractionation

and ablative therapies, investigations mimicking

extreme hypo-fractionation (e.g., radical doses

delivered in 1–5 fractions) should help in better

understanding the partially unknown mechanisms

of bladder radiation response in these extreme

situations.

Experiments set to identify the mechanisms

underlying “spatial effects” would be of

paramount importance in possibly guiding plan

optimization to selectively reduce the dose to these

sub-structures.

Animal models and dose set up:

• Each research group developed their own animal

model using different strains of rats or mice.

• Radiation dose was tested in the range 5–40 Gy.

• The general practice was to use a single

radiation dose of 20–25 Gy, approximately

equal to ED50 and estimated to mimic the

delivered clinical doses to pelvic tumors.

• Doses over 20 Gy proved to be associated with

a higher toxicity rate and more severe symptoms.

• ED50 increases with the number of fractions

and the interval between fractions.

• Late radiation injury seemed to be inversely

related to the dose given in the first treatment

and independent of the interval

between treatments.

Very different experimental settings have been used:

a “standard” universally recognized RC model is

still missing.

Even though a single dose of 40Gy is well above

the dose delivered in a clinical setting, the use of

high dose can be useful for a better understanding

of the underlying biological mechanisms.

Despite the availability of micro-irradiators with

theoretically significant potentials for high-precision

experiments, animal studies focused on gaining a

better understanding of dose, fractionation and

volume effects are largely lacking.

Reliable and reproducible methods to quantify

the severity of RC in animal models should be

realized.

In vivo functional evaluation

• Acute damage is confined to only a few weeks

after irradiation, irrespective of the dose delivered,

with a biphasic response at about 7 and 23 days

after RT, respectively.

• late toxicity could emerge at different time

lapses (within 6 month to 1 year) with intensity

depending on radiation dose and fractionation.

No changes in the diurnal urinary pattern were

observed during cystometry. If male mice/rats are

used, a surgical implantation of the catheter is

deemed necessary.

Cystometry is the “state-of-the- art” objective tool in

evaluating the in vivo response to radiation

damage, in terms of reservoir function and/or

micturition frequency.

High-quality pre-clinical imaging platforms are

expected to extend the potential of non-invasive

assessment of RC severity.

Histopathological model of RC

• H&E (the most informative): recognition of both

early acute and late histological changes.

• Masson trichrome: to assess the level of

bladder wall fibrosis as an intensity-based score

or as a percentage of bladder wall area score.

• urothelial and inflammation markers to better

visualize the urothelium (e.g., COX-1/2 and UP-III).

• Simple “positive vs. negative” staining using

integrated optical density: to better visualize

urothelium loss and loss of smooth muscle.

IHC is the gold standard for the tracking of disease

progression in preclinical models.

There are limitations in the application of this

knowledge to humans that must be considered

when planning clinical trials and

experimental therapies.

The interaction between radiation induced

reactions, damage repair and the immune system in

the case of combined immune-radiotherapy is

an extremely promising field of investigation,

possibly involving several pelvic tumors.

(Continued)
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TABLE 6 | Continued

Findings from literature Conclusions Future perspectives

Radioprotective agents

Clinical management of RC:

• Systemic treatments (e.g., anticholinergic

agents and β3-adrenergic receptor agonists,

TCDO, SPP, tranexamic acid): non-invasive and

circumvent inpatient hospital admission; these

therapies suffer from a very low efficacy, often

accompanied by dose-dependent toxicity.

• Local treatments and bladder irrigation:

considered the first line of intervention in all

grades of the disease, aiming at sterilization,

arrest of focal bleeding points and removal of

blood clots (e.g., intravesical therapies).

• hyperbaric oxygen and laser ablation:

emerged as non-invasive management; they are,

however, cumbersome for patients requiring

lengthy treatments, and a level of fitness that

many patients with radiation cystitis do

not possess.

Classes of RAs:

• agents for the prophylaxis of RT injuries,

administered before exposure.

• mitigators given during or shortly after RT, aimed

at minimizing or preventing the effects of radiation

on cells/tissues.

• treatments or therapeutic preparations

applied after RT, to ameliorate

radio-induced symptoms.

Compounds in radioprotection preclinical research:

• Bortezomib: implicated in the NF-κB blockade.

• Hormone relaxin: reversing fibrosis.

• Tacrolimus and L-arginine: to hinder the

production and release of

pro-inflammatory cytokines.

RAs improve the range of clinical options for the

management of the RT-induced toxicity in

combined therapies.

We must expect the translation of pre-clinical

results into clinical trials testing the protective

effects of RAs, especially in situations where high

doses need to be delivered (e.g., prostate cancer)

and for patients at higher risk of toxicity due

to genetic predisposition or clinical factors (e.g.,

the impaired baseline urinary function of patients

irradiated after prostatectomy).

Future goals will be the identification of novel

molecules and strategies to pursue either alone

or in combination in order to guarantee a broader

efficacy at a cellular, tissue, organ and whole

organism level.

NF-κB, nuclear factor-kappa B; COX2, cyclooxygenase; ICAM-1, intercellular adhesion molecule 1; UP-III, uroplakin 3; TGF-β1, transforming growth factor beta-1; ED50, radiation dose

producing the damage in 50% of animals; RC, radiation cystitis; reservoir function, reduction in the bladder capacity by >50% at a fixed intravesical pressure; H&E, hematoxylin and

eosin; IHC, immunohistochemistry; RA, radioprotective agent; TCDO, Tetrachlorodecaoxygen; SPP, sodium pentosan polysulphate.

Another significant issue concerns evidence of “spatial” effects
suggesting that specific sub-structures (i.e., the trigone) may be
more sensitive to radiation (18–20): experiments set to identify
the mechanisms underlying these effects would be of paramount
importance in guiding plan optimization to selectively reduce the
dose to these sub-structures.

A related development that could be useful for further
advances in the field is the increasing use of combined therapies,
including chemotherapeutic agents and immunotherapy. Testing
dose and volume effects in these scenarios is an issue of
paramount importance to understand the interaction between
drugs and radiation induced reactions, damage repair and
immune system.

Another largely unexplored field of investigation is pre-
clinical imaging: high quality small animal images before and
after radiation delivery may potentially become a powerful,
non-invasive, quantitative surrogate for the measurement of
radiobiological effects. For the bladder echography as well as
targeted optical imaging seem especially promising.

Finally, an attempt should be made to set up reliable and
reproducible methods to quantify the severity of RC in animal

models. This implies the fulfillment of an easy-to-realize, ideally
quick and economical, but at the same time sufficiently robust,
quantitative analysis of RC severity both in vivo, e.g., by means
of ultrasounds and/or MRI, and after the animal’s sacrifice, e.g.,
through the development of a histological quantitative scoring
of the radiation-induced lymphocyte infiltrate, collagen matrix
deposition and neoangiogenesis.
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