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Despite advances in targeted therapeutics and understanding in molecular mechanisms,
metastasis remains a substantial obstacle for cancer treatment. Acquired genetic
mutations and transcriptional changes can promote the spread of primary tumor cells
to distant tissues. Additionally, recent studies have uncovered that metabolic
reprogramming of cancer cells is tightly associated with cancer metastasis. However,
whether intracellular metabolism is spatially and temporally regulated for cancer cell
migration and invasion is understudied. In this review, we highlight the emergence of a
concept, termed “membraneless metabolic compartmentalization,” as one of the critical
mechanisms that determines the metastatic capacity of cancer cells. In particular, we
focus on the compartmentalization of purine nucleotide metabolism (e.g., ATP and GTP)
at the leading edge of migrating cancer cells through the uniquely phase-separated
microdomains where dynamic exchange of nucleotide metabolic enzymes takes place.
We will discuss how future insights may usher in a novel class of therapeutics specifically
targeting the metabolic compartmentalization that drives tumor metastasis.

Keywords: membraneless metabolic compartmentalization, leading edge, liquid-liquid phase separation,
metabolon, purine biosynthesis, GTP-metabolism, cancer, metastasis
INTRODUCTION

Many metastatic processes require dynamic changes in cell motility—i.e., epithelial-mesenchymal
transition (EMT), detachment of cells from the primary tumor; local invasion of the basement
membrane; intravasation and extravasation; or invasion in a distant site (1, 2). Genetic mutations
and changes in transcriptional landscape that increase metastatic capacity have been identified
[reviewed in (3, 4)]. EMT is one key initiating step for metastasis, converting epithelial cancer (i.e.,
carcinoma) to highly motile and invasive mesenchymal cell phenotype, rendering spatial asymmetry
that corresponds to the emergence of lamellipodial and filopodial membrane extensions at the
leading edge (i.e., the front end) (5–7), via dynamic signaling components. For example, localized
activation of RAS and PI3K at the leading edge promotes cellular polarization, directional cell
migration, and random cell migration (8, 9). Recent studies have demonstrated that rewiring of
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metabolic pathways in cancer and cancer stem cells via
oncogenic signaling and/or EMT is another key regulator for
cell motility and metastasis [reviewed in (10)]. However, the
mechanism of this spatiotemporal regulation of metabolic
enzymes in migrating cells remained unclear until recently
(11). In this review, we highlight an emerging concept of
membraneless metabolic compartmentalization and its possible
roles in tumor invasion and metastasis.
MEMBRANE-BOUND ORGANELLES FOR
METABOLIC COMPARTMENTALIZATION

There are several critical roles for membrane-bound
compartmentalization (12) (Figure 1A). For instance, metabolic
compartmentalization within the peroxisome is crucial for
sequestering toxic metabolites and for isolating the harsh
conditions required for peroxisomal oxidative reactions from
other more fragile cellular compartments (13). Sequestration of
metabolic intermediates generally acts to preclude undesirable off-
target enzymatic reactions and interference from other enzymatic
pathways (14, 15) (Figure 1A); a network-based analysis
conducted by Alam et al. suggests that the organelle-level
compartmentalization of metabolic reactions relieves the
inhibitory effect of unrestricted metabolite diffusion within cells
by up to half (16). Additionally, changes in metabolic
compartmentalization can evoke coordinated cellular responses
such as apoptosis, in which case the release of cytochrome c from
mitochondria into the cytosol initiates the apoptotic cascade (17)
(Figure 1A).
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MEMBRANELESS COMPARTMENTS FOR
METABOLIC PROCESSES

Cell biologists of the late 19th and early 20th centuries considered
the cytosol to be merely a “bag of enzymes” that functioned within
the limits of diffusion and in which metabolites and proteins were
free to randomly diffuse throughout the cell (18). However,
accumulating evidence now points to the ability of cells to
generate metabolic compartmentalization even in the cytoplasm.
The cell may accomplish this form of compartmentalization
through several mechanisms that derive from the physical
nature of the cytoplasm, which differs locally in parameters of
fluid viscosity, resulting in differential local diffusion rates of
metabolites and proteins and differential local rates of molecular
interactions (Figure 1B). In a term first coined by Paul Srere in
1985 (19), membraneless multi-enzyme complexes are referred to
as metabolons (20–22).
Local Diffusion Rate
The cytoplasm of the cell is a viscous solution of ions,
macromolecules, and cytoskeletal proteins. A number of
metabolites could experience very slow diffusion rates in
certain cellular contexts (18, 23–25). The diffusion rate of small
molecules such as ions is reported to be reduced by less than two-
fold in cytoplasm-like conditions compared to water (26),
whereas the diffusion of larger macromolecules like nucleotides
is hindered by greater than three-fold (27, 28). Likewise, the
diffusion of polypeptides such as green fluorescent protein (GFP)
has been found to be slowed by 3-14 times in bacterial cell
A B

C

FIGURE 1 | Schematic models of the biological roles of compartmentalization, viscosity, and local protein concentrations. (A) Metabolic compartmentalization by
membrane-bound organelles confines metabolites to organelles to increase reaction efficiency and protect cellular contents—analogous to potential prey that may be
protected from sharks by confining the predators to a shark tank (left). Release of organellar contents into the cytoplasm can elicit changes in cell fate (e.g., induction
of an apoptotic program by cytochrome C and dATP or cellular damage mediated by lysosomal enzymes)—analogous to sharks that can either attack prey or
themselves die when there is a breach in a shark tank (middle). Generally, the transportation of molecules into membrane-bound organelles is highly selective and
regulated—analogous to sharks that may be fed without opening oneself up to the possibility of bodily harm by introducing prey into a shark tank from a distance
(right). (B) A schematic diagram of the negative correlation between the fluid viscosity of a medium and the diffusion rate of metabolites within it. (C). A schematic
diagram of the effect of the local concentration or relative proximity of enzymes belonging to the same metabolic pathway. When Enzymes A and B are spatially
separated, Enzyme B can receive only small amounts of its substrate b, which is generated by the distant Enzyme A. Thus, Enzyme B produces only small amounts
of its enzymatic product c—analogous to a shark that can catch only a relatively small number of fish when the fish are sparse (left). However, when Enzymes A and
B are in close proximity, Enzyme B can receive much more of its substrate b and thus produce much more of its product c—analogous to a shark that can capture
more fish when the fish are schooling (right).
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cytosols compared to diffusion in water (29–31) and molecules
larger than 60 kDa travel half the distance of smaller molecules
(32). Additionally, increased nonspecific associations of larger
macromolecules (e.g., proteins) with other solutes in the
cytoplasm (e.g., polymerized actin, microtubules) are an
impediment to diffusion (33–38) (Figure 1B).

The anomalous diffusion of macromolecules can be slowed by
a tight mesh structure of actins and microtubules (Figure 1),
which causes rapid jumps in the solute’s trajectory as it passes
between contiguous actins and tubulin fibers (39). Furthermore,
cross-linked actin filaments can transit into a gel phase, thereby
dramatically increasing the elastic and viscous properties of the
cytoplasm (40). Lastly, diffusion rates in the cytoplasm can also
be impeded dramatically at spatiotemporal locations where
liquid-liquid phase separation occurs (41).

Local Protein Concentration
The increased local concentration of enzymes belonging to the
same enzymatic pathway can protect highly labile metabolic
intermediates via substrate channeling, which here acts as a
mechanism to decrease reaction time (14, 22, 42) (Figure 1C).
To achieve substrate channeling, cells control the proximity of
metabolic enzymes in an elegant way and thereby allow for
tunable metabolic reactions that can respond dynamically to the
evolving cellular status.

Several enzymes involved in glycolysis [e.g., glyceraldehyde 3-
phosphate dehydrogenase (GAPDH), fructose-bisphosphate
aldolase (ALDA), and phosphofructokinase (PFK)] have been
discovered to be bound to actin fibers in the cellular cytoplasm,
thereby forming long chains of metabolic enzymes belonging to
the same glycolytic pathway that can promote rapid formation of
pathway intermediates (20, 25, 42–47). In Hudder et al. the
authors documented the large percentage of proteins that are
bound to the polymerized filamentous actin (F-actin)
cytoskeleton of CHO cells (20). Cell permeabilization released
~12% of the total protein content within the cell. By contrast,
pre-incubating the cells with latrunculin B, which sequesters
monomeric actin and thus diminishes the F-actin cytoskeleton,
followed by permeabilization led to the release of nearly 40% of
the proteins. This suggests that large fractions of proteins were
bound to actin fibers (20).
THE LEADING EDGE AS A
MEMBRANELESS ORGANELLAR
COMPARTMENT

The ruffling lamellipodium and actin-rich lamellum were
described during the late 1960s in motile fibroblast cells in
culture (48). As described in the previous section, the diffusion
of nucleotides between the cytoplasm and the leading edge is
likely hindered by the dense actin and microtubule mesh and the
surrounding network of filament-bound macromolecules.
Importantly, the formation and maintenance of a leading edge
requires the input of purine nucleotides like guanosine 5’-
triphosphate (GTP) and adenosine 5’-triphosphate (ATP).
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The assembly of microtubules relies upon the binding of GTP
to tubulin dimers, which are subsequently incorporated into the
GTP-cap that resides at the plus-end of growing microtubules
(49). Conversely, GTP hydrolysis results in GDP-bound tubulin
dimers and its dissociation from the microtubules. Actin
polymerization requires the binding of ATP to G-actin
monomers, which may subsequently be incorporated into the
barbed end of the growing F-actin polymeric chain. When ATP
is hydrolyzed, the ADP-bound subunit conformation of the
monomeric actin unit changes, leading to the dissociation of
G-actin monomers from F-actin. In chick ciliary neuron culture,
approximately 50% of global ATP hydrolysis is associated with
the maintenance of the actin cytoskeleton (50).

The physical nature of the leading edge and the elaborated
metabolic utility of purine nucleotides suggest a possible
requirement for localized biosynthesis of ATP and GTP.
Strikingly, the compartmentalization of an entire metabolic
pathway within the leading edge was discovered in 2019 (11).
In the following section, we will briefly introduce the GTP
metabolic enzymes and their significance in cell motility.
GTP BIOSYNTHETIC ENZYMES IN
CANCER CELL DISSEMINATION

IMPDH
GTP and ATP can be synthesized through either the energy-saving
salvage pathway or the de novo biosynthesis pathway (Figure 2A).
The de novo biosynthetic process consumes glucose to synthesize
the intermediate metabolite inosine 5’-monophosphate (IMP) after
> 17 enzymatic steps. IMP is then used as a substrate by both the
ATP-biosynthetic or GTP-biosynthetic branches of the de novo
pathway. IMP dehydrogenase (IMPDH) is the rate-limiting,
NAD+-dependent first step in GTP biosynthesis and commits
IMP to the GTP pathway. IMPDH has been extensively studied
in cancer biology since the 1950s (51–61), and is the bona fide
target of the FDA-approved immunosuppressant mycophenolic
acid (MPA) and its prodrug form mycophenolate mofetil (MMF,
CellCept) (62), which is also used as an immunosuppressant in the
clinic. There are two isotypes of IMPDH in humans, IMPDH
isotype 1 (IMPDH1) and IMPDH isotype 2 (IMPDH2), of which
IMPDH2 has been reported to be more highly upregulated in
cancers (62–64).

Several studies show the functional role of IMPDH enzyme in
cell motility. In human fibroblasts, inhibiting IMPDH via MPA
treatment was shown to lead to decreased adhesion and
migration along with dysregulated cytoskeletal proteins (65).
Similarly, MPA treatment led to a decrease in the migration and
invasion of gastric cancer cells in vitro (66) and to a decrease in
the EMT, in vitro migration, and metastatic seeding of prostate
cancer cells (67). IMPDH inhibition was reported to decrease the
fraction of GTP-bound RAC1, RHOA, and RHOC, the
molecular switch proteins responsible for polarizing cells
during migration (68), in melanoma cells (69). It is worth
noting that many of these studies used long-term treatment
with IMPDH inhibitor (e.g., over 16 h), which is likely to change
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both the transcriptional landscape and the phenotypic status
(e.g., cell cycle arrest, apoptosis, or senescence) of the cellular
targets. Nonetheless, although more careful analyses may be
required to verify the direct effects of GTP on cancer cell
motility, most of the evidence thus far points to a correlation
between GTP biosynthesis and cell motility.

Enzymes Downstream of IMPDH
The enzymes that lie downstream of IMPDH during GTP
biosynthesis, GMP synthase (GMPS) and nucleoside
diphosphate kinase-A (NME1 or NDPK-A), a prominent
member of the nucleoside diphosphate kinase family (70), have
additionally been implicated in migration and metastasis. In
human melanoma samples, increased GMPS protein expression
was found in metastatic lesions compared to localized tumors,
and the pharmacological inhibition of GMPS decreased
melanoma cell proliferation and invasion, both in vitro and in
vivo (71). By contrast, NDPK-A expression in tumors has long
been controversial. The gene name NME1 [NM23/NDP kinase
Frontiers in Oncology | www.frontiersin.org 4
(non-metastatic clone 23)] (72) originated with the observed
inverse correlation of its increased expression with decreased
metastatic potential in mouse models and some human cancers
(70, 73). However, the following studies showed that NDPK-A
expression was correlated proportionally with metastasis in
neuroblastomas (74) and renal cell carcinomas (75). Also,
NDPK-A knockout in mice was observed to lead to diminished
tumor formation in vivo and decreased lung colonization in
xenograft models (76).
METABOLIC COMPARTMENTALIZATION
OF PURINE BIOSYNTHETIC ENZYMES
WITHIN THE LEADING EDGE OF HIGHLY
MOTILE CANCER CELLS

In 2019, we found the striking localization of de novo purine
biosynthetic enzymes as well as IMPDH1 and IMPDH2 at the
A B

FIGURE 2 | Nucleotide metabolic enzymes localize at the lamellipodial membrane. (A) Purine nucleotide biosynthesis schematic. The 9 enzymatic steps of de novo
biosynthesis (orange), the ATP branch (green), GTP branch (blue), and selected salvage pathway enzymes (yellow). (B) Selected immunofluorescence staining
images of purine biosynthetic enzymes (color scheme matches part A) localizing to the leading edge of migrating kidney cancer cells. Relative intensity map of
immunofluorescence staining shown in bottom micrograph with intensity scale at the right. Immunofluorescence of GAPDH and fluorescence imaging of Cell Tracker
dye, which stain intracellular proteins, show major signals in cytoplasm, which indicate that the localization of purine metabolic enzymes at the leading edge is
specific. PRPS, phosphoribosyl pyrophosphate synthetase; FGAMS: phosphoribosyl formylglycinamidine synthase; PAICS, phosphoribosyl aminoimidazole
succinocarboxamide synthetase; ADSL, adenylosuccinate lyase; ATIC, 5-amino-4-imidazolecarboxamide ribonucleotide transformylase/IMP cyclohydrolase; ADSS,
adenylosuccinate synthase; AK, adenylate kinase; IMPDH, inosine-5′-monophosphate dehydrogenase; GMPS, GMP synthase; GUK1, guanylate kinase 1; NDPK,
nucleoside-diphosphate kinase; APRT, adenine phosphoribosyltransferase; ADK, adenosine kinase; HPRT1, Hypoxanthine-guanine phosphoribosyltransferase;
GAPDH, glyceraldehyde 3-phosphate dehydrogenase.
November 2020 | Volume 10 | Article 554272

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wolfe et al. Metabolic Compartmentalization Driving Cell Motility
membrane of the leading edge in metastatic renal cell carcinoma
cell lines (11) (Figure 2B). All three enzymes of the GTP
biosynthetic branch after IMPDH—GMPS, guanylate kinase
(GUK1), and NDPK-A—were enriched significantly at the
leading edge. Interestingly, we found a substantially greater
colocalization at the leading edge of the cells in comparison to
the cell body. Additionally, an essential enzyme for the GTP
salvage pathway, HPRT1, was also enriched at the leading edge.
Thus, all the GTP biosynthetic enzymes responsible for making
GTP from IMP were localized at the leading edge (Figure 2B).

While not all enzymes of the ATP biosynthetic pathway were
tested, three of the four enzymes that act sequentially in the
pathway to convert IMP to ATP were also found to enrich at the
leading edge (Figure 2B). The ATP salvage enzymes APRT and
ADK were also found to enrich at this location (11) (Figure 2B).

Given that all 16 enzymes analyzed localized to the leading
edge and colocalized with IMPDH1 and/or IMPDH2, our data
suggests the formation of a GTP- and possibly also an ATP-
specific metabolic compartment—GTP and ATP metabolons,
respectively—at the leading edge of the motile cancer cells.
These compartments are expected to increase the local
concentration of GTP and possibly also ATP via local,
compartmentalized synthesis for availability to enhance actin
polymerization, microtubule organization, and signaling.
Consistent with this model, our recent cell biological and
pathophysiological studies suggest a significant role for the
non-membrane compartmentalization of purine metabolism at
the leading edge in cell motility and the metastasis of certain
types of cancers (manuscript in preparation).
TRANSLOCATION OF A GTP
BIOSYNTHETIC ENZYME TO THE
LEADING EDGE DEPENDS ON F-ACTIN

Actin polymerization is required for the translocation of several
proteins such as PI3K to the leading edge and the subsequent
local induction of leading edge signaling (7, 77–80). Interestingly
and mechanistically importantly, the enrichment of IMPDH1
and IMPDH2 at the leading edge was reduced following the
inhibition of actin polymerization by latrunculin B treatment.
The data suggest that F-actin polymerization could provide a
mechanistic basis by which purine biosynthetic enzymes localize
to the leading edge. Just as binding to actin filaments has been
shown to enhance flux through the glycolytic pathway, it would
be interesting to determine whether the enzymes involved in
purine biosynthesis can directly bind to F-actin fibers during
translocation and whether this potential binding leads to
enhanced flux through the metabolic pathway. A potentially
interesting experiment is to use inhibitors for F-actin or tubulin
and assess the ATP and GTP distribution using their designated
biosensors (81, 82). Future studies should clarify how F-actin
polymerization induces IMPDH localization at the leading edge
as well as whether the leading edge localization of other purine
metabolic enzymes utilizes this actin-dependent localization.
Frontiers in Oncology | www.frontiersin.org 5
HETEROGENOUS PURINE NUCLEOTIDE
METABOLISM IN CELL MEMBRANE-
PROXIMAL REGIONS

ATP is one of the most abundant metabolites in a cell, ranging
from 1 to 5 mM in mammalian cells (83). Intracellular
distribution of ATP, detected by several types of genetic ATP
biosensors (81), shows discrete ATP levels in organelles (84–
87). There is also a report showing elevated ATP in the cortical
region (88). Importantly, the turnover rate of ATP is increased
at the leading edge via the activities of actin and tubulin
polymerization (89), which is consistent with the previously
noted high energy expenditure of cytoskeletal reorganization.
Furthermore, very excitingly, the recently developed ratiometric
fluorescent GTP biosensors have shown that the intracellular
distribution of GTP is heterogeneous in SK-Mel-103 melanoma
cells, with high GTP levels in the cytosol near certain regions of the
cell membrane (82). Although further studies are required to
eliminate potential confounding effects that might arise from the
unintended pH sensitivity of these GTP biosensors, the
provocative observation of high local GTP levels near some
regions of the cell membrane, together with our identification of
what is likely a GTP metabolon at the leading edge, suggest that
elevated GTP levels specifically at the leading edge are
highly probable.
POSSIBLE EXISTENCE OF OTHER
METABOLONS AT THE LEADING EDGE

Our results show that purine salvage enzymes, such as
HPRT1, are also localized at the leading edge, raising the
possible existence of metabolons of salvage ATP and GTP
biosynthesis at the leading edge. In addition to the GTP and
ATP metabolons, we expect that there are likely additional
metabolons formed at the leading edge. For example, some key
enzymes of glycolysis, 6-phosphofructo-2-kinase/fructose-
2,6-biphosphatase 3 (PFKFB3), and pyruvate kinase isozyme
M2 (PKM2), localize to the leading edge membrane in
macrophages and to cellular projections in migrating tip
endothelial cells (90). In the report containing this data,
although the existence of no other glycolytic enzyme at the
leading edge was confirmed, the authors proposed that the
localization of such ATP-generating enzymes at the leading
edge might promote concentrated ATP production to fuel the
polymerization of actin, with which these enzymes heavily
colocalize (90–92). Although our own data show that
GAPDH, a key rate-limiting enzyme for glycolysis (93), fails
to enrich at the leading edge formation in kidney cancer cells
(11), it is possible that GAPDH may either translocate to the
leading edge under certain conditions or that its accumulation
at the leading edge may not be necessary given its high general
abundance in the cell. Regardless, it remains important to
further verify the existence of a glycolytic metabolon at the
leading edge.
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ENERGY HOMEOSTASIS AT THE
LEADING EDGE

Lastly, we highlight the possible links between homeostatic
enzymes and leading edge activity. Adenylate kinase (AK)—
which reversibly catalyzes the interconversion between 2ADP
and 1ATP + 1AMP—is a critical enzyme for regulating cellular
energy levels, and thus contributes to modulating the AMP-
mediated response to stress signals (94, 95). In mouse embryonic
fibroblasts, enforced localization of adenylate kinase 1 (AK1) to
either focal contacts or the leading edge membrane significantly
increases cell migration (96), supporting a notion of high
metabolic turnover of ATP. Perhaps connecting to this
observation, mitochondria have been shown to translocate to
the leading edge through an AMPK-mediated mechanism to
help sustain the local ATP:ADP ratio (97). The AMPK-
dependent translocation of mitochondria to the leading edge
suggests a locally enriched homeostatic system for ATP
regeneration and recovery so that a high local ATP:ADP ratio
may be maintained for robust leading edge activity. Currently,
how AMPK induces the translocation of mitochondria remains
largely unclear. Likewise, the dynamics of AMPK activation at
the leading edge in relation to mitochondrial regulation remains
unknown. Since AMPK is a known regulator of cell polarity (98),
a possible model would be that downstream substrates of AMPK,
which regulate cell polarity, may participate in the mitochondrial
translocation. The use of AMPK biosensors may dissect the more
detailed spatio and temporal regulation of AMPK activation and
mitochondrial responses (99). Another potentially interesting
experiment would be to compare the metabolic compartmentalization
and ATP/GTP distribution in cells knocked out for AMPK or with
mutations for the upstream kinase LKB1.
CONCLUDING REMARK

The importance of the discoveries highlighted in this text and the
significance of the idea that metabolic compartmentalization may
crucially fuel the leading edge during cell migration is currently
underappreciated. Additional studies are badly needed to determine
Frontiers in Oncology | www.frontiersin.org 6
whether pharmacological inhibition of the purine biosynthetic
enzymes is sufficient to decrease cancer cell migration and
invasion. For instance, it will be of prime importance to
investigate whether metabolic compartments form within
invadopodia—membrane protrusions on the cell surface of tumor
cells that mediate matrix cleavage for tumor invasion—and, if so,
their functional significance in tumor invasion. Also, it will be
critical to clarify the interplay between localized purine metabolism
at the leading edge and molecules essential for leading edge
functions, such as membrane type-I-matrix metalloproteinase
(MT1-MMP) (100), Na+/H+ exchanger NHE1 (101), and RHO
GTPases, to name a few. Such interactions, if they exist, would
further induce coordinated changes promoting cell migration and
metabolic responses—e.g., normoxic HIF1 upregulation by MT1-
MMP and MINT3 pathway (102–104). With ongoing advances in
sub-cellular biosensor technology and targeted therapeutics, our
appreciation of the biological importance and therapeutic potential
of the leading edge purine metabolon is only just beginning.
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