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Molecular classification of bladder cancer is becoming increasingly important for its

clinical management. And, the current classifications are primarily based on gene

expression profiles. We identified four immunotypes of bladder cancer (referred to as

C1–C4) based on gene expression profiles performed by immune-related gene sets

in three independent data sets, and proved that this classification is effective and

reproducible. We found that C2 is an immune-infiltrating type and C4 is an immune

“desert” type. These types are characterized by the up- and downregulation of genes

encoding numerous immune checkpoint proteins and HLA and regulating human

immune cell subgroups. The survival rate was better for the C2 subtype than for other

subtypes. We believe that this can be explained by the antitumor effects of CD4 memory

T cells and CD8T cells as well as their ability to circumvent M0 macrophage antitumor

immunity. In addition, C2 was most sensitive to not only anti-PD-1 immunosuppressive

therapy, but also conventional chemotherapeutics such as gemcitabine and bleomycin.

The C4 subtype wasmost sensitive to the chemotherapy drugs cisplatin and doxorubicin.

This theoretical framework may guide the personalized treatment of bladder cancer in the

future. It is worth noting that the C2 immune infiltration type positively correlates with a

variety of stromal components, such as enrichment of endothelial cells and fibroblasts,

epithelial-mesenchymal transition, and angiogenesis, together with enrichment of seven

kinds of stem cells. We further identified tumor-related JAK-STAT and other signaling

pathways in the C2 subtype, along with important mutations in the proteins involved in

these pathways, revealing the complex mechanism underlying tumor immune escape.

Our results, and particularly the identification of hub genes specific to the C2 and C4

subtypes, provide a reference for the development of immunotherapeutic agents against

bladder cancer.
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INTRODUCTION

Bladder cancer (BLCA) is a complex disease with high morbidity and mortality, with at least
430,000 cases globally diagnosed each year (1–3). Despite considerable progress in the treatment
of BLCA, such as the development of transurethral cystectomy and intravesical Bacillus Calmette-
Guérin chemotherapy for non-muscle-invasive BLCA, and radical cystectomy for muscle-invasive
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BLCA, two-thirds of patients with invasive urothelial BLCA
show relapse or disease progression within 5 years (4). The
poor prognosis and recurrence of BLCA are largely due to
its heterogeneity. The molecular and genetic characteristics of
tumor cells determine the aggressiveness and sensitivity to
treatment (5). Therefore, the integration of molecular subtypes
into the clinical management of BLCA is critical (6). Robertson
et al. (7) identified five BLCA subtypes based on RNA-seq data,
and noted that the basal squamous subtype has the highest
levels of T cell markers, inflammatory genes, and lymphocyte
infiltration. Patients with luminal subtypes benefit the most
from anti-PDL1 therapy, with increased expression of multiple
immune markers, including CD274 (PD-L1) and PDCD1 (PD-1).
Despite many studies on the molecular characteristics of BLCA
based on gene expression profiles, methylation patterns, and
mutation distributions, few studies have directly investigated the
immunotypes of BLCA.

Therapies that modulate the immune response offer
substantial benefits against many cancer types (8–13). Several
immune checkpoint inhibitors targeting programmed cell
death protein 1 (PD1) and its ligands PDL1 and cytotoxic
T lymphocyte-associated protein 4 (CTLA4) have been
approved for BLCA. These advances provide opportunities
for precision and personalized treatment. However, PD1/PD-L1
therapy, currently the most well-established approach, is only
beneficial in ∼20% of patients. This may be explained by the
abnormally activated Treg cells. In cancer, Treg cells secrete
a variety of inhibitory cytokines after T cell receptor (TCR)-
mediated signaling activation, allowing tumor cells to escape
immune surveillance (14). This mechanism of tumor immune
escape highlights the challenges in effective implementation
of immunotherapy.

In this study, we identified four distinct and stable subtypes
from The Cancer Genome Atlas (TCGA) BLCA cohort
based on immune gene sets and verified these subtypes with
additional cross-platform databases, GEO, and ArrayExpress.
The distribution of the four subtypes with respect to clinical
traits, prognostic significance, and the pathways related to
subtype-specific heterogeneity were evaluated. Finally, we
investigated the associations of the four subtypes with human
immune cell populations and characteristic genes. These results
provide a powerful basis for future BLCA immunotherapy.

METHODS

Ethics Statement
All data were downloaded from public databases and, therefore,
did not require approval and review by the ethics committee.

Data Processing
The BLCA datasets were obtained from three platforms, TCGA,
GEO, and ArrayExpress. RNA-seq data (FPKM), variant data of
varscan, and clinical information for 407 cases were downloaded
from TCGA Knowledge Base (https://portal.gdc.cancer.gov/
repository), UCSC Xena (https://xenabrowser.net/datapages/),
and cBioPortal for Cancer Genomics (http://www.cbioportal.
org/). Gene annotation was performed using the Ensemble

database. RNA-seq (i.e., FPKM values) and clinical data (N
= 476) from the European Genome-phenome Archive (EGA)
for 476 cases of early urothelial carcinoma (E-MTAB-4321)
were downloaded from the ArrayExpress (https://www.ebi.ac.uk/
arrayexpress/) database. The GEO BLCA dataset was merged
from the following four datasets: GSE13507 (165 cases of
primary BLCA), GSE32548 (N = 131), GSE31684 (N = 93), and
GSE48276 (N = 116). The genes were annotated using the data
files for Illumina Human-6 v2.0 Expression BeadChip, Illumina
HumanHT-12 V3.0 Expression BeadChip, [HG-U133_Plus_2]
Affymetrix Human Genome U133 Plus 2.0 Array, and Illumina
HumanHT-12 WG-DASL V4.0 R2 Expression BeadChip. The
expression data for the four datasets were all quantile normalized,
and batch effect correction was performed using the sva
package in R.

Identification of BLCA Subtypes Based on
Immune Gene Sets
A literature search was performed to determine 29 immune gene
sets (15) to represent tumor immunity. For each BLCA dataset,
the GSVA package was used for ssGSEA of the 29 immune gene
sets. The ConsensusClusterPlus package was used for consensus
clustering and molecular subtype screening of ssGSEA scores. In
brief, k-means clustering was used, with 50 iterations (each using
80% of the samples). The best cluster number was determined
by the clustering score for the cumulative distribution function
(CDF) curve, and the relative changes in the area under the
CDF curve were evaluated. Principal component analysis (PCA),
which is often used for dimensionality reduction, was used to
verify the reliability of the consensus clusters.

Heatmap
The ssGSEA score xi for each BLCA sample i was converted to xi

′

using the equation xi
′
= (xi-xmin)/(xmax-xmin), where xmax and

xmin represent themaximum andminimum ssGSEA scores for all
samples in the BLCAdataset, respectively. The pheatmap package
in R was used for heatmap visualization.

Evaluation of Immune Cell Infiltration,
Tumor Purity, and Matrix Content in BLCA
The ESTIMATE algorithm (16) uses transcriptome data to infer
the tumor cell composition and infiltration and to identify
specific signatures related to the infiltration of stromal cells and
immune cells. The algorithmwas implemented using the estimate
package in R. Differences in molecular subtypes of BLCA in each
dataset were compared using the Kruskal–Wallis test.

Survival Analysis
Kaplan–Meier curves were used to evaluate survival time in
patients with BLCA in each dataset. The survival probability,
including overall survival (OS), relapse-free survival (RFS), and
progression-free survival (PFS), were evaluated for patients with
BLCA. The log-rank test was used with P < 0.05 as the threshold
for significance.

Frontiers in Oncology | www.frontiersin.org 2 October 2020 | Volume 10 | Article 544610

https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
https://xenabrowser.net/datapages/
http://www.cbioportal.org/
http://www.cbioportal.org/
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Tang et al. Bladder Cancer Immune Subtypes

Comparison of Immune Cell Subgroups
Among Molecular Subtypes of BLCA
CIBERSORT (17) is a tool for the deconvolution of the expression
matrix of immune cell subgroups based on the principle of linear
support vector regression. The CIBERSORT package in R was
used to evaluate differences in the frequencies of 22 immune cell
types among BLCA molecular subtypes.

Gene Co-expression Network Analysis
To investigate the distribution of characteristic immune genes
in each molecular subtype of BLCA and to identify genes or
gene modules that are highly related to immune cell infiltration,
the WGCNA R package was used to evaluate data from
IMMPORT (https://www.immport.org/) for 1,671 immune-
related genes consisting of the expression matrix. WGCNA
network construction and module detection use an unsigned
topological overlap matrix. The optimal soft threshold (power)
was 4, the minimum number of genes in the module was 30, and
the branch merge interception height was 0.25. A hub gene was
defined as a gene with a connection weight > 0.30 and no < 10
connected genes. The gene co-expression network was visualized
using Cytoscape 3.7.1. The R package “survminer” was used to
visualize the survival curve based on the best cut-off value for the

respective gene.

Gene Set Enrichment Analysis (GSEA)
The expression matrices for samples classified as subtypes C2
and C4 in all three datasets were used for a GSEA using
c2.cp.kegg.v7.0.symbols.gmt as the reference gene set. Using
GSEA version 4.0, the number of permutations was set to 1,000,
and FDR < 0.05 was the screening threshold.

Immune and Chemical Response
Prediction
We used TCGA’s FPKMRNA seq expression profile combination
subclass mapping method to predict the clinical response
of BLCA immune subtypes to immune checkpoint blockade.
Based on the largest publicly available pharmacogenomics
database [Genomics of Drug Sensitivity in Cancer (GDSC),
https://www.cancerrxgene.org/], we predicted the chemotherapy
response of each sample. Four commonly used drugs were
selected: cisplatin, doxorubicin, gemcitabine, and bleomycin.
The prediction process was carried out using the R package
“pRRophetic,” where the half-maximum inhibitory concentration
IC50 of the sample was estimated using ridge regression, and
the accuracy of the prediction was evaluated using 10-fold cross-
validation, according to the GDSC training set. All parameters
were set as the default values, and the repeated gene expression
was averaged.

Statistical Analysis
The association between routine clinical variables and immune
subtypes was tested using the chi-square test or Fisher’s exact
test, and Benjamini & Hochberg’s FDR corrected multiple tests.
Kaplan–Meier curve and log-rank test were used to compare OS,
RFS, and PFS of different immune subtypes. Mann–Whitney U-
test was used to compare the expression of immune checkpoint

proteins between different subtypes, and the difference in IC50
and stromal and stem cells among the different subtypes was
tested using the Kruskal–Wallis test. All statistical tests were
bilateral-sided and implemented in R programing language.

RESULTS

Identification of BLCA Subtypes Based on
Immune Gene Sets
A set of 29 immune-related genes representing multiple immune
cell types, functions, and pathways was used to study BLCA
subtypes in TCGA. A single-sample GSEA (ssGSEA) was
performed to obtain scores for 29 immune gene sets in each
sample. The R package ConsensusClusterPlus was used to divide
all tumor samples into k subtypes (k = 2–9). Based on the
consensus score of the CDF curve, k = 4 was optimal. In
addition, PCA showed that the ssGSEA scores based on the
29 immune gene sets could be divided into four subtypes
(referred to as C1–C4; Figures 1A–D). The extent of immune
infiltration decreased in the following order: C2 > C1 > C3 >

C4 (Supplementary Figure 1). Consistent results were obtained
using the GEO and ArrayExpress validation sets.

Immune Characteristics of the Four
Immune Subtypes
Thorsson et al. (18) defined 33 types of non-hematological
tumors in TCGA based on the immune expression characteristics
of five core modules (wound healing, IFN-gamma response,
TGF-beta response, macrophage regulation, and lymphocyte
infiltration) including 160 immune characteristics. Using three
cross-platform data sets, we obtained four stable immune
subtypes. C2 had the highest degree of infiltration based on the
five core modules, followed by C1, C3, and C4. In particular,
C4 exhibited a “desert” -like phenotype (Figure 1E) that lacked
T cells, especially CD8T cells, in the tumor microenvironment.
This is consistent with the results of our ssGSEA clustering
analysis based on 29 immune gene sets, indicating that the
degree of infiltration for most immune sets decreases in the
following order: C2 > C1 > C3 > C4 (Figures 2A, 3A, 4A). For
example, C2 had the highest ssGSEA scores for gene sets related
to B cells, immune checkpoints, HLA (Supplementary Figure 2),
CD8+ T cells, cytolytic activity, Th1 cells, macrophages, and
other immune components, and C4 had the lowest ssGSEA
scores. ESTIMATE was used to assess the stromal score, immune
score, and tumor purity of the four subtypes. For all three
cross-platform datasets, C2 had the highest stromal and immune
scores, and C4 had the lowest stromal and immune scores (C2 >

C1 > C3 > C4). In contrast, C2 had the lowest tumor purity,
while C4 had the highest tumor purity (C4 > C3 > C1 >

C2) (Figures 2B–D, 3B–D, 4B–D). Finally, we examined the
expression of six immune checkpoint genes (i.e., PDCD1, CD274,
PDCD1LG2, CTLA4, HAVCR2, and LAG3), which are related to
immune escape. With respect to immunotypes, the expression
levels of genes decreased in all data sets in the following order:
C2 > C1 > C3 > C4 (Figures 2E–J, 3E–J, 4E–J).
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FIGURE 1 | Consensus clustering of BLCA TCGA cohorts. (A) The consensus score matrix for BLCA samples when k = 4. A higher consensus score between two

samples indicates that they are more likely to be assigned to the same cluster in different iterations. (B) Cumulative distribution function (CDF) curve of the consistency

score for different subtype numbers (k = 2–9). (C) Delta area plot of the relative increase in cluster stability when k = 4. (D) Principal component analysis (PCA) of all

samples based on ssGSEA scores; each point represents a sample, and different colors distinguish the subtypes. (E) Heatmap of five immune characteristics for four

subtypes (C1–C4).

Clinical Characteristics of the Four
Immune Subtypes
To explore the association between immunotyping and common
clinical features, we analyzed sex, age, grade, pathological
subtype, T stage, M stage, N stage, race, lymphatic invasion, and
metastasis in the TCGA cohort (Table 1). Tumor grade differed
significantly among the four immunotypes. In particular, the
proportion of low-grade tumors was significantly higher in C4
cases than that in the other subtypes, and the proportion of
high-grade tumors was significantly higher in C1 and C2 than
in the other subtypes (FDR = 0.0030). Similarly, with respect
to the pathological subtype of BLCA, non-papillary lesions were
more frequent in C1 and C2, and papillary lesions were more
frequent in C4 (FDR < 0.0001). Further analysis of the TNM
system revealed that the proportion of M0 cases was higher
in C4 than in other subtypes, and the proportion of M1 cases
was higher in C3 than in other subtypes (FDR = 0.0127).
Regarding race, C4 was disproportionately found in the Asian
population, C1 was most frequent in the population of African
descent, and C2 wasmost frequent in the population of European
descent (FDR < 0.0001). The percentage of lymphovascular
invasion-negative cases was highest for C2, and the proportion
of lymphovascular invasion-positive cases was highest for C1

among all subtypes. There were no significant differences in
the distribution of immunotypes with respect to other clinical
characteristics. In the ArrayExpress validation cohort (Table 2),
only the grade and pathological subtypes showed significant
differences among immunotypes. Low-grade tumors were more
common in C1, and high-grade tumors were more common
in C2 than in other subtypes (P = 0.0174). Papillary lesions
were more common in C4, and non-papillary lesions were more
common in C2 than in other subtypes, and C1 had the highest
mixed component (P = 0.0213). No other clinical traits differed
significantly among immunotypes.

Prognostic Significance of the Four
Immune Subtypes
Although most BLCAs are “superficial,” they recur in 50–75% of
cases. The prevalence of BLCA far exceeds its incidence (4, 19). In
view of the high rates of recurrence and progression of BLCA, the
four subtypes based on ssGSEA scores of immune gene sets were
used to investigate the clinical prognosis. In the TCGA cohort,
the C2 subtype had the best OS (P = 0.039), RFS (P = 0.021),
and PFS (P = 0.002), indicating that high immune infiltration is
beneficial for survival in BLCA. In the GEO validation cohort (P
< 0.001), C2, and C3 had the best OS, and C4 had the worst OS.
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FIGURE 2 | Identification of the four immune subtypes in the BLCA TCGA cohort. (A) Heatmap of the four immune subtypes based on ssGSEA scores for 29 immune

gene sets. (B–D) Evaluation of stromal scores, immune scores, and tumor purity for the four immune subtypes by Mann–Whitney U-test. (E–J) Differential expression

of the immune checkpoint genes PDCD1, CD274, PDCD1LG2, CTLA4, LAG3, and HAVCR2 among the four subtypes evaluated by Mann–Whitney U-test; bars

indicate medians. ***P < 0.001.

The high OS for C3 may be explained by a specific GEO dataset
with a high frequency of this subtype (Figure 5).

Comparison of 22 Immune Cells Among
the Four Subtypes Using CIBERSORT
To compare the differential distribution of the four subtypes
in human immune cell subgroups, we used the CIBERSORT
algorithm to calculate the contents of 22 immune cell populations
in three datasets for each subtype by setting p < 0.05 as the

threshold for screening. We also performed correlation and
survival analyses of the 22 immune cell types in the TCGA
cohort (Figure 6). CD8T cells, CD4 memory-activated T cells,
follicular helper T cells, M0 macrophages, M2 macrophages, and
neutrophils had prognostic significance in BLCA. Frequencies
of M0 macrophages, CD4 memory-activated T cells, and CD8T
cells differed significantly among the immune subtypes in the
three datasets. CD8T cells and CD4 memory T cells were most
frequent in C2 and least frequent in C4 (i.e., C2 > C1 > C3
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FIGURE 3 | Identification of the four immune subtypes in the BLCA GEO cohort. (A) Heatmap of the four immune subtypes based on ssGSEA scores for 29 immune

gene sets. (B–D) Evaluation of stromal scores, immune scores, and tumor purity for the four immune subtypes by Mann–Whitney U-test. (E–J) Differential expression

of the immune checkpoint genes PDCD1, CD274, PDCD1LG2, CTLA4, LAG3, and HAVCR2 among the four subtypes, as evaluated by Mann–Whitney U-test; bars

indicate medians. **P < 0.01, ***P < 0.001.

> C4). This is consistent with our previous results regarding
the frequency of CD8T cells and levels of characteristic genes

related to the cytolytic activity (CD8A and GZMB) in each

subtype (Supplementary Figure 2). The subtype distribution of

M0 macrophages varied substantially among datasets. In the
ArrayExpress and TCGA cohorts, the ratio of M0 macrophages
decreased in the order of C3 > C4 > C1 > C2, and the
corresponding rank in the GEO cohort was C2 > C1 >

C4 > C3. This difference may be explained by the loss of
some genes associated with macrophages during the process of
data collection.

Differences in Sensitivity of Immune
Subtypes to Immuno/Chemotherapy
With the approval of immune checkpoint inhibitors as routine
drugs for BLCA, the possibility of immunotherapy can be
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FIGURE 4 | Identification of the four immune subtypes in the BLCA ArrayExpress cohort. (A) Heatmap of the four immune subtypes based on ssGSEA scores for 29

immune gene sets. (B–D) Evaluation of stromal scores, immune scores, and tumor purity for the four immune subtypes by Mann–Whitney U-test. (E–J) Differential

expression of the immune checkpoint genes PDCD1, CD274, PDCD1LG2, CTLA4, LAG3, and HAVCR2 among the four subtypes, as determined by Mann–Whitney

U-test; bars indicate medians. *P < 0.05, **P < 0.01, ***P < 0.001, ns: no significance.

further investigated. We used subclass mapping to compare the
expression profiles of the four defined immune subtypes with
those in a published data set containing 47 melanoma patients
who responded to immunotherapy (20, 21). The C2 subtype
was more sensitive to anti-PD-1 treatment than other subtypes
(Bonferroni correction P = 0.008). However, with regard to
the conventional chemotherapy of BLCA, the C2 subtype
exhibited a response different from that to immunotherapy. We

selected four representative chemical drugs (cisplatin, bleomycin,
doxorubicin, and gemcitabine) to evaluate the response of the
four immune subtypes. We trained the prediction model on the
GDSC cell line dataset using ridge regression and evaluated the
satisfactory prediction accuracy using 10-fold cross-validation.
We estimated the IC50 of each sample in TCGA dataset based on
the prediction models of these four chemical drugs. For cisplatin
and doxorubicin, C2 was the least sensitive and C4 was most
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TABLE 1 | Correlations between the four immune subtypes and clinical characteristics in the TCGA cohort.

Parameter Immune subtypes (n, %) P-value FDR

C1 C2 C3 C4

Sex Male 95 (72.5) 64 (67.4) 92 (76.0) 49 (81.7) 0.2247 0.2475

Female 36 (27.5) 31 (32.4) 29 (24.0) 11 (18.3)

Age ≤65 years 53 (40.5) 33 (34.7) 56 (46.3) 18 (30) 0.13577 0.1659

>65 years 78 (59.5) 62 (65.3) 65 (53.7) 42 (70)

Grade Low grade 2 (1.5) 1 (1.0) 9 (7.4) 9 (15) 0.0008 0.0030

High grade 129 (98.5) 93 (98.0) 110 (90.9) 51 (85)

NA 0 (0) 1 (1.0) 2 (1.7) 0 (0)

Stage Stage I 0 (0) 0 (0) 1 (0.8) 1 (1.7) 0.1119 0.1539

Stage II 36 (27.5) 33 (34.7) 34 (28.1) 26 (43.3)

Stage III 42 (32.1) 38 (40.0) 41 (33.9) 19 (31.7)

Stage IV 53 (40.4) 24 (25.3) 44 (36.4) 13 (21.6)

NA 0 (0) 0 (0) 1 (0.8) 1 (1.7)

Subtype Non-papillary 101 (77.1) 75 (78.9) 67 (55.4) 27 (45.0) <0.0001 <0.0001

Papillary 28 (21.4) 19 (20.0) 52 (42.9) 33 (55.0)

NA 2 (1.5) 1 (1.1) 2 (1.7) 0 (0)

T T0 0 (0) 0 (0) 0 (0) 1 (1.7) 0.0695 0.1207

T1–2 33 (25.2) 30 (31.6) 38 (31.4) 20 (33.3)

T3–4 91 (69.5) 60 (63.2) 72 (59.5) 30 (50)

NA 7 (5.3) 5 (5.2) 11 (9.1) 9 (15)

M M0 60 (45.8) 34 (35.8) 66 (54.5) 35 (58.3) 0.0046 0.0127

M1 3 (2.3) 0 (0) 6 (5.0) 2 (3.3)

Mx 67 (51.1) 61 (64.2) 49 (40.5) 22 (36.7)

NA 1 (0.8) 0 (0) 0 (0) 1 (1.7)

N N0 69 (52.7) 61 (64.2) 64 (52.9) 42 (70) 0.0768 0.1207

N1–3 52 (39.7) 24 (25.3) 41 (33.9) 12 (20)

Nx 8 (6.1) 10 (10.5) 14 (11.5) 4 (6.7)

NA 2 (1.5) 0 (0) 2 (1.7) 2 (3.3)

Race Asian 9 (6.9) 4 (4.2) 14 (11.6) 16 (26.7) <0.0001 0.0001

Black 9 (6.9) 6 (6.3) 4 (3.3) 4 (6.7)

White 110 (83.9) 85 (89.5) 94 (77.7) 35 (58.3)

NA 3 (2.3) 0 (0) 9 (7.4) 5 (8.3)

Lymphovascular invasion No 29 (22.1) 43 (45.3) 35 (28.9) 23 (38.3) 0.0100 0.0219

Yes 59 (45.0) 27 (28.4) 47 (38.8) 17 (28.3)

NA 43 (32.9) 25 (26.3) 39 (32.3) 20 (33.4)

Metastasis Metastatic 30 (22.9) 11 (11.6) 21 (17.4) 8 (13.3) 0.3692 0.3692

T, tumor; M, metastasis; N, lymph node. P-values were obtained by Fisher’s exact test; FDR was corrected by the Benjamini & Hochberg methods.

Bold values indicate statistical significance in both P-value and FDR, that is, < 0.05.

sensitive compared with the other subtypes. For bleomycin and
gemcitabine, C2 was most sensitive and C4 was the least sensitive
relative to the other subtypes (Figure 7).

Gene Set Enrichment Analysis
To explore the biological changes associated with each subtype,
we selected the C2 and C4 subtypes for GSEA. The C2 subtype
was enriched for genes related to apoptosis, JAK-STAT signaling
pathway, themitogen-activated protein kinase (MAPK) signaling
pathway, focal adhesion, and cell adhesion molecules, and these
results were verified using GEO and ArrayExpress datasets. C4

was enriched for genes involved in metabolic pathways, but this
enrichment was not significant under the strict FDR < 0.05
threshold (Figure 8).

Somatic Mutation Landscape of Immune
Subtype-Related Pathways Identified by
GSEA
The tumor genome pattern is reportedly related to antitumor
immunity. To investigate whether there is a difference in the
frequency of somatic mutations associated with the BLCA
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TABLE 2 | Correlation between the four immune subtypes and clinical characteristics in the ArrayExpress cohort.

Parameter Immune subtype (n, %) P-value FDR

C1 C2 C3 C4

Sex Male 106 (75.7) 47 (72.3) 129 (77.7) 85 (81.0) 0.5901 0.6725

Female 34 (24.3) 18 (27.7) 37 (22.3) 20 (19.0)

Age ≤65 years 53 (37.9) 19 (29.2) 62 (37.3) 35 (33.3) 0.5895 0.6725

>65 years 87 (62.1) 46 (70.8) 104 (62.7) 70 (66.7)

Grade High grade 46 (32.9) 30 (46.2) 74 (44.6) 42 (40.0) 0.0174 0.0960

Low grade 88 (62.8) 35 (53.8) 92 (55.4) 62 (59.0)

PUNLMP 6 (4.3) 0 (0) 0 (0) 1 (1.0)

T CIS 1 (0.7) 1 (1.5) 1 (0.6) 0 (0) 0.1642 0.3694

Ta 112 (80) 44 (67.7) 111 (66.8) 78 (74.3)

T1 24 (17.2) 15 (23.1) 49 (29.5) 24 (22.8)

T2–4 3 (2.1) 5 (7.7) 5 (30.1) 3 (2.9)

Subtype Papillary 119 (85.0) 51 (78.5) 146 (88.0) 101 (96.2) 0.0213 0.0960

Solid 2 (1.4) 3 (4.6) 6 (3.6) 3 (2.9)

Mixed 4 (2.9) 1 (1.5) 3 (1.8) 0 (0)

Unknown 15 (10.7) 10 (15.4) 11 (6.6) 1 (0.9)

Tumor size <3 cm 87 (62.1) 33 (50.8) 96 (57.8) 67 (63.8) 0.6724 0.6725

≥3 23 (16.4) 16 (24.6) 32 (19.3) 16 (15.2)

Unknown 30 (21.5) 16 (24.6) 38 (22.9) 22 (21.0)

BCG treatment No 111 (79.3) 53 (81.5) 134 (80.7) 90 (85.7) 0.6238 0.6725

Yes 29 (20.7) 12 (18.5) 32 (19.3) 15 (14.3)

CIS in disease course No 112 (80) 55 (84.6) 145 (87.3) 90 (85.7) 0.3471 0.6249

Yes 28 (20) 10 (15.4) 21 (12.7) 15 (14.3)

Cystectomy No 135 (96.4) 60 (92.3) 156 (94.0) 93 (88.6) 0.1045 0.3134

Yes 5 (3.6) 5 (7.7) 10 (6.0) 12 (11.4)

BCG, bacillus Calmette-Guérin; CIS, carcinoma in situ; P-values were obtained by Fisher’s exact test; FDR was corrected by the Benjamini & Hochberg method.

FIGURE 5 | Survival analysis of the four subtypes. Kaplan–Meier survival curves for (A) overall survival (OS), (B) relapse-free survival (RFS), and (C) progression-free

survival (PFS) in the TCGA cohort, and (D) overall survival (OS) in the GEO cohort. P < 0.05 was considered significant.

subtype-related pathway, and to observe the different patterns
of mutations in the BLCA subtypes, somatic mutation data
from TCGA database were analyzed. Figure 9 shows genes
with high mutation frequency in the MAPK signaling pathway,
apoptosis pathway, JAK-STAT signaling pathway, and in focal
adhesion and cell adhesion molecules. The frequency of FGFR3
mutations (23 and 25%) in C3 and C4 was much higher
than that in C1 (6%) and C2 (6%). The mutation frequency

of PIK3CA, an important apoptosis-related gene, in C4 (8%)
was significantly lower than that in C1 (25%), C2 (22%), and
C3 (20%). The mutation frequency of EP300, one of the core
genes of the JAK-STAT signaling pathway, in C4 (7%) was
significantly lower than that in C1 (14%), C2 (15%), and C3
(16%). In addition, the mutation frequency of ERBB2 in C3 (4%)
was significantly lower than that in C1 (11%), C2 (17%), and
C4 (15%).
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FIGURE 6 | Distribution differences and prognostic significance of the four subtypes in 22 human immune cells using the CIBERSORT algorithm. (A) TCGA, (B) GEO,

and (C) ArrayExpress cohorts showed significantly different subgroups of immune cells among the four subtypes. *P < 0.05, **P < 0.01, ***P < 0.001. (D) Network

diagrams of correlation and prognosis for 22 immune cell subgroups in the TCGA cohort.

Correlation of BLCA Subtypes With Stroma
and Stem Cell Characteristics
Stromal and stem cell infiltration were studied as there

are significant differences in stromal scores, in addition to
immune scores, of immune subtypes of BLCA. The ssGSEA
algorithm was used to calculate the abundance of four stromal
components and eight stem cell types, and is illustrated in
the heat map (Figure 10). Significant differences were observed
between C2 and three other subcategories, including four
stromal components (endothelial cells, fibroblasts, EMT, and
angiogenesis) and seven stem cell populations [EC (embrional
carcinoma), SC (pluripotent stem cell), ESC (Embryonic stem
cell), HSC (hematopoietic stem cell), MSC (mesenchymal stem
cell), MaSC (mammary epithelial cell), and NSC (neural stem
cell)], Which in C2 subtype was significantly higher than the
C1, C3, and C4 subtypes. It is worth noting that the stromal
components in C2 (endothelial cells and fibroblasts, EMT and
angiogenesis) were significantly higher, which is consistent with
the previous results of C2-enriched stroma-related features.

Furthermore, the abundance of iPSC (induced pluripotent stem
cell) in C3 and C4 was significantly higher than that in C1 and C2
(Figure 10).

Analysis of Gene Co-expression Networks
in the Four Subtypes
To further identify the characteristic marker genes for BLCA
immunotyping, we downloaded 1,671 immune genes from the
IMMPORT database for gene co-expression network analysis
(WGCNA) and obtained eight gene modules. Two modules
shown in yellow and black in Figure 11were positively correlated
with C2 and negatively correlated with C1, C3, and C4. The
red, green, and blue modules positively correlated with C1 and
C2, and negatively correlated with C3 and C4. The brown
module negatively correlated with C2 and positively correlated
with C1, C3, and C4. The pink module negatively correlated
with C1 and C4 and positively correlated with C2 and C3.
The turquoise module was more highly correlated with C2,
C3, and C4 than with C1, with a positive correlation with C2
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FIGURE 7 | Differences in sensitivity of immune subtypes to immuno/chemotherapy. (A) Submap analysis manifested that C2 could be more sensitive to the

programmed cell death protein 1 inhibitor (Bonferroni-corrected P = 0.008). The box plots of the estimated IC50 for (B) cisplatin, (C) doxorubicin, (D) gemcitabine

and (E) bleomycin are shown for C1–C4 in TCGA cohort.

FIGURE 8 | Gene set enrichment analysis. (A–C) C2 vs. C4 gene set enrichment analysis (GSEA) in TCGA, GEO, and ArrayExpress cohorts. FDR < 0.05 was the

screening threshold.

FIGURE 9 | Somatic mutation landscape of immune subtype-related pathways identified by GSEA among (A–D) C1-C4 in TCGA cohort.
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FIGURE 10 | Correlation of BLCA subtypes with stroma and stem cell characteristics. Kruskal-Wallis test, ****P < 0.0001 in TCGA cohort.

and inverse correlations with C3, C4, and C1. In the turquoise
module, 11 hub genes centered on PDCD1 were identified, and
a strong correlation with the ssGSEA scores for 29 immune
gene sets was confirmed. SH2D1A, PDCD1, LCP2, and TRAC
negatively correlated with the majority of immune gene sets,
and TRVB28, HLA-DRA, HLA-DMB, CD8A, CD3E, CD3G, and
CCR5 positively correlated with the majority of immune gene
sets (Figure 11). A survival analysis showed that high levels of all
genes except LCP2 are predictive of a good prognosis for BLCA
(Figure 12).

DISCUSSION

BLCA is a highly aggressive malignant tumor. In the
United States, it is the fourth leading cancer type and the
seventh leading cause of death in men, and the eighth leading
type of cancer and the tenth leading cause of death in women
(19). Molecular subtypes of BLCA, generally based on gene
expression profiles, have been or will soon be incorporated
into clinical management. We focused on the immunotyping
of BLCA based on specific immune gene sets and validated the
reliability and reproducibility of our findings.

Among the four distinct subtypes identified in our study, C2
was an immune-infiltrating type, and C4 was an immune “desert”
type. The C2 and C4 subtypes were associated with upregulation
and downregulation, respectively, of numerous genes encoding
immune checkpoints and HLA molecules, as well as other
immune cell signatures. Furthermore, survival analysis showed
that C2 had a better prognosis than the other subtypes. In the
GSEA, in addition to enrichment for immune-related pathways,
the C2 subtype was enriched for many pathways closely related
to the occurrence, development, and metastasis of cancer, such
as apoptosis, cell adhesion, and focal adhesion, as well as JAK-
STAT and MAPK signaling pathways (22–27). Activation point
mutations of FGFR3 are found in up to 80% of low-grade and

staged urothelial carcinomas (UC) of the bladder (28). The
most common mutations tend to involve ligand-independent
receptor dimerization, which lead to transphosphorylation
and downstream signaling. In telomerase-immortalized human
urothelial cells (TERT-NHUC) expressing the FGFR3–TACC3
fusion gene, a point mutation in FGFR3 (S249C) activates
the MAPK pathway and phospholipase cγ1 (PLCγ1), and
induces PLCγ1-dependent overgrowth at the confluence (28, 29).
At the same time, other studies have shown that a FGFR3
mutation suppressed acute inflammation, causing immune cells
(mainly neutrophils) to behave aberrantly in tumors, thereby
causing tumor progression (30). The high-frequency mutations
of FGFR3 in the C3 and C4 subtypes are likely to be the
cause of poor prognosis. PIK3CA encodes the p110α catalytic
subunit of phosphatidylinositol 3-kinase (PI3K). It regulates
important cellular functions via the PI3K/Akt pathway, including
proliferation, metabolism, protein synthesis, angiogenesis, and
apoptosis. It is known that mutations in PIK3CA are related to a
variety of human cancers, and the mutant PIK3CA is considered
an oncogene. Evidence shows that the pan-PI3K inhibitor
BKM120 significantly inhibits the growth of human BLCA cell
lines with PIK3CA mutations, and the addition of BKM120
makes PIK3CA-mutated tumors sensitive to PD-1 blockage (31,
32). This is consistent with the higher rate of PIK3CA mutations
in the C2 subtype and its increased sensitivity to anti-PD-1
therapy. EP300 and CREB binding protein (CREBBP) are two
homologous lysine acetyltransferases (KAT) in metamorphoses,
which have multiple cellular functions. They mainly function
as transcriptional regulators, but also exert non-transcriptional
effects on DNA replication and metabolism, inside and outside
the nucleus. Although EP300/CREBBP-inactivating mutations
(33, 34) have been observed in some cancers, secondary gain-of-
function mutations in EP300/CREBBPmay further propel cancer
development (35). Nevertheless, it is not clear how the increase
in the KAT activity of EP300 or CREBBP promotes malignant
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FIGURE 11 | Co-expression analysis of 1,671 immune genes in the TCGA cohort. (A,B) Topological network analysis of the optimal soft threshold. (C) Dynamic tree

cut after module combination. Co-expressed genes can be divided into brown, pink, red, yellow, black, green, blue, and turquoise modules. (D) Heatmap of the

correlations between the eight modules and four subtypes is shown. (E) Heatmap of genes with the most significant correlations with the C2 subtype in the turquoise

module. (F) Gene interaction network for the turquoise module. (G) Correlation heatmap of hub genes and 29 immune gene sets. *P < 0.05, **P < 0.01.

tumors. ERBB2 is reportedly extensively mutated in solid tumors.
Preclinical data indicate that ERBB2-activating mutations are
responsive to ERBB2 tyrosine kinase inhibitors (36). The latest
results indicate that the clinical benefit of ERBB2 tyrosine kinase
inhibitor, neratinib, may depend on the type of ERBB2 mutation
and the type of tumor. For example, no response to neratinib

treatment was observed in BLCA and colorectal cancer patients
with ERBB2 mutations in a clinical study (37). Therefore, the
significance and mechanism of EP300, CREBBP, and ERBB2
mutations in BLCA warrant in depth-investigation.

C2 was associated with the most potent immune infiltration
and antitumor properties, including high neutrophil, B cell,
CD8+ T cell, and macrophage infiltration. These results were
verified using the CIBERSORT algorithm, evaluating 22 human
immune cell subgroups. For the three platforms (TCGA, GEO,
and ArrayExpress), the distributions of immune cell subgroups,

and survival related to M0 macrophages, CD4 memory-activated
T cells, and CD8T cells significantly differed among the four
subtypes. The proportion of CD4 memory-activated T cells and
CD8T cells was much higher in C2 than in the other subtypes,
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FIGURE 12 | Hub-gene survival analysis. (A–J) Survival analysis of 10 hub genes divided according to the optimal thresholds of their respective expression levels. P <

0.05 was considered significant.

and the proportion of M0 macrophages was lower in C2 than
in the other subtypes. The antitumor effects of CD4 memory-
activated T cells and CD8T cells in the immune system are
established. However, in addition to the immune functions of
tumor-associated macrophages (TAMs), extensive research has
shown that TAMs regulate tumor growth, invasion, metastasis,
extracellular matrix remodeling, and angiogenesis via the release
of epidermal growth factor, chemokines, MMP, and VEGF. The
density of TAMs is associated with a poor prognosis (38–41). This
is consistent with the observed downregulation and upregulation
of M0 macrophages in C2 and C4 subtypes in the TCGA cohort,
and is also consistent with the prolonged survival of the C2
subtype compared to other subtypes.

In our study, we demonstrated that a stronger immune
infiltration subtype C2 could indeed predict better OS and lower
relapse rates. Moreover, C2 showed the strongest sensitivity to
anti-PD-1 treatment compared to other subtypes. C2 subtype
benefits from PD-1 inhibitor treatment as it hinders the
interaction between PD-1 and PD-L1, thereby enhancing in
vitro T cell response and mediating preclinical anti-tumor
activity. Moreover, Aptsiauri et al. (42) pointed out that the
transition of primary tumors from HLA-1-positive to HLA-
1-negative (MHC/HLA class I loss in cancer) is one of the
main mechanisms for tumors to escape from T cell recognition
and destruction (43). This is in line with our observations
that HLA molecules are generally upregulated in C2 subtype
and downregulated in C4 subtype of BLCA. The different
immune cell infiltration states of the subtypes are also in
agreement with the observed tumor heterogeneity in the
early (permissible phase) stage of BLCA where HLAI-positive
and HLA-negative tumor cells are present, wherein tumor
infiltrating lymphocytes and M1 macrophages respond as part
of the active anti-tumor Th1. In the later stage (encapsulation
period), tumor nests are mostly HLA-I-negative with immune
cells residing in the peri-tumoral stroma, which forms a

granuloma-like encapsulated tissue structure. In addition, the
loss of heterozygosity (LOH) in the chromosome region 6p21.3
may lead to the loss of HLA haplotypes, which is considered
to be an important mechanism for tumors to escape from
T lymphocyte recognition (44), and may be the reason for
the poor effect of immunotherapy in C4 subtype. The C2
subtype was most sensitive to treatment with conventional
chemotherapeutic drugs such as gemcitabine and bleomycin,
whereas it was least sensitive to cisplatin and doxorubicin. In
contrast, the C4 subtype was most sensitive to cisplatin and
doxorubicin. The above discussion reveals that the patients
of C2 subtype of BLCA may benefit from a combination of
chemotherapy and immunotherapy. This study aims to provide
substantiation to the need for personalized and precise treatment
in clinical practice.

Finally, in a WGCNA, hub genes related to subtype
characteristics were identified. Eleven hub genes centered on
PDCD1 positively correlated with the C2 subtype, negatively
correlated with the C3 and C4 subtypes, and were closely
related to comprehensive immune responses. A survival analysis
revealed that high levels of SH2D1A, PDCD1, TRAC, TRVB28,
HLA-DRA, HLA-DMB, CD8A, CD3E, CD3G, and CCR5 were
predictive of a good prognosis for BLCA, consistent with the
better survival probability for the C2 subtype compared to
subtypes. The discovery of these immune-related genes may be
good news for patients with immune “desert” phenotypes. If the
expression of these immune genes in the “desert” -like phenotype
is upregulated, it may significantly enhance the outcome of
immunotherapy. These results highlight the vital role of these
genes in the immune environment.

Our study has some limitations. For instance, in the
GSEA, non-immune pathways significantly related to the C4
subtype were not enriched, which limited our analysis of the
characteristics of the C4 subtype associated with tumor pathways.
The results also showed bias toward the C2 subtype. Additionally,
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based on the 29 immune gene sets, immunophenotyping did
not simultaneously reflect all immune characteristics of BLCA.
Some potentially important immune cells were not included,
for example, no gene sets were defined for central memory T
cells, which produce antibodies with long-term memory after
antigen activation. Moreover, the interaction of immune gene
sets was not included in this study, and this should be a focus
of future research.

In conclusion, the immunotyping of BLCA based on immune
gene sets clearly described the heterogeneity of different BLCA
immune microenvironments, which reflected the sensitivity of
immunotyping. This study also revealed that the occurrence
and development of BLCA were considerably affected by the
immune microenvironment. Validation of different immune-
related methods may provide clinical decisions for BLCA, as well
as other cancers.
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Supplementary Figure 1 | Heatmap of the TCGA cohort of bladder cancer

subtypes.

Supplementary Figure 2 | Differences in HLA gene expression among bladder

cancer immune subtypes. Distribution of HLA gene expression in the four

subtypes in the TCGA and (B) ArrayExpress cohorts. Differences in molecular

subtypes of BLCA in each dataset were compared using the Kruskal–Wallis test.
∗∗∗P < 0.001.

Supplementary Figure 3 | Differences in CD8T cell and macrophage marker

gene expression among the four subtypes. (A–C) Differences in CD8A expression

among the four subtypes in the TCGA, GEO, and ArrayExpress cohorts. (D–F)

Differences in GZMB expression among the four subtypes in the TCGA, GEO, and

ArrayExpress cohorts; bars indicate medians. ∗∗∗P < 0.001.
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