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Background: We conduct a study in developing and validating two radiomics-based

models to preoperatively distinguish hepatic epithelioid angiomyolipoma (HEAML) from

hepatic carcinoma (HCC) as well as focal nodular hyperplasia (FNH).

Methods: Totally, preoperative contrast-enhanced computed tomography (CT) data of

170 patients and preoperative contrast-enhanced magnetic resonance imaging (MRI)

data of 137 patients were enrolled in this study. Quantitative texture features and

wavelet features were extracted from the regions of interest (ROIs) of each patient

imaging data. Then two radiomics signatures were constructed based on CT and MRI

radiomics features, respectively, using the random forest (RF) algorithm. By integrating

radiomics signatures with clinical characteristics, two radiomics-based fusion models

were established through multivariate linear regression and 10-fold cross-validation.

Finally, two diagnostic nomograms were built to facilitate the clinical application of the

fusion models.

Results: The radiomics signatures based on the RF algorithm achieved the optimal

predictive performance in both CT and MRI data. The area under the receiver operating

characteristic curves (AUCs) reached 0.996, 0.879, 0.999, and 0.925 for the training

as well as test cohort from CT and MRI data, respectively. Then, two fusion models

simultaneously integrated clinical characteristics achieved average AUCs of 0.966 (CT

data) and 0.971 (MRI data) with 10-fold cross-validation. Through decision curve analysis,

the fusion models were proved to be excellent models to distinguish HEAML from HCC

and FNH in comparison between the clinical models and radiomics signatures.

Conclusions: Two radiomics-based models derived from CT and MRI images,

respectively, performed well in distinguishing HEAML from HCC and FNH and might be

potential diagnostic tools to formulate individualized treatment strategies.

Keywords: hepatic epithelioid angiomyolipoma, hepatocellular carcinoma, focal nodular hyperplasia, radiomics,

machine learning
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INTRODUCTION

Preoperative evaluation of liver tumors sometimes remains
a challenge for clinicians. On the one hand, there are still
a large number of new hepatocellular carcinoma (HCC)
cases each year due to the large population of hepatitis-B-
related cirrhosis in China (1). On the other hand, with the
increasing popularity of health screening, various types of
hepatic masses have been asymptomatically detected. Clinicians
need to evaluate plenty of hepatic lesions to implement
individualized diagnosis, treatments and follow-up strategies
for the patients. Hepatic epithelioid angiomyolipoma (HEAML)
is an uncommon potential malignant tumor that belongs to
the PEComas family, and it is pathologically characterized by
perivascular epithelioid cell differentiation (2). As a special
subtype of angiomyolipoma, HEAML without visible fat is easily
confused with other blood-rich hepatic masses, including HCC
and focal nodular hyperplasia (FNH) (3). Therefore, it is vital to
precisely distinguish HEAML from non-HEAML hepatic lesions
because diagnostic evaluation is an important prerequisite for
implementing individualized treatment strategies. For HEAML,
local surgical resection is ideal, despite there is a low proportion
of tumor recurrence (3). According to the diagnosis and
treatment guidelines, patients with HCC can individually
undergo radiation therapy, surgical resection or transarterial
chemoembolization after overall clinical evaluation. FNH usually
only requires regular observation due to its completely benign
biological behavior.

Previous imaging studies have observed that HEAML has
specific radiological characteristics that may help with diagnostic
evaluation on computed tomography (CT) and magnetic
resonance imaging (MRI) (4–12). Definite existence of a small
amount of fat in hepatic mass is greatly valuable in radiological
diagnosis of HEAML, for which MRI scan is recommended
(8, 10). Also, HEAML as a blood-rich tumor would be included
in the differential diagnosis when draining vein of the hepatic
mass was observed in the arterial phase (6, 8). In contrast to
the wash-in and wash-out pattern of HCC, HEAML may have
persistently high enhancement of the intertumoral focal area
on contrast-enhanced CT or MRI (4–12). Although previous
studies have explored the differential radiological characteristics
of HEAML and HCC, no research has focused on the diagnostic
evaluation to distinguish HEAML from FNH. Additionally, these
radiological characteristics are usually morphological and non-
quantitative, which rely on the observer’s professional experience.
Until now, the radiological diagnosis of HEAML has remained a
clinical challenge.

In recent years, radiomics has become an active topic of

medical artificial intelligence research. Previous studies have
shown that high-throughput radiomics features extracted from

medical imaging data can well predict tumor phenotypes (13). In

the evaluation of liver tumors, especially HCC, radiomics can be

used for tumor detection, evaluation of stage, treatment strategy
selection, and prognosis prediction. Also, a small number of
studies have shown that radiomics has potential predictive
value for tumor classification (14). At first, Raman et al. (15)
found the differentially expressed texture features in HCC,

focal nodular hyperplasia and hepatic adenomas could be used
differential diagnosis of these blood-rich lesions. Subsequently,
deep learning method was used to classify liver masses using
contrast-enhanced CT data (16). The CNN-based model showed
excellently predictive efficiency in distinguishing malignant liver
tumors from the non-malignant with an accuracy of 0.84 (16). A
recent study also showed that deep learning model based onMRI
data was a potential diagnostic tool for liver tumors (17).

Therefore, in this study, we tried to construct quantitative
radiomics signature models for diagnosis of HEAML using CT
and MRI images. Several classical machine learning algorithms
have been tried to find the ideal model to classify HEAML and
non-HEAML lesions. As far as we known, it was the first study
based on a radiomics method to distinguish HEAML from other
hepatic masses.

MATERIALS AND METHODS

Patients
The review boards of First Affiliated Hospital, College of
Medicine, Zhejiang University, approved the study protocol,
and waived the requirement of informed consent from patients.
Our datasets including contrast-enhanced CT and MRI data
were retrospectively obtained during June 2009 to June 2017
for this study. In detail, 170 patients with contrast-enhanced
CT images (78 HCC, 59 FNH, 33 HEAML) and 137 patients
with contrast-enhanced MRI images (77 HCC, 30 FNH, 30
HEAML) were enrolled. For both CT and MRI datasets, the
patients diagnosed with HEAML were included in an HEAML
group, and the patients with HCC or FNH constituted a
non-HEAML group.

The inclusion criteria for the patients were as follows:
(1) HEAML, HCC, and FNH diagnosed pathologically by
surgical resection or biopsy; (2) contrast-enhanced CT or
MRI scans performed within 1 month before operation;
(3) complete imaging data for further analysis. Patients
would be excluded due to the following criteria: (1)
diagnosis of recurrent tumor or multiple organ malignant
tumor; (2) antitumor treatment received before contrast-
enhanced CT or MRI scan; (3) poor imaging quality of
liver mass. The flow chart for our radiomics study is shown
in Figure 1.

Imaging Data Parameters
All patients underwent contrast-enhanced CT or MRI scans
before surgery or biopsy. CT scans included multislice spiral
CT (Aquilion 16, Toshiba Medical Systems, Otawara, Japan) and
256-slice CT (Brilliance iCT, Philips Medical Systems, Cleveland,
USA). The scanning parameters were as follows: tube voltage 125
kVp; tube current 320 mAs; pitch 0.95mm; layer thickness 2–
5mm; reconstruction interval 2mm. The contrast agent used for
enhanced CT was iohexol (Jiangsu Hengrui Pharmaceutical Co.,
Ltd., Lianyungang, China). The high-pressure syringe speed was
3.0 ml/s, the injection volume was 1.5 ml/kg, and the forelimb
was injected intravenously. Dynamic enhanced scanning was
performed at 25–30, 60–65, and 120–140 s after the contrast agent
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FIGURE 1 | The flowchart for this radiomics study.

was injected during the arterial phase, portal vein phase as well as
delayed phase.

MRI scans were performed using a high-field-strength MRI

instrument (3.0 T Signa HDx, GE Medical Systems, WI, USA).

The contrast-enhancedMRI scan sequence was the simultaneous
liver acceleration volume acquisition sequence using breath

gating. The image acquisition parameters were as follows:

repeat time (TR) 3.3ms; echo time (TE) 1.5ms; flip angle

10◦; matrix 320 ∗ 256; layer thickness 5mm. The contrast

agent was gadolinium-diethylenetriamine penta-acetic acid (Gd-
DTPA, Magnevist, Bayer HealthCare, Berlin, Germany). The
injection rate was 2.0–3.0 ml/s, and the injection dose was 0.1
mmol/kg. Dynamic enhancement scanning was performed 15–
20, 40–55, and 140–180 s after contrast agent injection.

Region of Interest (ROI) Segmentation and
Data Division
Contrast-enhanced CT/MRI arterial phase data were used for
the radiomics analysis. ROIs were manually segmented using
ITK-SNAP on a cross-sectional layer with a maximum diameter
of mass with CT/MRI imaging data (simultaneously avoiding a
large necrotic layer, Supplementary Figure 1). The segmentation
was completed by an experienced radiologist and proofread by a
senior radiologist.

Radiomics Feature Extraction
Since the different voxel sizes always influence imaging features,
we had to resample the images first to extract reproducible
radiomics features (18, 19). Therefore, spline interpolation was
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used and the voxel intensities of each ROI image were discretized
to a value of 64 bins (20).

After image resampling to the identical spatial voxel size and
voxel intensities, we extracted quantitative texture features from
original CT and MRI data. Additionally, the original image was
decomposed by the Haar wavelet transform to obtain high-order
wavelet features. Through changing the ratio of high-frequency
to low-frequency signals and reconstructing images in different
forms, every image was decomposed and reconstructed into
8 additional images. The size of the decomposed images was
equal to that of the original image. From each reconstructed
image, wavelet features were extracted. The radiomics features
extracted in our study are stable and can be reproduced through
the methods we introduced (20–22). Also, a filtering feature
screening (mutual information) method was implemented to
reduce the feature dimension.

Construction and Evaluation of the
Radiomics Signatures
For both CT and MRI datasets, significant imbalance on patient
population existed between the HEAML group and the non-
HEAML group. Therefore, synthetic minority over-sampling
technique (SMOTE) was applied to balance population as well
as avoid overfitting. The original datasets (HEAML group and
non-HEAML group) were proportionally divided into a training
cohort and a test cohort at the ratio of 2:1. The populations
of HEAML patients and non-HEAML patients were set to be
consistent in the training cohort and the test cohort. After the
cohorts had been divided, SMOTE was alone implemented on
the training cohort. In this way, we not only solved the problem
of unbalanced samples, but also ensure the independence of test
cohort for model evaluation.

To construct high-performance radiomics signatures, random
forest (RF), artificial neural network (ANN) as well as ridge
regression (RR), were separately applied to the training cohort
and the test cohort. As a result, three radiomics signatures based
on three different algorithms were constructed. The optimal
parameters of each algorithm were obtained with a grid-search
method. The receiver operating characteristic (ROC) curves were
plotted, then the AUCs were calculated to estimate the efficiency
of every radiomics signature. Finally, the selected radiomics
signature model was used to construct a fusion model in the
following steps. The operations above were conducted two times,
and two high-performance radiomics signatures were eventually
acquired based on CT and MRI datasets, respectively.

Construction and Evaluation of the Fusion
Models
It is assumed that information on clinical characteristics
is of additional value to the differential diagnosis (23–25).
Therefore, radiomics signatures and clinical characteristics were
applied to construct fusion models based on the multivariate
logistic regression (MLR) algorithm. In our study, clinical
characteristics included sex, age, maximum diameter, tumor
location, alcoholism, and smoking. Two steps should be followed
to construct the fusion models. Firstly, according to the Akaike

information criterion (AIC), the combined clinical characteristics
as well as radiomics signature of the lowest AIC value were
selected, acting as the components of the fusion model. Secondly,
the 10-fold cross-validation was applied to establish fusion
models, verifying the confidence of the results. In the process,
SMOTE was not used in the building of the fusion models.
The average AUCs of the fusion models based on CT and
MRI datasets, respectively, were selected to show the diagnostic
efficiency of the models. Meanwhile, we applied decision curve
analysis (DCA) to confirm the improvement in the models
after the clinical factors had been taken into consideration.
Finally, to realize the application of the fusion models in clinical
practice, diagnostic nomograms were built, which would help
preoperatively distinguish HEAML from FNH and HCC.

Statistical Analysis
The feature extraction program was conducted in MATLAB
(2016a) (MathWorks, Natick, MA, USA). RF, RR, and ANN
algorithms were conducted with python 3.7.0 (https://www.
python.org/). The AUC was calculated and depicted by the
“pROC” package. Diagnostic nomograms were built with the
“rms” package in R software 3.6.2 (https://www.r-project.org/).
The statistical results of continuous variables (including age and
maximum diameter) were obtained based on a two-sided Mann–
Whitney U-test. The statistical results of categorical variables
(including sex, tumor location, alcoholism, and smoking) were
acquired through a two-sided chi-squared test. The Mann-
Whitney U-test and chi-square test were implemented by SPSS
20 (IBM Corp, Chicago, USA).

RESULTS

Clinical Factors of Patients
According to the clinical records of the patients, five clinical
characteristics, including sex, age, the maximum diameter, tumor
location, alcoholism, and smoking, were selected as potential
biomarkers for differential diagnosis. The statistical results of
clinical characteristics between HEAML group and non-HEAML
group are shown in Table 1.

Radiomics Feature Extraction
Totally, we extracted 423 quantitative radiomics features from
the ROIs of CT or MRI data from each patient with HEAML,
FNH, and HCC. There were three types of radiomics features
in this study: 7 first-order histogram statistical features, 40
texture features, as well as 376 features using wavelet transform.
The texture features included 5 features extracted from the
neighborhood gray-tone difference matrix (NGTDM), 13 from
the gray-level size zone matrix (GLSZM), 13 from the gray-
level run-length matrix (GLRLM), and 9 from the gray-level
cooccurrence matrix (GLCM). More details about the radiomics
features extracted are available in Supplementary Table 1. After
the pre-screening based on mutual information method, 80 CT
radiomics features and 95 MRI radiomics features were selected
for the construction of radiomics signatures.
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TABLE 1 | The statistical results of clinical characteristics between HEAML group and non-HEAML group.

CT MRI

Clinical Characteristics HEAML

(n = 28)

Non-HEAML

(n = 128)

p HEAML

(n = 26)

Non-HEAML

(n = 98)

p

Sex < 0.001 < 0.001

Male 6 (21%) 93 (73%) 7 (27%) 78 (80%)

Female 22(79%) 35 (27%) 19 (73%) 20 (20%)

Age 47.7 ±

10.4

45.6 ± 16.3 0.701 49.0 ± 9.8 50.4 ± 12.7 0.583

The Maximum Diameter 4.4 ± 1.8 5.3 ± 2.8 0.265 4.3 ± 2.2 5.1 ± 2.8 0.298

Tumor Location < 0.001 1.000

Left 25 (89%) 55 (43%) 10 (38%) 38 (39%)

Right 3 (11%) 73 (57%) 16 (62%) 60 (61%)

Alcoholism or Smoking < 0.001 0.014

No 25 (89%) 51 (40%) 21 (81%) 53 (54%)

Yes 3 (11%) 77 (60%) 5 (19%) 45 (46%)

HEAML represents hepatic epithelioid angiomyolipoma. The values of age and the maximum diameter are shown as mean ± standard deviation. The clinical records of fourteen patients

in CT dataset and thirteen patients in MRI dataset are partly incomplete.

TABLE 2 | The performance of radiomics signatures constructed by three

machine learning algorithms and two datasets.

Type of

dataset

Algorithm Training cohort Test cohort

AUC 95% CI AUC 95% CI

CT RR 0.907 0.867–0.947 0.731 0.572–0.891

RF 0.996 0.991–1.000 0.879 0.752–1.000

ANN 0.861 0.802–0.919 0.763 0.629–0.896

MRI RR 0.997 0.994–1.000 0.736 0.523–0.949

RF 0.999 0.997–1.000 0.925 0.851–0.999

ANN 0.987 0.968–1.000 0.769 0.592–0.946

RF, RR, and ANN represent random forest, ridge regression, artificial neural network,

respectively. CT and MRI represent computed tomography and magnetic resonance

imaging, respectively. AUC refers to the area under the curve. CI refers to

confidence interval.

The Construction and Evaluation of the
Radiomics Signatures
As is shown in Table 2, the results of AUCs were listed based on
three different machine learning algorithms. Results showed that
the radiomics signatures based on the RF algorithm performed
the best with both CT and MRI datasets. The AUCs reached
0.996, 0.879 for the training group as well as the test group from
CT dataset, respectively, and were 0.999, 0.925 for the training
group, test group from MRI dataset, respectively. The ROCs of
the RF-based radiomics signatures are plotted in Figures 2A,B.
Furthermore, the calibration curves showed that the predicted
outcomes of RF-based radiomics signatures coordinated with
the real diagnostic results (Figure 2C). It showed that the
radiomics signatures constructed by RF were the optimal models.
In addition, the radiomics features weights obtained during
the construction of RF-based radiomics signatures are listed in
Supplementary Table 2.

The Construction and Evaluation of the
Fusion Models
The optimal combination of clinical characteristics and
radiomics signature was determined according to the AIC
values (Supplementary Table 3). The ROCs of two fusion
models are plotted in Figure 2D. The fusion models achieved
an average AUC of 0.966 with CT dataset and 0.971 with
MRI dataset. The ROCs of clinical models are plotted
(Supplementary Figure 2). According to the net benefit, the
fusion models were superior over the radiomics signatures and
clinical models at the overall level (Supplementary Figure 3).
Finally, two diagnostic nomograms were built (Figures 2E,F)
based on the fusion models.

DISCUSSION

CT/MRI radiomics signatures and the fusion models were
developed separately and validated the prediction efficiency
for HEAML diagnostic evaluation. The RF-based radiomics
signature performed well with AUCs of 0.996, 0.879 for the
training cohort, test cohort from CT dataset, respectively, and of
0.999, 0.925 for the training cohort, test cohort fromMRI dataset.
Furthermore, several clinical characteristics were included, and
two high-performance fusion models were put forward. The
fusion models outperformed the clinical models and radiomics
signatures in the diagnostic prediction. The fusion models
achieved an average AUC of 0.966 with CT dataset and 0.971 with
MRI dataset. Our results showed that the radiomics features can
potentially be used for the preoperative diagnosis of HEAML vs.
HCC and FNH.

High-order radiomics features often play an important role
as predictors in radiomics model studies (26–28). In a previous
study, high-order radiomics features with deep learning methods
were applied to the differential diagnosis of fatty liver diseases
and liver tumors (14). Moreover, another study proposed a
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FIGURE 2 | The performance of the RF-based radiomics signatures and fusion models integrating the radiomics signatures and clinical characteristics. (A,B) The

ROCs of the two RF-based radiomics signatures with CT and MRI datasets, respectively. (C) The calibration curves revealing the performance of the proposed

radiomics signatures. (D) The overall ROCs of the fusion models. (E,F) The diagnostic nomograms based on the fusion models.

high-order feature-based radiomics model to differentiate liver
masses from HCCs (16). The effective classification of HEAML
and non-HEAML liver tumors demonstrated the quantitative

radiomics features played an irreplaceable role in our study.
Interestingly, part of these selected high-order features were
related to coarseness, correlation, busyness, sum average and
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variance of the medical images. Because it was just a preliminary
radiomics study, the biological information behind the selected
features still needs to be further explored.

Age and sex were important clinical factors in our fusion
models for diagnostic evaluation of HEAML vs. FNH and HCC.
In a previous study, the average onset age of HEAML was ∼51
years (7), while the average age was 56 years in another study (12).
We believed this difference was due to the divergence of cases and
the small sample size. Our study enrolled 28 cases of HEAML
with an average age of 47.7 ± 10.4 years. Unlike HEAML, the
onset age of the HCC group is usually older. However, the
onset age of the FNH group was relatively younger. In addition,
our results showed that HEAML and FNH usually occurred in
females, and HCC tended to occur in males. Our results also
showed that the clinical factors could improve the predictive
performance of radiomics signature models. Therefore, age
and sex were integrated in our fusion models to evaluate the
possibility of HEAML.

Several studies have proven that CT-based and MRI-based
radiomics features both have the ability to discriminate different
tumor phenotypes (29–31). A study found that both CT-
based and MRI-based radiomics models can detect lymph node
metastases in cervical cancer (30). In addition, CT and MRI data
can be applied to the preoperative evaluation of pancreatic cancer
with excellent diagnostic efficiency (29). Our study found that the
radiomics signatures and fusion models based on two different
types of images were both highly efficient on the post-operative
evaluation of HEAML. Moreover, the efficiency of radiomics
signature and fusion model based on MRI images was slightly
higher than the models based on CT images. We believe that the
prediction models based multimodal imaging data will facilitate
clinical use of individual diagnosis and treatment.

The advantages of this study are listed below. Previous
research explored the morphological features of HEAML (4–12).
However, the use of quantitative features to differentiate HEAML
from other liver masses has not been reported using radiomics
method. In this study, we used two radiomics-based models
to distinguish HEAML from HCC and FNH with contrast-
enhanced CT and MRI data. Higher-order features reflecting
intratumor heterogeneity were used to build the radiomics
signature models. Additionally, the prediction models of two
types of imaging data were available for clinicians to use.
Evidently, our results showed that the models constructed based
on radiomics features were diagnostic tools for the classification
of blood-rich hepatic lesions.

Our retrospective study also has some limitations. First,
although we increased the number of patients over a long-time

span, the number of patients with HEAML was still relatively
small because HEAML is uncommon. Second, conventional
imaging features were not included because this research focused
on the efficiency of quantifying imaging features in the diagnostic
evaluation of HEAML. In our follow-up work, conventional
imaging features will be incorporated into the models to improve
the efficiency of diagnosis. Third, 2D ROI data were used for
model construction, which might be a disadvantage because 3D
ROI data include more information about tumor heterogeneity.
Later, different types of data (2D/3D) and different separation
methods (manual/semiautomatic/fully automatic segmentation)
will be considered in the next stage of our radiomics research.

In conclusion, this study proposed two CT/MRI-based
radiomics models for the differential diagnosis of HEAML. The
developed nomograms can be used for non-invasive preoperative
evaluation of liver tumors, which will be helpful for the individual
diagnosis and treatment of HEAML.
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