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Introduction: Meningiomas are the most common brain tumor, with prevalence of
approximately 3%. Histological grading has a major role in determining treatment
choice and predicting outcome. While indolent grade 1 and aggressive grade 3
meningiomas exhibit relatively homogeneous clinical behavior, grade 2 meningiomas
are far more heterogeneous, making outcome prediction challenging. We hypothesized
two subgroups of grade 2 meningiomas which biologically resemble either World Health
Organization (WHO) grade 1 or WHO grade 3. Our aim was to establish gene expression
signatures that separate grade 2 meningiomas into two homogeneous subgroups: a
more indolent subtype genetically resembling grade 1 and a more aggressive subtype
resembling grade 3.

Methods: We carried out an observational meta-analysis on 212 meningiomas
from six distinct studies retrieved from the open-access platform Gene Expression
Omnibus. Microarray data was analyzed with systems-level gene co-expression network
analysis. Fuzzy C-means clustering was employed to reclassify 34 of the 46 grade
2 meningiomas (74%) into a benign “grade 1-like” (13/46), and malignant “grade 3-
like” (21/46) subgroup based on transcriptomic profiles. We verified shared biology
between matching subgroups based on meta-gene expression and recurrence rates.
These results were validated further using an independent RNA-seq dataset with 160
meningiomas, with similar results.

Results: Recurrence rates of “grade 1-like” and “grade 3- like” tumors were 0 and
75%, respectively, statistically similar to recurrence rates of grade 1 (17%) and 3
(85%). We also found overlapping biological processes of new subgroups with their
adjacent grades 1 and 3.

Conclusion: These results underpin molecular signatures as complements to
histological grading systems. They may help reshape prediction, follow-up planning,
treatment decisions and recruitment protocols for future and ongoing clinical trials.
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BACKGROUND

Meningiomas are the most common adult brain tumor, carrying
an overall prevalence of approximately 3% in the population
(1, 2). Histopathologic analysis is the mainstay of diagnosis
and, together with the extent of surgical resection, is a
key determinant of outcome and treatment planning (3, 4).
According to World Health Organization (WHO) grading, the
majority of meningiomas (almost 70%) constitute grade 1,
of which about two thirds are cured with surgical excision
alone (4) and 15–20% recur within 5 years of diagnosis (5–
8). Grade 3 meningiomas, by contrast, are rare and aggressive
with a 5 year recurrence rate of approximately 90% (4). These
extremes of histological grades have relatively homogenous
clinical behavior, yet grade 2 histopathologic variants, which
constitute 20–30% of all meningiomas, represent a biological
intermediate. Predicting the clinical course and treatment
response for these tumors is particularly challenging (9) given
their heterogeneous biology, and the 5-year recurrence rate
of grade 2 meningiomas is approximately 50% (10–12). This
uncertainty is corroborated by regular revisions in WHO
definitions (13), overlapping molecular signatures with adjacent
grades (14, 15) and open questions about the benefits of
chemotherapy (9, 16) and adjuvant radiation (17–19) for these
tumors. Defining subgroups of grade 2 meningiomas with
homogenous biological and clinical properties may be critical
to successfully resolving these questions, thereby improving
prognostication and treatment for patients.

Molecular markers have been successfully implemented
in heterogenous diseases like glioblastoma (20) and
medulloblastoma (21) to identify subgroups with shared
biology and clinical outcome. Several studies have also examined
markers for meningioma biology (14, 22, 23). These previous
findings suggest that some grade 2 meningiomas share features
with grade 1s while others more closely resemble grade 3s
based on clinical behavior and genetic features such as somatic
mutations, copy number variants (15, 24, 25), methylation
status (14), and genome wide expression profiles (22, 26). Most
research on gene expression in meningioma, however, focuses
on single-gene analytics. This is not optimized for the low and
additive molecular signals which frequently underlie complex
and heterogeneous diseases. Systems biology approaches such as
co-expression networks (27, 28), on the other hand, are able to
provide a higher resolution of these complex genetic processes
(27, 29–31).

In this study we hypothesize that grade 2 meningiomas
can be segregated into homogeneous subgroups that either
resemble indolent grade 1 tumors or aggressive grade 3s.
Our aim was to establish gene expression signatures using
co-expression networks to identify homogenous subgroups of
grade 2 meningiomas.

MATERIALS AND METHODS

This study is an observational analysis of open-source data
from the repository Gene Expression Omnibus (GEO) (32)

and therefore does not require IRB review. All studies
with human meningioma microarray data annotated with
WHO grade were included in the analysis, which yielded
six studies. Another study using RNA-seq transcriptomics
constituted an external validation cohort (Table 1). All
studies included in our meta-analysis were published
after the 2007 edition of WHO grading for meningiomas,
suggesting this classification was implemented in these
studies. For each study, the data was backgrounded corrected,
quantile normalized, and log-2 transformed using the Affy
(33) and Limma (34) R (The R Project) packages for
Affymetrix and Illumina/RNA-seq platforms, respectively.
After selecting only the genes which were common to the
six microarray studies, the studies were merged, scaled
to a global mean and standard deviation of 0 and 1,
respectively (35), and batch-corrected using ComBat, a
well-established empirical Bayes approach (36). The same
approach was used to batch-correct the RNA-seq study,
which had been divided into “Discovery” and “Validation”
cohorts. The resultant data matrices were used during all
subsequent analysis.

Differential gene expression analysis was used to compare
grades 1 and 3 meningiomas. In log2-transformed space, the fold
change (FC) was computed by subtracting the mean expressions
of each gene in grade 1 tumors from the corresponding mean
expressions in grade 3 tumors. Genes with absolute log2-
transformed FC≥ 1.5 and p≤ 0.0001 were considered significant.

We used the well-established “Weighted Gene Correlation
Network Analysis” (WGCNA) to detect “modules” (clusters) of
strongly co-expressed genes (29). Per these previously described
techniques, we first computed an “adjacency matrix” using soft-
thresholded Pearson correlations between each gene pair. This
was converted into a biologically-inspired topological overlap
map (TOM), wherein pairwise gene similarities are derived
from comparing their connectivity profiles (37). Hierarchical
clustering converted the TOM into a dendrogram, and a
subsequent “dynamic” tree-cut (38) served to identify gene
modules. These modules were annotated the annotation
platform Enrichr (39), an open-source bioinformatics resource.
Additionally, representative module “meta-genes” for each
sample were computed as the first principal component of
their constituent genes’ expression values. The utility of this
approach was verified in our dataset by demonstrating that
higher principle components capture a very small proportion
of the overall variance (Supplementary Figure S1A) and
showing that neither study batch nor sex cluster along the
first principle component (Supplementary Figures S1B,C). This
eliminates the possibility of batch effect or sex being drivers
of our “meta-gene” values and confounding results. Differences
in the expression levels of these “meta-gene” between grades
was tested with a Mann–Whitney test, with a p ≤ 0.05
considered significant.

In order to better understand the heterogeneity of grade 2
meningiomas, we began by identifying genetic signatures able
to best distinguish grades 1 and 3 alone. Fuzzy C-means (FCM)
clustering was applied to the set of all patients in our study and
the resultant separation of grades 1 and 3 was established with
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TABLE 1 | Study demographics.

GEO entry Platform N Mean age (SD) N male (%) WHO grade (n) N recurrence (%) Median F/U1

(95% CI)
Median TTR2

(95% CI)

I II III

GSE100534 GPL6244 8 N/A 3 (37.5) 6 1 1 N/A N/A N/A

GSE77259 GPL6244 14 54.1 (10.1) 4 (28.6) 10 4 0 N/A N/A N/A

GSE54934 GPL6244 22 N/A N/A 20 2 0 N/A N/A N/A

GSE43290 GPL96 47 61.7 (15.0) 13 (27.7) 33 12 2 8 (17.0) 4.7 (3.7–5.7) 5.8 (3.6–8.0)

GSE16581 GPL570 68 63.2 (14.7) 25 (36.8) 43 19 6 13 (56.5) 4.7 (4.1–5.3)3 N/A

GSE74385 GPL10558 53 N/A N/A 17 8 28 22 (48.9) N/A4 N/A

Overall5 212 61.7 (14.6) 45 (32.8) 129 46 37 43 (37.4) 4.7 (4.3–5.4) N/A

GSE136661 Illumina HiSeq400 145 58.0 (13.5) 52 (35.9) 116 29 0 22 (15.1) N/A6 N/A

1Follow-up (years). 2Time to recurrence (years). 3Time to survival (time until death or end of study). 4Follow-up at least 3 years for non-recurrent tumors, though specific
times are not available. 5Of available data. 6Follow-up reported as 0–91 months (up to 7.6 years) with a median of 28 months (2.3 years), though specific times
are not available.

a sigmoidal cost function that is balanced for differences in the
prevalence of both grades:

C =
1

N1

∑
i∈S1

(
1

1+ e−α(Pi −0.5)

)
+

1
N3

∑
j∈S3

(
1

1+ e−α(0.5−Pj)

)

In the above equation, N1 and N3 are the number of grade 1 and
grade 3 tumors, respectively; S1 and S3 are the sets of grade 1 and
grade 3 tumors, respectively; Pk is the FCM clustering-derived
probability of patient k being in the grade 3-enriched cluster; and
α is a tunable hyperparameter. We used a two centroid model
wherein cluster polarity was established by comparing the ratio
of grade 3 to grade 1 tumors at both ends of the probability
distribution (hard-thresholding at 80% probabilities).

Single genes and module “meta-genes” which were
significantly different between grade 1 and grade 3 tumors
served as input variables. Backward elimination and forward
selection were used for feature selection with model performance
measured using the above cost function. Hyperparameter (α)
values of 1, 5, 10, and 100 tested for all models. Once the
separation of grades 1 and 3 was optimized, the probability
distribution of grade 2 meningiomas within the same output
was investigated. Grade 2 meningiomas with a probability ≥80%
of being in the grade 1-enriched cluster were defined as “grade
1-like,” and those with a probability ≥80% of being in the grade
3-enriched cluster were defined as “grade 3-like.”

We first compared the recurrence rates of “grade 1-like” and
“grade 3-like” meningiomas, and compared each to the rates
of grade 1 and grade 3 tumors. Notably, only 115 of the 212
patients in our cohort have annotated recurrence, though all had
recurrence labels in the RNA-seq validation cohort. To investigate
the degree of biological overlap between “grade 1-like” and grade
1 meningiomas, and similarly between “grade 3-like” and grade
3 meningiomas, we used the correlation between their module
“meta-gene” expression levels. In addition, we compared the
biological separation between the newly described subtypes of
grade 2 meningiomas to the separation of grades 1 and 3 by
correlating their differential module expression levels.

All computational work relied on the open-source
computational platform R (40) (The R Project), including

packages WGCNA (29), ppclust (41), Affy (33), Limma (34), and
SVA (42).

Statistical Methods
Transcriptomic expression levels were analyzed using the two-
sample t-test and Mann–Whitney U test. Recurrence rates were
compared with a Chi-square test. Notably, since only a subset of
samples had recurrence annotated, recurrence analysis was only
performed on this subset of patients.

RESULTS

Participants, Descriptive, and Outcome
Data
Please refer to Table 1 for details of our study cohort. In
brief, we included six microarray series [GSE100534 (43),
GSE77259 (44), GSE54934 (45), GSE43290 (46), GSE16581 (47),
GSE74385 (48)] with a combined 212 patients and one RNA-
seq series [GSE136661 (49)] with 145 patients. The distribution
of histopathologic subtypes are illustrated in Supplementary
Figure S2. We identify two subgroups of grade 2 meningiomas
with significantly different recurrence rates among those with
available data (75% in the aggressive subgroup and 0% in the
indolent subgroup, p < 0.005). These recurrence rates are similar
to the recurrence rates of grades 3 and 1, respectively, suggesting
clinical utility in this reclassification. A more detailed outline of
our results can be found below.

Main Results
We firstly established the gene expression profile that
differentiates grade 1 from grade 3 meningiomas. Differential
gene expression showed four up-regulated and two down-
regulated genes (log2 fold change ≥1.5, p ≤ 0.0001) summarized
in Figure 1A and Supplementary Table S1.

We created another signature to distinguish grade 1 from
grade 3 meningiomas using gene co-expression networks.
This yielded 29 co-expressed gene modules (Figure 1B), of
which 15 had median meta-gene expression levels that differed
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FIGURE 1 | Gene expression signatures associated with meningioma grade.
(A) Differential gene expression between grades 3 and 1 meningiomas reveal
four upregulated and two downregulated genes in grade 3 tumors [| log2(fold
change)| ≥ 1.5, p < 0.0001] highlighted with blue and red dots, respectively.
(B) Gene co-expression networks analysis. Dendrogram of genes based on
the topological overlap map, with the 29 gene modules represented by colors
in the bar below. Gray represents unclassified genes. (C) Plot of median
module meta-gene expression differences between grades (“m” versus “n”).
Only modules with significantly different expression between grades 1 and 3
are included (Mann–Whitney p < 0.05). Red indicates modules which are
upregulated in grade (m), and darker shades indicate larger effect sizes.
Notably, 11/15 modules are significantly different between grades 1 and 2
while 2/15 are also significantly different between grades 2 and 3. *p < 0.05
(Mann–Whitney).

significantly between grades 1 and 3 (Mann–Whitney p < 0.05,
Figure 1C). A subset of these 15 were also significant between
grades 1 and 2 and/or between grades 2 and 3 tumors, suggesting
the intermediate biology of grade 2 meningiomas.

To find a genetic signature that best differentiates grades
1 and 3 tumors, we used two-centroid soft clustering and
evaluated the resultant distribution of patients with a balanced
sigmoidal cost function (with a lower cost being indicative

of greater average separation). An iterative feature selection
approach was conducted using single genes and gene modules
which were differentially expressed between grades 1 from 3.
Notably, modules (represented by their meta-gene expression)
consistently yielded better performance (lower cost) than single
genes (Figure 2A). The lowest cost was achieved with two
modules as inputs; one of which contained 61 genes which map
predominantly to purine biosynthesis and the other consisted
of 121 genes which map strongly to mRNA splicing. Gene lists
for both of these modules can be found in the supplemental
content. We then used this signature to reclassify grade 2
meningiomas. Importantly, this signature was derived without
the clustering model having any input from grade 2 meningiomas
during training. Using 80% membership probability as a cutoff,
we reclassified 34 of 46 grade 2 meningiomas (74%) into a
“grade 1-like” (13/46) and “grade 3-like” (21/46) subgroup of
grade 2 meningiomas (Figure 2B). A small group of 12 grade
2 meningiomas did not fall into either “grade 1-like” or “grade
3-like” groups and may therefore represent a true biological
intermediate. The histopathologic subtype was annotated for
7/13 “grade 1-like” tumors (six atypical, one transitional with
brain invasion) and 7/21 “grade 3-like” tumors (six atypical,
one atypical with brain invasion). Of the 12 unclassified grade
2 meningiomas, 2 were atypical, 1 was meningothelial with
brain invasion, and 9 were not annotated. Recurrence rates were
available for only a subset of cases (30/46) and were significantly
higher in “grade 3-like” (9/12) compared to “grade 1-like” (0/8)
subgroups (p < 0.005). Concordantly, there was no significant
difference in recurrence rates between grade 1 and “grade 1-like”
groups (10/59 versus 0/8) nor between grade 3 and “grade 3-
like” groups (22/26 versus 9/12). Of the 12 unclassified grade 2
meningiomas 2 recurred, 8 had no documented recurrence and
2 had unknown recurrence status. Comparatively, we reclassified
20 of 29 grade 2 meningiomas in the RNA-seq validation cohort
(69%) using the same gene signatures and thresholding (6 “grade
1-like” and 14 “grade 3-like”) (Figure 3). The recurrence rates of
“grade 3-like” and “grade 1-like” were 1/6 (17%) and 7/14 (50%),
respectively. However, the numbers were too small to achieve
statistical significance.

Next, we verified the molecular identity of the newly
detected subgroups of grade 2 meningiomas. Using a systematic
comparison based on median module expression levels
(Figure 4), we found concordance between the biology of our
newly identified grade 2 subtypes with their adjacent grade
(Figure 4A). Differential analysis also suggested that the overall
biological separation between the newly described subgroups is
similar to the separation between grades 1 and 3 in module space.
These findings further lend to the validity of dividing grade 2
meningiomas into biologically homogenous subgroups which
parallel existing grades.

DISCUSSION

Key Results
Our study focuses on the most heterogenous group of
meningiomas: WHO grade 2. We were able to identify subgroups
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FIGURE 2 | Optimized soft clustering reveals two subgroups of grade 2 meningiomas. (A) Cost of multiple input configurations: “royal blue” (RB) and “tan” (T)
modules in blue and optimized differentially expressed genes in gray. Top inset depicts shape of sigmoid function with varied alphas. (B) Summary graph of fuzzy
C-means clustering best performing inputs (RB + T). The x-axis represents the probability of being in the grade-3 enriched cluster and y-axis represents the
proportion of patients in each bin of 10%. Line graph component represents normalized frequency distribution of each histological grade (green = grade 1,
black = grade 2, red = grade 3). Top jitter plot represents individual patients. Dark green and red bars above represent the 20 and 80% thresholding into grade 1-like
and grade 3-like subgroups of grade 2 meningiomas. Recurrence rates are plotted on the right by grade (green, black, red) and subgroup (“grade 1-like” and “grade
3-like”). *Chi-square p < 0.05.

FIGURE 3 | Validation of meningioma reclassification using RNA-seq data.
Summary graph of fuzzy C-means clustering best performing inputs on the
microarray data (modules RB + T). The x-axis represents the probability of
being in the grade-3 enriched cluster and y-axis represents the proportion of
patients in each bin of 10%. Line graph component represents normalized
frequency distribution of each histological grade (green = grade 1,
black = grade 2, red = grade 3). Top jitter plot represents individual patients.
Dark green and red bars above represent the 20 and 80% thresholding into
grade 1-like and grade 3-like subgroups of grade 2 meningiomas. Recurrence
rates are plotted on the right by grade and subgroup (“grade 1-like” and
“grade 3-like”). Notably, recurrence data is not available for the grade 3
meningiomas in this cohort.

with greater homogeneity compared to preceding studies, with
0 and 73% recurrence rates for grade 1-like and grade 3-like
grade 2 subgroups, respectively. We found that gene expression
signatures derived using co-expression networks outperform the

limited number of genes derived using conventional differential
gene expression. Validating this microarray-based classifier
with RNA-seq data, we found recurrence rates of 17 and
50% for the same reclassified groups, though the number of
samples was insufficient to achieve statistical significance. These
findings demonstrate the conceptual advantages of system-
based approaches like co-expression networks over conventional
techniques like differential gene expression and/or clustering.

Gene Modules
Interestingly, the modules found to be most predictive of
recurrence map to very broad and non-specific molecular
functions (RNA splicing and nucleotide synthesis). While this
makes the traditional identification of targetable pathways
difficult, these domains have been shown to be reliably affected in
cancer. Furthermore, they may be targetable with agents such as
small molecule splicing modulators and drugs such as rapamycin,
respectively (50, 51). We therefore propose further investigation
into these sub-disciplines of oncology within the context of
meningioma, though these findings remain preliminary and are
peripheral to our main findings.

Limitations
Though our study achieves its purpose, there are a number
of limitations which must be considered. Firstly, only a subset
of samples have recurrence and follow-up times documented,
which may influence generalizability. Furthermore, while a meta-
analysis of six independent case-series minimizes bias, there may
still be a degree of selection bias as one study is particularly
enriched in high grade tumors and the RNA-seq data lacks grade
3 tumors entirely (Table 1). We also acknowledge that the year
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FIGURE 4 | Molecular identity of newly described grade 2 meningioma subgroups. (A) Scatter plot of median module meta-gene expression (unitless). Larger circles
indicate Mann–Whitney p < 0.05. Colors correspond to previously identified modules in Figure 1B. ρ = Pearson coefficient, *p < 0.05. Note the positive correlation
between the modules of grade 1 and “grade 1-like” and grade 3 and “grade 3-like” subtypes. (B) Scatter plots of genetic separation between grade 2 subtypes as
histological grades. The x-axis represents the difference in median module expression between grades 3 and 1, while the y-axis represents the difference in median
module expression between “grade 3-like” and “grade 1-like.” Large circles represent modules which are significantly different in both comparisons and empty
circles indicate modules which are not significantly different in either. Of the remainder, 4/6 are significantly different between grades 3 and 1 only and 2/6 is
significantly different between “grade 3-like” and “grade 1-like” (∼).

of WHO grading is not annotated in the data used. However,
we consider the grading system used to classify meningiomas
in these studies to be post WHO 2007 given that all data were
deposited well after 2007. This classification incorporate the
updated criteria of the WHO 2000 edition (at least 4 mitoses in
10 high powered fields or 3 of the following criteria: increased
cellularity, high nuclear-to-cytoplasm ratios, prominent nucleoli,
uninterrupted pattern-less or sheet-like growth, or necrosis) (13).
Introduction of these criteria caused a surge in diagnostic rates
for grade 2 meningiomas followed by a plateau (13). Importantly,
further modifications of the WHO criteria are unlikely to result
in increased reporting for grade 2 meningiomas (52), and so the
prevalence of meningioma grades in our study is consistent and
parallels current practice. Additionally, the objective of this paper
is to subdivide grade 2-labeled meningiomas into homogeneous
subgroups based on transcriptomics alone, independent of WHO
grade, which we have done despite inconsistencies in grade
2 criteria. Finally, our cohort is highly heterogeneous, with
patients from geographically diverse centers with potentially
different surgical practices and a mixture of microarray and RNA-
sequencing platforms. Similarly, a stratification based on relevant
mutations in meningioma was not possible due to a lack of
sufficient annotation for such an analysis. Nevertheless, we show
reclassification of grade 2 meningiomas which is corroborated by
the recurrence rates and biological mechanisms which align with
the adjacent grade tumor.

Interpretation
The highly heterogeneous clinical behavior of grade 2
meningiomas suggests that histological criteria do not adequately

capture it is biology, thus motivating the segregation into
more homogeneous subgroups. So far, molecular profiling of
meningiomas has largely taken a monogenetic approach to
marker discovery for aggressive phenotypes (22). This has been
fruitful in identifying recurrence mutations (15) and transcripts
(22) linked to oncogenic cascades in meningiomas. However,
these approaches rely on differential gene expression to identify
relevant molecular mechanisms and thereby remains limited
in its ability to resolve small additive signal often relevant in
tumor biology. The use of gene co-expression networks helps
to address this limitation. Additionally, a majority of studies on
meningioma genetics use histopathological grade as the outcome
measure (15), which does not capture disease biology for the case
of grade 2 meningiomas. Epigenetic studies using conventional
clustering have analyzed heterogeneity of meningiomas across all
grades (14) proposing new benign, intermediate and malignant
methylation subclasses. “Intermediate” meningiomas are quoted
a 20% chance of disease-free survival, which is clinically
more useful than the outcome prediction yielded by histology
(50%). We believe this study adds to this developing literature
surrounding meningioma classification.

Generalizability
The generalizability of our study is augmented by its design
as a meta-analysis, though its purpose is one of hypothesis
generation for subsequent, confirmatory studies. Our results
therefore require prospective verification and could ultimately
help guide molecular diagnostics and prognostics in grade 2
meningiomas. This may ultimately inform recruitment protocols
for future and ongoing clinical trials, which are currently limited
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by the uncertainty of clinical outcomes in grade 2 meningiomas
(18). The approach in this study lend to the utility of complex
molecular signatures in augmenting histological diagnosis and
resolving other heterogeneous and challenging diseases.

CONCLUSION

Our findings help resolve the heterogeneity of grade 2
meningiomas by deconvolving them into subgroups which are
more homogenous than are proposed in prior studies. These
subgroups may help predict clinical course, thus allowing for
customized follow-up planning to manage resource intense
investigations such serial imaging while optimizing patient care.
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FIGURE S1 | Validating meta-genes as representations of module gene
expression. (A) The proportion of variance explained by each principle component
(PC) in the “tan” (left) and “royal blue” (right) modules. In both cases, the first
principle component explains considerably greater variance than any higher PC.
(B,C) Scatter plot of patients by first and second PCs, with colors representing
batch and sex, respectively. The “tan” module is depicted on the left and the “royal
blue” module on the right. Only patients with annotated sex are included in (C).
Notably, there is no clustering of batch and/or sex evident along the
first (or second) PC.

FIGURE S2 | Distribution of histopathologic subtypes in the microarray cohort, by
individual study. Top bar represents WHO grade (green = 1, black = 2, red = 3).
NOS, not otherwise specified.

TABLE S1 | Differentially regulated genes between grades 1 and 3.
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