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Background: In differentiating indeterminate pulmonary nodules, multiple studies
indicated the superiority of deep learning–based computer-assisted diagnosis system
(DL-CADx) over conventional double reading by radiologists, which needs external
validation. Therefore, our aim was to externally validate the performance of a commercial
DL-CADx in differentiating benign and malignant lung nodules.

Methods: In this retrospective study, 233 patients with 261 pathologically confirmed
lung nodules were enrolled. Double reading was used to rate each nodule using a
four-scale malignancy score system, including unlikely (0–25%), malignancy cannot be
completely excluded (25–50%), highly likely (50–75%), and considered as malignant
(75–100%), with any disagreement resolved through discussion. DL-CADx automatically
rated each nodule with a malignancy likelihood ranging from 0 to 100%, which was
then quadrichotomized accordingly. Intraclass correlation coefficient (ICC) was used to
evaluate the agreement in malignancy risk rating between DL-CADx and double reading,
with ICC value of <0.5, 0.5 to 0.75, 0.75 to 0.9, and >0.9 indicating poor, moderate,
good, and perfect agreement, respectively. With malignancy likelihood >50% as cut-off
value for malignancy and pathological results as gold standard, sensitivity, specificity,
and accuracy were calculated for double reading and DL-CADx, separately.

Results: Among the 261 nodules, 247 nodules were successfully detected by DL-
CADx with detection rate of 94.7%. Regarding malignancy rating, DL-CADx was in
moderate agreement with double reading (ICC = 0.555, 95% CI 0.424 to 0.655).
DL-CADx misdiagnosed 40 true malignant nodules as benign nodules and 30 true
benign nodules as malignant nodules with sensitivity, specificity, and accuracy of 79.2,
45.5, and 71.7%, respectively. In contrast, double reading achieved better performance
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with 16 true malignant nodules misdiagnosed as benign nodules and 26 true benign
nodules as malignant nodules with sensitivity, specificity, and accuracy of 91.7, 52.7,
and 83.0%, respectively.

Conclusion: Compared with double reading, DL-CADx we used still shows inferior
performance in differentiating malignant and benign nodules.

Keywords: computer-assisted diagnosis, deep learning, solitary pulmonary nodules, malignancy,
differential diagnosis

INTRODUCTION

Lung cancer remains the most common cancer accounting for
11.6% of all diagnosed cancer cases and causes about 1.8 million
cancer deaths with the highest cancer death rate of about one in
five (18.4%) among all cancer deaths in 2018 worldwide (1). With
an overall 5-year survival rate of only 19.4%, patients with lung
cancer have a 5-year relative survival rate of 57.4% for localized
stage disease, but only 16% were diagnosed at the localized stage
(2). Early detection and accurate diagnosis of suspicious lung
nodules are the key to minimize the mortality of lung cancer.
So far, a National Lung Screening Trial (NLST) showed that low-
dose CT (LDCT) screening detected 13% more lung cancer and
resulted in 20% decrease in lung cancer–specific 5-year death rate
than radiography (3), whereas another lung cancer screening trial
(Dutch-Belgian NELSON) also revealed that LDCT screening
reduced over 25% in mortality (4). Based on these encouraging
results, now the annual LDCT screening for lung cancer has been
routinely recommended for the elderly with high risk of lung
cancer worldwide.

However, here comes another problem that a large number
of incidental nodules were detected during the LDCT screening
for lung cancer. How to efficiently and effectively manage this
vast number of detected indeterminate nodules and identify those
patients with highly suspicious nodules for close follow-up or
further intensive diagnostic workup poses a great challenge to
clinicians. Since as early as the late 1980s, a computer-assisted
diagnosis system (CADx) has emerged and has been constantly
improved aiming to enhance the clinical workflow of lung nodule
management (5). To date, multiple studies (6, 7), including
our previous work (8), have shown the superiority of CADx
in detecting nodules on CT images with higher sensitivity than
that of conventional double reading by radiologists. However, its
diagnostic performance in differentiating benign and malignant
nodules still needs to be further investigated.

Traditionally, using hand-engineered features such as shape
features, texture features, and so on, CADx has already achieved
promising performance in classifying malignant and benign lung
nodules (9–11). In the latest years, deep features learned using
deep convolutional neural networks (CNNs) have been shown

Abbreviations: 3D, three-dimensional; AUC, area under the curve; CADx,
computer-assisted diagnosis system; CI, confidence interval; CNN, convolutional
neural network; DL-CADx, deep learning–based computer-assisted diagnosis
system; GGN, ground-glass nodule; ICC, intraclass correlation coefficient; LDCT,
low-dose CT; LIDC/IDRI, lung image database consortium/image database
resource initiative; NLST, National Lung Screening Trial; ROC, receiver operating
characteristic.

better than hand-engineered features in multiple computer
vision competitions (12–14). By applying CNN extracting deep
features, a handful of studies have shown that their deep learning
models had unbelievably robust classification performance in
differentiating malignant and benign lung nodules (15, 16).
However, most of the deep learning–based CADx (DL-CADx)
are trained using publicly available database, i.e., LIDC/IDRI
(Lung Image Database Consortium/Image Database Resource
Initiative) database, in which histopathology of each nodule
(“ground-truth”) is not available and its malignancy risk is mainly
stratified by experienced radiologists (15, 17, 18). Therefore, to
test its generalizability and accuracy, DL-CADx with previously
reported seemingly robust classification performance should be
further externally validated with pathologically confirmed lung
nodules with heterogeneity from different institutions.

Herein, in this study, using confirmed histopathology as gold
standard, we investigated the diagnostic accuracy of a state-of-
the-art commercially available DL-CADx on a sample from our
institution in differentiating benign and malignant lung nodules,
compared with the performance of conventional double reading
by radiologists. In addition, we also investigated the added value
of objective quantifications by DL-CADx to the conventional
morphology-based differential diagnosis.

MATERIALS AND METHODS

Study Population
This retrospective study was approved by the Institutional Review
Board with the written informed consent waived from each
subject. Based on the electronic medical records, from March
2017 to November 2018, 399 subjects who received surgical
resection for lung lesions at our institution were enrolled. We
excluded those subjects (1) who received any other cytotoxic
treatment before surgery, (2) who did not take CT examination
before surgery at out institution, (3) with lung lesions larger than
30 mm in diameter, (4) with significantly diffuse morphologic
changes in lung parenchyma other than nodules, and (5) with
quality-compromised CT image. Finally, 233 patients with 261
pathologically confirmed lung nodules were enrolled in this study
(Figure 1 and Table 1).

CT Parameters for Image Acquisition
All the CT examinations were performed either on a 64-row
multi-detector CT (Optima CT660; GE Healthcare) or a 256-
row multi-detector CT (Revolution; GE Healthcare) with tube
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FIGURE 1 | Flowchart shows the process of enrolling subjects.

TABLE 1 | Patient characteristics of enrolled subjects.

Characteristics Number of patients or nodules

Gender (male/female) 121:112

Benign group 28:16

Malignant group 93:96

Age (years) 55.87 ± 10.79

Benign group 53.0 ± 11.1

Malignant group 56.8 ± 10.6

Size (mm)

Benign nodules group 13.4 ± 7.6

Malignant nodules group 16.7 ± 7.7

Benign nodules (59)

Inflammatory nodule 35

Pulmonary harmatoma 4

Pulmonary nerve sheath tumor 2

Sclerosing pneumocytoma 2

Atypical alveolar hyperplasia 5

Atypical adenomatous hyperplasia 11

Malignant nodules (202)

Carcinoma in situ 23

Minimally invasive adenocarcinoma 8

Adenocarcinoma 148

Squamous cell carcinoma 12

Small cell carcinoma 2

Mucoepidermoid carcinoma 1

Poorly differentiated carcinoma 1

Pleomorphic carcinoma of lung 1

Metastasis 6

voltage of 120 kVp and an automatic smart milliampere setting
of tube current from 200 to 500 mA. Other parameters included
matrix size = 512 × 512 pixels for both CT scanners, and

collimation = 64 × 0.6 mm for the 64-row multi-detector CT and
256 × 0.6 mm for the 256-row multi-detector CT, respectively.
Based on a volumetric acquisition, a bone recon type was used
for image reconstruction at a slice thickness of 1.25 mm with
0.625 mm reconstruction increment. At the end of a maximal
inspiration, patients received scanning from the apex of the lung
to the diaphragm within a single breath-hold.

Image Analysis
Double Reading by Radiologists
Blind to the results by the DL-CADx and the pathological
results, two radiologists (ZL and LL with 8 years and 15 years
of experience in lung CT images interpretation, respectively)
independently rated the initial malignancy risk of each lung
nodule using a four-scale malignancy score system in a structured
report, in which 1 = unlikely to be malignant (≤25%), 2 = the
likelihood of malignancy cannot be completely excluded (25–
50%), 3 = highly likely to be malignant (50–75%), and
4 = considered as malignant (>75%). Then, a radiologist (DL)
with more than 30 years of experience in lung imaging finalized
the malignancy rating with any disagreement resolved through
discussion. During evaluation, radiologists did not have access
to the patients’ information, including age, gender, clinical
manifestations, and laboratory test results. To mimic clinical
scenarios, no specific diagnostic criteria were predefined, and the
malignancy likelihood for each nodule was rated solely based
on the visual assessment of the nodule morphology and manual
measurement of the nodule size, CT value, and so on. When
multiple nodules were detected on a single CT volume, each of
nodules with size of larger than 5 mm in diameter in the axial
section were evaluated separately.

Subsequently, the following information from each CT
scan was recorded by conventional double reading with any
disagreement resolved through discussion: (1) the location of
each nodule; (2) the size of each nodule (the largest diameter and
its vertical diameter of the nodule in the axial section with its
largest area, and the size of part-solid nodules including the size
of solid component and ground-glass component as a whole); (3)
density characterization of each nodule [solid, subsolid including
part-solid, and ground-glass nodules (GGNs)], followed by a
list of predefined morphologic features, including (1) shape
(round or oval, or irregular including triangular or polygonal);
(2) margins (ill-defined or well-defined, presence of lobulation
or not, presence of spiculation or not); (3) cavitation; (4)
calcification; (5) air bronchogram; (6) bubble-like lucency; (7)
retraction of pleura or fissure; 8) vascular convergence.

Evaluation by DL-CADx
A commercial DL-CADx (σ-Discover/Lung; 12 Sigma
Technologies) was used to evaluate the whole set of CT
images for each subject. Initially, this DL-CADx was trained on
public databases, i.e., LIDC/IDRI (19) and the National Cancer
Institute NLST (3). Among all the lung nodules detected for
each subject, only the nodule with pathological result (the target
nodule) was focused on. The first step was to check whether
the target nodule on each CT was successfully detected by
DL-CADx. As for nodule density subtype, the gold standard
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was finalized by combining both the result by DL-CADx and
the result by double reading. Then, whether each target nodule
successfully detected by DL-CADx was correctly subtyped into
one of the three subtypes (solid, part-solid, GGN) by DL-CADx
was checked, with gold standard as reference. Next, more
information provided by DL-CADx was obtained, including
which lobe was located, three-dimension (3D) standard diameter
(the diameter of a sphere equivalent to the volume of the nodule),
volume, average CT value, 3D long-axis diameter (the largest
diameter in any plane of a nodule), 3D short-axis diameter (the
shortest diameter vertical to the 3D long-axis diameter), and
malignancy risk (ranging from 0 to 100%).

Statistical Analysis
All statistical analysis was performed using SPSS version 24 (IBM,
Armonk, NY, United States). Detection rate was defined as the
ratio of the number of target nodules detected by DL-CADx to the
total number of nodules of interest. Cohen’s kappa test was used
to test the agreement between two raters in categorical variables,
including nodule density subtype characterization between DL-
CADx and the gold standard, double reading, and the gold
standard, with kappa value <0, ≤0.2, ≤0.4, ≤0.6, ≤0.8, and >0.8
indicating less than chance, slight, fair, moderate, substantial,
and almost perfect agreement, respectively (20). Intraclass
correlation coefficient (ICC) was used to evaluate the agreement
in malignancy risk rating between DL-CADx and double
reading, with ICC value of <0.5, 0.5 to 0.75, 0.75 to 0.9, and
>0.9 indicating poor, moderate, good, and perfect agreement,
respectively (21). We arbitrarily define nodules with malignancy
likelihood >50% as malignant nodules both for double reading
and DL-CADx. Based on this criterion and the pathological
result for each nodule, sensitivity, specificity, and accuracy
were calculated for double reading and DL-CADx, separately.

McNemar’s test was used to compare the diagnostic performance
between DL-CADx and double reading. Chi-square test or Fisher
exact test was used to compare the occurrence frequency of
each morphologic change between benign group and malignant
group, whereas independent sample t-test was used to compare
the objective quantifications by DL-CADx between benign group
and malignant group, with P-value < 0.05 indicating statistically
significant difference. Logistic regression analysis was used
to evaluate the combined diagnostic performance of multiple
morphologic changes that have statistical significance between
two groups and added value of objective quantifications by DL-
CADx in differentiating benign and malignant nodules, with
receiver operating characteristic (ROC) curve generated and area
under the curve (AUC) calculated. Then, DeLong’s test was
used to compare the performance of morphological changes and
objective quantification by DL-CADx.

RESULTS

Nodule Detection and Characterization
Among the 261 nodules, 247 nodules were successfully detected
by DL-CADx with a detection rate of 94.7%. Among the 14
missed nodules, no isolated nodules were missed and 5 pleura-
adjacent and 9 vessel-adjacent nodules were missed. Interestingly,
regarding size, only 4 (4/13) missed nodules were smaller than
1 cm in diameter (Figure 2). As for density subtypes, 9 solid
nodules, 1 part-solid nodules, and 4 GGNs were missed by DL-
CADx (Figure 2). The detailed information of 14 nodules missed
by DL-CADx are summarized in Table 2.

Regarding automatic nodule localization in 5 different lobes
of lung, DL-CADx almost perfectly pinpointed each nodule
(214/247) in its corresponding lobe with nodule localization

FIGURE 2 | A ground-glass nodule (A–D) located close to the right hilum and surrounding the pulmonary vasculature was missed by DL-CADx. Another
ground-glass nodule (E–H) smaller than 1 cm in diameter and attached to the pulmonary vasculature in the right upper lobe was missed by DL-CADx.
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FIGURE 3 | A juxtafissural nodule (A) located in the right upper lobe was mislabeled by DL-CADx as right middle lobe. Another nodule (B) attached to the fissure in
the left upper lobe was mis-localized in the left lower lobe by DL-CADx.

TABLE 2 | Nodule characteristics of missed nodules by DL-CADx.

Characteristics Cases

Gender

Male 10

Female 4

Density subtype

GGNs 4

Part-solid 1

Solid 9

Localization

Isolated 0

Juxtapleural 5

Juxtavascular 9

Size

<1 cm 4

1–3 cm 10

Shape

Round or oval 5

Triangular or polygonal 9

GGN, ground-glass nodule.

by double reading as gold standard (kappa value = 0.832).
Particularly, it seems most challenging for DL-CADx to localize
nodule close to the right middle lobe with 8 nodules in the right
upper lobe and 15 nodules in the right lower lobe mistakenly
labeled as nodules in the right middle lobe among all the 33
mislabeled nodules (Figure 3).

In nodule density subtype characterization, DL-CADx agreed
substantially with double reading with subtypes of 35 of 247
nodules mismatched (kappa value = 0.747). With the final

combined result as gold standard, 23 nodules (23/247) and
15 nodules (15/247) were mismatched with gold standard for
DL-CADx (kappa value = 0.838) and double reading (kappa
value = 0.895), respectively. Particularly, among these 23 nodules
mis-subtyped by DL-CADx, 17 true part-solid nodules were
subtyped as 10 solid nodules and 7 GGNs, 5 true GGNs as part-
solid nodules, and only 1 true solid nodule as part-solid nodule.
For 15 nodules mis-subtyped by double reading, 11 true part-
solid nodules were mis-subtyped as 7 solid nodules and 4 GGNs,
3 true GGNs as part-solid nodules, and only 1 true solid nodule
as part-solid nodule (Figure 4).

Malignancy Risk Prediction
In malignancy rating, DL-CADx was in moderate agreement with
double reading (ICC = 0.555, 95% CI 0.424 to 0.655). Taking
malignancy likelihood of >50% as cut-off value for determining
malignancy, DL-CADx misdiagnosed 40 true malignant nodules
as benign nodules and 30 true benign nodules as malignant
nodules with sensitivity, specificity, and accuracy of 79.2, 45.5,
and 71.7%, respectively (Figure 5). In contrast, double readings
achieved better performance with 16 true malignant nodules
misdiagnosed as benign nodules and 26 true benign nodules as
malignant nodules with sensitivity, specificity, and accuracy of
91.7, 52.7, and 83.0%, respectively (Table 3). Statistically, double
reading significantly outperformed DL-CADx (P = 0.012).

Quantitative Features Obtained by
DL-CADx
Among all the morphologic features obtained by double reading,
lobulation, bubble-like lucency, spiculation, pleural retraction,
and vascular convergence occur significantly more frequently
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FIGURE 4 | On the CT images from different views (A–C) and zoom-in view (D), a nodule in the right upper lobe was detected. DL-CADx subtyped this nodule as a
solid nodule, while double reading characterized it as a part-solid nodule. By integrating these two disagreed results, a final consensus that this is a part-solid nodule
has been reached through discussion. Differently, for the nodule detected on the CT images from different views (E–G) and zoom-in view (H), the first impression by
double reading was a part-solid nodule in the left upper lobe because of seemingly a small patch of solid component (arrow). However, DL-CADx classified it as
ground-glass nodule. After double checking and discussion, we misinterpreted a small vessel (arrow) inside the nodule as solid component and reached an
agreement that this is a ground-glass nodule.

FIGURE 5 | On the CT images (A,B), an irregular nodule with malignancy <50% rated by DL-CADx was diagnosed as malignant by double reading (malignant
likelihood: 75–100%), which turns out to be granulomatous nodule in pathology. For the nodule detected on the CT images (C,D), DL-CADx considered it more likely
to be a benign nodule, but double reading classified it as a malignant nodule (malignant likelihood: 75–100%), which was confirmed as adenocarcinoma. For the
pathologically confirmed granuloma on the images (E,F), 60% of malignancy risk was rated by DL-CADx, but double reading considered it more likely to be benign
(malignant likelihood: 25–50%).
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TABLE 3 | Comparison in diagnostic performance between DL-CADx
and double reading.

Variables DL-CADx Double reading

True positive 152 176

False positive 30 26

False negative 40 16

True negative 25 29

Sensitivity 79.2% 91.7%

Specificity 45.5% 52.7%

Accuracy 71.7% 83.0%

TABLE 4 | Occurrence frequency difference in morphologic changes between
malignant group and benign group.

Malignant group Benign group P-value

Shape

Oval or round 61 23 0.166

Triangular or polygonal 131 32

Margin

Well-defined 182 41 0.000*

Ill-defined 10 14

Lobulation

Absence 35 31 0.000*

Presence 157 24

Spiculation

Absence 27 25 0.000*

Presence 165 30

Cavitation

Absence 187 54 0.739

Presence 5 1

Calcification

Absence 183 48 0.033*

Presence 9 7

Air bronchogram

Absence 145 43 0.683

Presence 47 12

Bubble-like lucency

Absence 132 47 0.014*

Presence 60 8

Pleural retraction

Absence 101 40 0.008*

Presence 91 15

Vascular convergence

Absence 30 39 0.000*

Presence 162 16

Nodule subtypes

GGN 51 13 0.009*

Part-solid 42 3

Solid 99 39

*Statistically significant (P < 0.05); GGN, ground-glass nodule.

in malignant group than that in benign group, whereas
calcification and well-defined margin are significantly more
commonly detected in benign group than in malignant group
(Table 4). Except for average CT value, 3D standard diameter,
volume, 3D long-axis diameter, and 3D short-axis diameter

TABLE 5 | Difference in objective quantifications by DL-CADx between malignant
group and benign group.

Parameters Malignant group Benign group P-value

3D standard diameter (mm) 16.2 ± 8.0 13.9 ± 7.8 0.024*

Volume (cm3) 4.0 ± 6.7 2.7 ± 4.8 0.011*

Average CT value (HU) −339.2 ± 221.7 −340.9 ± 208.8 0.730

3D short-axis diameter (mm) 12.1 ± 5.7 10.4 ± 5.8 0.015*

3D long-axis diameter (mm) 19.5 ± 9.0 16.8 ± 8.8 0.039*

*Statistically significant (P < 0.05).

FIGURE 6 | Graph shows the diagnostic performances of morphology alone
and combining morphology and quantifications by DL-CADx.

were significantly different between malignant group and benign
group (Table 5). In differentiating malignant and benign
nodules, four quantifications by DL-CADx slightly improve the
performance with AUC elevated from 0.832 (95% CI 0.762 to
0.901) for morphologic features alone to 0.840 (95% CI 0.772 to
0.909) for combining morphologic features and quantifications
together (Figure 6), but without statistically significant difference
(P = 0.412).

DISCUSSION

In this study, with histopathology of each nodule as gold
standard, we have evaluated the diagnostic performance of
a DL-CADx in differentiating malignant and benign lung
nodules in comparison with the diagnostic performance of
conventional double reading by radiologists, which indicates
that although DL-CADx has shown high detection rate, its
diagnostic performance in differentiating malignant and benign
nodules is inferior to conventional double reading. Besides, the
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objective quantifications by DL-CADx added limited value to the
conventional morphology-based lung nodule differentiation.

In agreement with previous studies (6, 22) and our previous
work (8), DL-CADx shows high detection rate in this study.
Particularly, our study indicates that it is challenging for DL-
CADx to detect nodules either attached to pleura or pulmonary
vasculature, consistent with previous studies (23, 24). Although
automatically localizing each nodule in its corresponding lung
lobe may seem an easy task for DL-CADx intuitively, DL-CADx
still mislabeled a very small portion of nodules in our study.
Interestingly, it seems that DL-CADx is most likely to be confused
in labeling the nodules close to the middle lobe of the right
lung in this study.

Nodule density subtyping is crucial in predicting its
malignancy and recommending follow-up scheme, especially
for part-solid nodules and GGNs, because it has been well
established that most persisting subsolid nodules correspond
to lung adenocarcinoma in different stages of development
from atypical adenomatous hyperplasia, adenocarcinoma in situ,
minimally invasive adenocarcinoma to invasive adenocarcinoma
(25, 26). Correspondingly, 79.7% (51/64) of GGNs and as high
as 93.3% (42/45) of part-solid nodules were malignant in our
study. In nodule density subtyping, DL-CADx has achieved
similar performance to the double reading. Interestingly, it
seems most challenging for DL-CADx to accurately characterize
part-solid nodules, which is consistent with the findings of
our previous work (8). The “ground-truth” for the subtype
of each labeled nodule for training this deep learning model
is determined by expert subjectively, which is subject to
inter- and intra-observer variability and let alone the highly
heterogeneous data when training a deep learning model, which
might explain the slight inferiority of DL-CADx in subtyping
nodules than double reading. In the future, more objective
criteria for nodule subtyping should be established so as to obtain
“ground-truth” with higher consistency to further strengthen the
deep learning model.

In disagreement with some studies which showed that DL-
CADx outperformed radiologist reading (15, 16), our studies
indicated that DL-CADx was still inferior to conventional
double reading in differentiating malignant and benign nodules.
Possible causes for the inconsistent diagnostic performance are
the different deep-learning models and different training data,
specifically the heterogeneous CT images acquired with different
scanning parameters on different vendors. Intriguingly, DL-
CADx and double reading have one thing in common that they
both over-diagnosed around half of benign nodules to malignant
nodules, which resulted in a relatively low specificity. For
radiologists, they probably would intentionally or unconsciously
raise up the malignancy level for biopsy or further diagnostic
workup when a consensus cannot be reached. After all, missing
a lung cancer is much more detrimental than over-diagnosing
a benign nodule to malignant nodule. The DL-CADx was
partly trained on the annotated lung nodules from the open
public database, such as LIDC-IDRI, in which malignancy of
each lung nodule was rated by experienced radiologists without
pathological confirmation (15, 17, 18). The DL-CADx might
have learned the tendency of over-diagnosing benign nodules to

malignant nodules from radiologists. It is anticipated that with
more pathologically confirmed data accumulated, a more robust
deep-learning model will be trained and built. Furthermore, to
train a robust DL-CADx with satisfactory generalizability, more
heterogeneous datasets from different sources with confirmed
pathology as “ground-truth” should be obtained in the upstream
of model-building.

Although our results only showed limited additional value of
the objective quantified “snapshot” of the nodule by DL-CADx
to the differentiation of malignant and benign nodules, these
useful objective information can be extremely useful to detect
the subtle changes of nodules over time longitudinally, such as
the increase of the nodule in size, change in shape and average
attenuation, and newly occurred or increased solid component in
a GGN or part-solid nodule. Morphology information remains
dominant and reliable in differentiating malignant and benign
nodules. How to effectively incorporate the general morphology
information into the DL-CADx might provide another way to
improve the classification performance.

LIMITATIONS

In this study, more subjects with pathologically confirmed
benign lung nodules are needed to balance the comparison.
Due to possible selection bias, the accuracy obtained by DL-
CADx and double reading may not represent their real accuracy.
However, in this study, we only focused on how differently DL-
CADx and double reading performed on the same samples.
Also, to build a more robust deep learning–based CADx, the
“ground-truth” of each lung nodule should be pathologically
confirmed, instead of annotated by some experienced radiologists
in most of the currently available deep learning–based CADx.
In addition, the three different density subtypes of nodules
were defined using visual assessment with no objective criteria,
which might be subject to inter-observer and intra-observer
variability, especially when evaluating indeterminate nodules
smaller than 1 cm in diameter. Objective criteria should be
defined for better characterization, so that deep-learning model
could be trained on data with more accurate “ground-truth.”
Besides, in this study, only one DL-CADx model was compared
with conventional double reading. In the future, more studies
should be done to compare the performance between more DL-
CADx models and radiologists with different experience level in
different clinical scenarios.

CONCLUSION

Deep learning–based computer-assisted diagnosis system we
used in this study presented high detection rate, great
performance in subtyping lung nodules, and promising accuracy
in differentiating malignant and benign nodules. However,
external validation shows that its diagnostic performance is
significantly inferior to conventional morphology-based double
reading by radiologists. Therefore, there is still large room for
improvement for the DL-CADx before it could be used to support
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clinical decisions in the workflow of lung nodule management.
Besides, the role of objective quantification by DL-CADx in
differentiating between malignant and benign nodules should be
further investigated.
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