
Frontiers in Oncology | www.frontiersin.org

Edited by:
Bruno Sainz, Jr.,

Autonomous University of Madrid,
Spain

Reviewed by:
Xin Tian,

Shaanxi Academy of Traditional
Chinese Medicine, China

Feng Wei,
Tianjin Medical University Cancer

Institute and Hospital, China

*Correspondence:
Ramin Radpour

ramin.radpour@dbmr.unibe.ch

Specialty section:
This article was submitted to

Gastrointestinal Cancers,
a section of the journal
Frontiers in Oncology

Received: 19 June 2020
Accepted: 08 October 2020

Published: 09 November 2020

Citation:
Forster S and Radpour R (2020)

Molecular Immunotherapy:
Promising Approach to Treat

Metastatic Colorectal Cancer by
Targeting Resistant Cancer
Cells or Cancer Stem Cells.
Front. Oncol. 10:569017.

doi: 10.3389/fonc.2020.569017

REVIEW
published: 09 November 2020

doi: 10.3389/fonc.2020.569017
Molecular Immunotherapy: Promising
Approach to Treat Metastatic
Colorectal Cancer by Targeting
Resistant Cancer Cells or Cancer
Stem Cells
Stefan Forster1,2 and Ramin Radpour1,2*

1 Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland, 2 Department of
Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland

The immune system is able to recognize and eliminate tumor cells. Some tumors,
including colorectal cancer (CRC), induce immune tolerance via different mechanisms of
“immunoediting” and “immune evasion” and can thus escape immune surveillance. The
impact of immunotherapy on cancer has been investigated for many years, but so far, the
application was limited to few cancer types. Immuno-oncological therapeutic strategies
against metastatic colorectal cancer (mCRC), the adaptive immune system activating
approaches, offer a high potential for adaptation to the great heterogeneity of CRC.
Moreover, novel treatment approaches are currently being tested that might specifically
target the disease initiating and maintaining population of colorectal cancer stem cells
(CSCs). In this review, we aim to summarize the current state of immune-oncology and
tumor immunotherapy of patients with mCRC and discuss different therapeutic modalities
that focus on the activation of tumor-specific T-cells and their perspectives such as tumor
vaccination, checkpoint inhibition, and adoptive T-cell transfer or on the eradication of
colorectal CSCs.

Keywords: colorectal cancer, cancer stem cells, metastasis, cancer therapy, immunotherapy, immune-
checkpoint inhibitors
INTRODUCTION

Colorectal cancer (CRC) is the third most common cancer and the fourth most common cause of
cancer-related deaths (1). Worldwide, 1.4 million people fall ill every year and almost 700,000
people die due to metastatic CRC (mCRC) (2, 3). The majority of CRC patients develop metastases
during the course of the disease, which is associated with a dismal prognosis and a 5-year survival
rate of less than 10% (4). Approximately 15–25% of patients present with liver metastases at the time
of initial diagnosis and 30% develop liver metastases later in the disease period (5). Despite different
systemic therapy advances, more than 80% of patients with mCRC die within 5 years upon
diagnosis. Currently, the majority of mCRC patients are treated with a combination of a biological
agent together with a cytotoxic drug. While chemotherapy combined with surgical rehabilitation
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and/or radiological interventional procedures are the treatment
of choice, several clinical parameters (e.g., age, comorbid illness,
tumor localization, tumor burden, and resectability) influence
the treatment options. Among those clinicopathological
parameters, molecular characteristics of CRC including B-raf
proto-oncogene, serine/threonine kinase (BRAF), human
epidermal growth factor receptor 2 (HER2), microsatellite
instability (MSI), and rat sarcoma homolog family (RAS) are
important therapy determinants (5, 6). Resection and (neo)
adjuvant chemotherapy (CTx) can improve 5-year survival
rates (7). However, the recurrence rate is 40–75%, of which
50% affect the liver (8). With extensive liver metastases, surgical
procedures using established technologies are often no longer
possible, and the option of surgical rehabilitation is reserved for
only a minority of these patients (9). The presence of non-
resectable colorectal metastases implies a significantly worse
prognosis. Under this condition, the palliative CTx remains the
only therapeutic option left (10). In order to prevent tumor
progression, immunotherapy approaches are proposed. In
principle, the procedure should be determined for all patients
with mCRC in interdisciplinary tumor boards.

Cancer stem cells (CSCs) represent a minor fraction of the
bulk tumor cell population that could potentially reconstitute
and propagate the disease. CSCs are found in different tumor
types including colorectal tumors (11–14). CSCs can also induce
tumors in foreign tissues (xenograft models); they diverge in
different tumor types by their specific cell surface markers and
have the potential to rebuild heterogeneous tumor tissue. In
addition, CSCs possess stem cell properties such as self-renewal
and quiescence that are regulated by cell-intrinsic and cell-
extrinsic mechanisms (15). CSCs are mainly resistant to
conventional therapies such as chemotherapy, irradiation and
against immune attack; therefore, they are the main initiator
Frontiers in Oncology | www.frontiersin.org 2
of cancer relapse after primary treatment. This may be due to
the different escape mechanisms of CSCs and/or due to the
protective mechanisms of the microenvironment, e.g., the tumor
niche (14, 16). For this reason, targeting and eradication of
CSCs have been some of the main challenges in cancer
treatment (17).

The immunotherapy of tumors has established itself as an
important pillar of oncological treatment. Distinction of immune-
based therapies is made according to their mechanism of action
between active and passive immunotherapies. Decades of
preclinical and clinical research suggest that the immune system
is able to prevent tumorigenesis and fight cancer (18). The
immunosuppressive function of inhibitory cytokines/chemokines
as well as the complex microenvironment of CRC, reduce the
immune function to promote CRC growth (6).

In CRC, an accumulation of driver mutations leads to the
formation of the tumor-initiating cells, that represent a “foreign
tissue” to the immune system. To date, the immunotherapy
benefit is mainly confined to a small subset of patients with hyper
mutated microsatellite instability-high (MSI-H) tumors such as
CRC patients with deficient mismatch repair (dMMR) who only
represent a small proportion of CRC/mCRC patients. Those
dMMR tumors carry a high level of somatic mutations and
therefore are considered as being highly immunogenic (6).
ACTIVE AND PASSIVE
IMMUNOTHERAPIES

In general, immunotherapies can be divided into active and
passive forms. The difference is whether the molecule used for
treatment works by activating the immune system or is only part
of the immune system itself (Figure 1).
FIGURE 1 | The complex organization of cancer initiation, progress, and distant metastasis for colorectal cancer and important active or passive immunotherapy
approaches. Abbreviations: CC, Cancer cell; CSC, Cancer stem cell; EMT, Epithelial-mesenchymal transition; MET, Mesenchymal-epithelial transition; LN, Lymph nodes;
TIL, tumor-infiltrating lymphocytes.
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ACTIVE IMMUNOTHERAPIES

Cytokines
The discovery, cloning and recombinant production of
intercellular messengers, known as cytokines, was initially
marked by the hope that they could be used to treat tumors
(19). However, it became clear that sometimes their high potency
could cause systemic side effects before inducing a tumor-
directed effect. For example, interleukin-1b (IL1B) already
leads to fever attacks at the nanogram level (20). Only three
representatives of this category are currently clinically used in
oncology: interleukin-2 (IL2), interferon-a (IFNA1), and tumor
necrosis factor-a (TNF). IL2 is predominantly involved in the
activation of various lymphocyte populations [NK (natural
killer) and T-cells]; it induces and reactivates antitumoral
immune responses. Although this type of therapy shows
numerous side-effects, treatment with IL2 resulted in persistent
remissions in a subset of patients with mCRC (21). Moreover,
IL2 is frequently used in immunotherapy combinations
involving autologous T-cells to induce T-cell expansion (22).
IFNA1 is approved under defined conditions for the treatment of
a variety of tumor types including mCRC alone or in
combinations (23). The recombinant IFNA1 mimics a viral
infection and leads to an antiviral program in the patient and
its tumor tissue. In this case, IFNA1 presumably acts directly on
the tumor cell and on its environment and thereby unfolds its
therapeutic effect (24). The therapeutic window is narrow due to
the high toxicity of the substance. TNF triggers both an
antitumor inflammation and a direct cytotoxic effect. However,
it has been reported that Th17-type cytokines (including TNF
and IL6) promote CRC growth via activation of NFKB1 and
STAT3 genes (25).

Tumor Vaccination
Vaccination leads to the detection of tumor antigens by the
immune system, subsequently triggering a specific antitumor
immune response. In tumor vaccination, the presentation of
tumor antigens allows effective activation of tumor-specific
T-cells (i.e., CD8+ cytotoxic T-cells), thereby inducing or
increasing an antitumor immune response.
Frontiers in Oncology | www.frontiersin.org 3
Agonists for Pattern Recognition
Receptors
Pattern recognition receptors are important components of the
innate immune response. They are used for the rapid detection of
bacteria and viruses via the binding to specific patterns of these
pathogens. This triggers pro-inflammatory signaling cascades
that first mobilize soluble and cellular components of the innate
immune response. The activation of pattern recognition
receptors may also lead to the induction of an adaptive,
acquired immune response. With the discovery of these
receptors and their ligands, it was suggested that such agonists
could be used for tumor therapy. As an example, catumaxomab
binds on the one hand to the T-cell antigen CD3 and on the other
hand to EPCAM (“epithelial cell adhesion molecule”), a tumor-
associated antigen (26). Via its CD3 binding arm, catumaxomab
activates T-cells by cross-linking them with tumor cells thus
leading to tumor cell lysis. In addition, catumaxomab has also a
functional Fc domain. Via this Fc domain, catumaxomab binds
to antigen-presenting cells, possibly promoting the development
of an immunological memory. The second approved product is
blinatumomab, a bispecific antibody that binds to CD3 and
CD19. This has the peculiarity that it consists of two so-called
“single chain domains” (27). Catumaxomab and blinatumomab
are examples of how T-cells can be targeted against tumors.

Target Antigens for Tumor Vaccination
In tumor vaccination, highly complex, polyvalent and
inaccurately characterized antigenic mixtures or well-defined
antigens (Ag) can be used alone or in combination as vaccines.
Frequently used Ags in clinical studies are Ag overexpressed in
tumor cells, so-called tumor-associated antigens (TAA), cancer-
testis Ag and oncofetal Ag (Table 1). Although tumor-individual
and patient-specific Ags, so-called neoantigens, have been
known for a long time, they can only be exploited by high-
throughput screening/sequencing methods including the help of
dedicated software and bioinformatic algorithms to predict the
peptide binding avidity to MHC molecules (28). Vaccination
strategies against patient-specific neoantigens appear promising
today. The concept of neoantigen vaccines is currently being
investigated in different clinical studies for CRC (Table 2).
TABLE 1 | Potential tumor antigens for CRC vaccination.

Antigen Examples Strength Weakness

Tumor-associated
antigens (TAA)

PSG2 (CEA),
ERBB2 (Her2/neu),
GP100, MLANA (MART-1),
MUC1, PSA, Tyrosinase

Immunogenic with strong expression in many
tumors and low expression in normal tissue

It is possible that only T-cells with weak avidity are
activated

Mutated tumor-specific
antigens (neoantigens)

TP53, RAS, patient-specific
mutations

Activation of T-cells with high avidity and
effectiveness

Identification so far very cost-intensive, therefore not
yet applicable for the routine application

Cancer-testis antigens MAGE (e.g., MAGEA3),
CTAG1B

Immunogenic with expression in numerous tumors It is possible that only T-cells with weak avidity are
activated

Oncofetal antigens AFP Immunogenic with strong expression in many
tumors, no expression in adult normal tissue

It is possible that only T-cells with weak avidity are
activated
AFP, alpha fetoprotein; CEA, carcinoembryonic antigen; CTAG1B, cancer/testis antigen 1B; ERBB2, erb-b2 receptor tyrosine kinase 2; Her2/neu, human epidermal growth factor receptor
2; MART-1, melanoma antigen recognized by T-cells; GP100, glycoprotein 100; MAGE, melanoma antigen-encoding gene; MUC1, mucin 1; PSA, prostate-specific antigen; PSG2,
pregnancy-specific beta-1-glycoprotein 2; TP53, tumor protein P53.
November 2020 | Volume 10 | Article 569017

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Forster and Radpour Molecular Immunotherapy of mCRC
Tumor Vaccination Strategies
Tumor vaccination involves a wide range of approaches, which
can be essentially divided into three strategies: peptide/protein
vaccines, cell-based vaccines, and genetic vaccines. In peptide/
protein vaccination, peptides or proteins from tumor antigens
are administered as vaccines in combination with different
adjuvants (29). Previous peptide/protein vaccination studies
have often used MHC class I-restricted peptide epitopes from
TAA. However, most peptide/protein-based vaccine research
Frontiers in Oncology | www.frontiersin.org 4
approaches have yielded disappointing results so far and have
not been further developed until their clinical testing (30).

In cell-based vaccination, cells or cell lysates serve as a
vaccine. Here, vaccination strategies are mainly based on
autologous dendritic cells (DC), the most effective antigen
presenting cells (APC). In this strategy, DC progenitor cells
are taken from the blood of the patient, are cultivated in vitro
and stimulated by the addition of tumor-specific antigens. These
pre-treated cells are then reinfused into the patient (30). Several
TABLE 2 | Overview of immunotherapy approaches and clinical trials in CRC/mCRC.

Group Target
type

Target
molecule

Treatment strategy Therapy
form

Combination
partners

No. of
patients

Study group Phase Ref.

Protein/Peptide
Immunization

TAA/
TSA

CEA and
CRC
neoantigens

Peptide-loaded DC (DC
vaccination)

M – 25 MSI-high CRC and
Lynch Syndrome

I/II [NCT01885702]

TSA CRC
neoantigens

Listeria monocytogenes
based vaccine

M and C Pembrolizumab 48 mCRC (Stage IV) I [NCT03265080]

TSA CRC
neoantigens

Peptide-loaded DC (DC
vaccination)

C IL2 19 mCRC (Stage IV) II [NCT02919644]

TAA/
TSA

CRC
neoantigens

Synthetic tumor-associated
peptide vaccine

C Imiquimod,
Pembrolizumab

60 mCRC (Stage IV) I [NCT02600949]

Autologous T-Cell
Therapy

PDCD1-activated autologous
T-lymphocytes (PDCD1-T)

C Bevacizumab,
XELOX

284 mCRC (Stage IV) III [NCT03950154]

Autologous Neo TCR-T Cells
(Neo TCR-P1)

C Nivolumab 148 mCRC (Stage IV) I [NCT03970382]

Autologous tumor-infiltrating
lymphocytes (MDA-TIL)

C IL2 60 Recurrent or
refractory CRC

II [NCT03610490]

CAR-T cells EGFR EGFR-targeted-CAR-T cells M – 20 EGFR-positive
mCRC (Stage IV)

I/II [NCT03152435]

PSG2 (CEA) Anti-CEA-CAR-T cells M – 75 Relapsed/
refractory CEA+
CRC

I [NCT02349724]

EPCAM Anti-EpCAM-CAR-T cells M – 60 Relapsed/
refractory EpCAM+
CRC

I/II [NCT03013712]

KLRK1
(NKG2D)
ligands

NKG2D-based CYAD-CAR-T
cells

C FOLFOX 36 mCRC (Stage IV) I [NCT03692429]

MET Anti-MET CAR-T cells M – 73 c-MET positive
CRC

I/II [NCT03638206]

Immune-Checkpoint
Inhibitors

PDCD1 and
CTLA4

Anti-PDCD1 (Nivolumab)
Anti-CTLA4 (Ipilimumab)

C Temozolomide,
Nivolumab,
Ipilimumab

100 mCRC (stage IV)
microsatellite
stable

II [NCT03832621]

PDCD1 Anti-CD247 (Durvalumab) C Pexidartinib 48 Advanced or
mCRC (Stage IV)

I [NCT02777710]

CD247 Anti-CD247 (Avelumab) C Cetuximab,
Irinotecan

59 mCRC (Stage IV) II [NCT03608046]

CD247 Anti-CD247 (Avelumab) M – 402 CRC (Stage III)
dMMR

III [NCT03827044]

PDCD1 Anti-PDCD1
(Pembrolizumab)

M and C INCB001158 424 mCRC (stage IV) I/II [NCT02903914]

Cytokines L19TNFa M – 34 mCRC (stage IV) I/II
(compl.)

[NCT01253837]

Recombinant IFAB C Celecoxib,
Rintatolimod

12 mCRC (stage IV)
or recurrent CRC

II [NCT03403634]

Interleukin-2 M – 27 mCRC (stage IV) II
(term.)

[NCT00176761]

DNA/RNA Vaccination CEA CEA-RNA pulsed DC cancer
vaccine

M – 22 mCRC (stage IV) I/II
(compl.)

[NCT00003433]
November 2020 | V
olume 10
C, combination therapy; CAR-T cells, chimeric antigen receptor T cells; CD247 (PDL-1), programmed cell death-ligand1; Compl., completed; CRC, colorectal cancer; DC, dendritic cells;
dMMR, deficient mismatch repair; IFAB, interferon Alfa-2b; IL2, interleukin-2; KLRK1, killer cell lectin-like receptor K1; M, monotherapy; mCRC, metastatic colorectal cancer; MSI,
microsatellite instability; PDCD1, programmed cell death-rpotein-1; PSG2, pregnancy-specific beta-1-glycoprotein 2; TAA/TSA, tumor-associated antigens/tumor-specific antigens; TIL,
tumor-infiltrating lymphocytes; term, terminated.
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DC/APC-based vaccination strategies are in advanced clinical
trials. Other cell-based vaccine approaches, such as vaccination
with autologous or allogeneic ex vivo irradiated tumor cells, have
shown disappointing results in previous studies (30).

Genetic vaccination approaches (DNA/RNA/virus-based)
induce somatic cell or DC expression of tumor antigens and
their presentation in the context of MHC class I and II molecules.
This can trigger a direct immune response against tumor cells
(30). Initial clinical trials of RNA-based vaccine approaches are
promising and suggest a superior side-effect profile over the
other genetic vaccines (DNA/virus-based vaccines) (Figure 2,
Table 2).

Over many years, the potent stimulatory effects of Toll-like
receptors (TLRs) on the immune system have urged efforts
aiming to develop immune vaccines that use TLR agonists as
immunological adjuvants (31, 32). Motolimod (VTX-2337) and
resiquimod (R848) are TLR-8 and TLR-7/TLR-8 agonists
respectively, that deliver adjuvant-like signals to APCs. Both
are derivatives of first generation immunomodulatory agents like
imiquimod, which was originally approved by the US Food and
Drug Administration (FDA) to treat genital warts and actinic
keratosis. VTX-2337 and R848 are currently being investigated
as potential immune system stimulators for the treatment of
various tumor types (including CRC and mCRC). They might be
particularly considered effective in combination therapies
together with cancer cell lysate-based, dendritic cell-based,
DNA molecules-based or peptide-based vaccines (31). The
CD200 receptor (CD200R) inhibits immune activation upon
binding to its ligand CD200 that is often expressed on tumor
cells to diminish anti-cancer immune response (33, 34). Previous
studies have shown that the intratumoral administration of R848
inhibits tumor growth and decreases CD200R expression on
tumor-infiltrating immune cells in a syngeneic CT26 colon
Frontiers in Oncology | www.frontiersin.org 5
carcinoma mouse model. These results indicate that the
antitumor activity of the TLR-7/TLR-8 agonist (R848) is
mainly driven by an anti-CD200R effect causing changes in the
tumor microenvironment (TME) (32).

DNA motifs containing unmethylated cytosine‐guanosine
oligodeoxynucleotides (CpG‐ODN) have an immunostimulatory
function and can induce antitumor immune responses mediated by
the innate and the adaptive immune system through TLR‐9
signaling upon activation of APCs. CpG-ODNs promote the
maturation of APCs and support the generation of antigen-
specific B cells and cytotoxic T lymphocytes (35, 36). In humans,
TLR‐9 is mainly expressed by B cells and plasmacytoid dendritic
cells. Several experimental models have shown that immune
modulation by a TLR‐9 agonist (e.g., CpG‐28 or MGN1703) can
activate both innate and adaptive immunity resulting in a significant
tumor rejection; particularly when injected directly into the tumor
(37, 38). Additionally, intratumoral injection of CpG-ODN
enhances the host’s response against cancer cells by reducing the
immunosuppressive activity of myeloid-derived suppressor cells
(MDSCs) (39). CpG-ODN treatment can also increase the TNF
production in DCs or peripheral blood mononuclear cells
(PBMCs) (40).

Multiple clinical studies have been initiated and first analyses
suggest a certain efficacy of vaccination-based approaches in
different tumor types. However, the overall clinical success has
been low especially for CRC (41). To date, there are no clinically
approved vaccination therapies in CRC or mCRC treatment, and
those that are tested in different clinical trials can induce a
therapeutic response only in a minority of patients (about 5–
10%) (30).

The reasons why previous vaccination strategies did not
produce satisfactory clinical response rates are mainly
explainable by the decreased reactivity of the immune system
FIGURE 2 | Illustration of adoptive T-cell transfer. Adoptive transfer of TIL (right). Adoptive transfer of TCR and CAR-modified T-cells (left). CAR, chimeric antigen
receptor; CC, cancer cell; CSC, cancer stem cell; TCR, T-cell receptor; TIL, tumor-infiltrating lymphocytes.
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to tumor-associated self-antigens due to tolerance and
immunosuppressive mechanisms (30). In addition, previous
research studies have used single Ag or combinations of only a
few Ags as the basis for tumor vaccination strategies. However,
according to most recent studies and guidelines multi-epitope
vaccines are considered superior to single Ag based vaccines (41).
There is also emerging evidence that tumor vaccination appears
to be more effective when the tumor burden is still at a low level.
Previous studies, however, were mostly performed on advanced
cancer stages or metastatic forms (41).
PASSIVE IMMUNOTHERAPY

Antibodies
Monoclonal antibodies are the longest used form of
immunotherapy. They are part of the treatment regimens for
many tumors including mCRC. Antibodies, directed against the
tumor or tumor-associated structures could mediate their effect
via induction of cell death, activation of the complement system,
activation of effector cells of the immune system via the Fc part
of the antibody or opsonization (“labeling”) of tumor cells, and
facilitation of phagocytosis by myeloid cells (42).

Immune-Checkpoint Inhibitors
Checkpoint inhibitors (CHI) have revolutionized tumor
therapies in recent years. Their discovery is considered as one
of the most important immunotherapy innovations of the last
decade. Several compounds targeting these molecules are already
in development (43).

The immune system has numerous co-stimulatory and
inhibitory signaling pathways that help to regulate the strength
of an immune response and prevent autoimmune reactions. The
inhibitory signaling pathways, so-called immune-checkpoints,
cause downregulation of T-cell activation or effector function
and play a central role to protect our body from excess immune and
T-cell responses. Tumor cells use upregulation of immune-
checkpoints to escape immune system recognition (immune evasion)
and protect themselves from T-cells and the immune system. This
knowledge led to the development of CHIs. These inhibitors are
monoclonal antibodies (mAbs) directed against immune-checkpoint
receptors or ligands; thereby, resolving the physiological “immune
brakes.” Because CHI modulate the immune response, they
clinically show a different type of response than conventional
oncology therapeutics. CHI may initially lead to an apparent
phase of tumor growth that is followed by tumor regression (44).
The described side-effects of CHI can also largely be explained by
the immune-stimulatory mode of action, which can cause a
misguided immune response. However, CHI-side effects can be
treated well (44).

Three representatives of checkpoint molecules play an essential
role in oncology: PDCD1 [“programmed cell death protein 1 (PD-
1)”], CD247 [“programmed cell death-ligand 1 (PD-L1)”], and
CTLA4 (“cytotoxic T-lymphocyte antigen-4”). All three molecules
were tested and validated as targets for blocking antibodies.
CTLA4 belongs to the first generation of CHI. CTLA4 is
Frontiers in Oncology | www.frontiersin.org 6
expressed on activated cytotoxic T-cells and acts as the
antagonist of the costimulatory receptor CD28 that is required
in T-cell activation. The blockade of CTLA4 thus leads to a de
novo generation and expansion of T-cells. The mAb, ipilimumab,
binds to CTLA4 and subsequently activates antitumoral effects in
the early phase of T-cell activation within the lymph nodes.
Another CTLA4 inhibitor, tremelimumab, is currently in clinical
development (45).

The target genes of the second generation of CHI are the
checkpoint receptor PDCD1 and its ligands CD247 (B7-H1) and
PDCD1LG2 (B7-DC or PD-L2). PDCD1 plays a key role in the
regulation and maintenance of the balance between T-cell
activation and immune tolerance (45). The PDCD1/CD247
axis plays a pivotal role in the effector function of T-cells, i.e.,
in T-cells residing within (tumor) tissue. It protects cells from
excessive T-cell activation by the expression of CD247 on the cell
surface that interacts with PDCD1 expressed by T-cells. Thus,
the blockade of the PDCD1/CD247 axis would reactivate an
existing T-cell response. Several mAbs against PDCD1
(pembrolizumab, lambrolizumab, nivolumab, and pidilizumab)
and its major ligand CD247 (BMS-936559, MPDL3280A, etc.)
are currently in clinical development to target a variety of tumors
including mCRC. The most advanced substances are
pembrolizumab and nivolumab. Numerous other checkpoint
molecules are the subject of intensive preclinical research:
Hepatitis A virus cellular receptor 2 [HAVCR2; known as T-
cell membrane protein 3 (TIM-3)], lymphocyte activation gene 3
(LAG3) (Table 2).

Little oxygen is beneficial for tumors by preventing tumor
cells from T-cell interaction. Moreover, hypoxia counteracts the
desired effects of CHI, such as PDCD1 or CTLA4 inhibitors
leading to CHI resistance of tumor cells (46). In this regard, the
substance evofosfamide (TH-302), an alkylating prodrug that is
activated by a lack of oxygen supply, is currently being clinically
tested (47).

It is already evident that some types of tumors such as
melanoma, lung, kidney, or bladder carcinoma and Hodgkin’s
lymphoma respond better to immunotherapy with CHI than
other types of tumors (e.g., tumors of the gastrointestinal tract
and pancreatic carcinoma) (30). The two PDCD1 inhibitors
(pembrolizumab and nivolumab) have been evaluated alone or
in combination with a CTLA4 inhibitor in patients with
chemorefractory mCRC in the frame of several clinical studies
(Table 2). As results, patients had an improved therapy response
rate and around 60–70% disease control (48, 49). Interestingly,
the response to CHI was irrespective of CD247 expression within
tumor cells. Further, the response rate was independent from the
history of Lynch syndrome and BRAF or KRAS mutation status
(50). Although CHI (including PDCD1 blockade or anti-
CTLA4) in patients with dMMR/MSI-H mCRC significantly
increase the antitumor activity of tumor specific CD8+ T-cells
with highly durable tumor response, they are associated with
virtually no activity in patients with pMMR/non-MSI-H mCRC
(51, 52).

Tumor-infiltrating CD4+Foxp3+ regulatory T (Treg) cells are
known as potent immunosuppressive cells. Treg cells represent
November 2020 | Volume 10 | Article 569017
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one of multiple TME components that help cancer cells to evade
the immune system (53, 54). Accumulation of Tregs within
tumor tissues and the subsequent high ratio of Tregs to
effector T (Teff) cells, is correlated with poor prognosis of
cancer patients suffering from different types of malignancies,
including CRC (55). Thus, several cancer immunotherapy
approaches purging the activity of CD4+Foxp3+ Treg cells by
either depletion of or down-regulating their immunosuppressive
function using immune-checkpoint inhibitors such as anti-
CTLA-4 monoclonal antibody therapy. This approach has
become an effective cancer immunotherapy attributing to
depletion of Tregs in tumors (54).
COMBINATION THERAPY

Despite good clinical results,manypatients donot respond to single
CHI treatment. However, it might be possible to optimize overall
survival rates through appropriate therapy combinations. The
spectrum of combination partners ranges from further CHI and
vaccines, via radiotherapy and chemotherapies, to targeted
therapeutic approaches (56). The combination of ipilimumab
(CTLA4 inhibitor) and nivolumab (PDCD1 inhibitor) results in a
synergistic effect improving progression-free survival compared to
monotherapy with nivolumab or ipilimumab in tumors with
mismatch-repair deficiency (CRC and mCRC) (48, 51). A cohort
of 119 patients showed disease control rates of around 80% and
overall response rates of more than 50% upon combination
treatment using both CHI. Overall survival rates improved from
60 to 85% compared to monotherapy.

A comparable combination study with pembrolizumab has
already been initiated (Table 2). In addition, combination
treatment trials with other modulators of inhibitory (e.g., LAG3,
HAVCR2, BTLA, and “B and T lymphocyte attenuator”) and
stimulatory molecules [e.g., ICOS, “inducible T-cell costimulator”;
TNFRSF9 (4-1BB)] are under investigation (56).
IMMUNE-CHECKPOINTS AS
PROGNOSTIC BIOMARKERS

Selection markers for targeted therapy with CHI are currently
being intensively researched. However, no clear immunological
or tumor-specific characteristics could be identified that clearly
predict responsiveness to CHI in CRC and mCRC. According to
current knowledge, the therapy with CHI of both the CTLA4 and
the PDCD1/CD247 signaling pathway is particularly well
responsive to tumors that have a high mutational load (57, 58).
Tumors that carry genetic defects in their DNA repair machinery
(“MMR defect”) and consequently present high mutation rates
are much more responsive to anti-PDCD1 therapy than tumors
without MMR defects (57). For the PDCD1/CD247 system, most
biomarker studies are concerned with the CD247 expression
pattern. Looking at all studies across all tumor entities, patients
whose tumors express CD247 appear to respond better to
Frontiers in Oncology | www.frontiersin.org 7
PDCD1 blockade than patients without CD247 expression.
Nevertheless, CD247 negative patients also respond to CD247
checkpoint blockade. Therefore, according to current knowledge,
CD247 cannot generally be recommended as a selectionmarker for
PDCD1blockade (56).However, recent data suggest that a patient’s
CD247 status may play a role in deciding whether to use dual
checkpoint inhibition (48).Determining the immunogenicity of the
tumor environment could also be important for the choice of tumor
therapy. For example, non-immunogenic tumors (“cold tumors”)
are more likely to benefit from combination therapies (56).

Since CHI activate the adaptive immune system, a tumor-
specific immune response is possible, which may be independent
of the histological subtype and the type and number of prior
therapies. Currently, T-cell therapies alongside CHI are regarded
as great hope carriers of immuno-oncology, even though they are
still partially in the developmental phase (45).
T-CELL THERAPIES

T-cell based immunotherapies are referred to as “live drugs”: cell
preparations that contain T-cells are currently being clinically
researched by oncologists. Adoptive cell transfer (ACT) with T-
cells is a highly personalized form of therapy in which patients are
endowed with specific T-cells that have direct antitumoral activity.
In contrast to vaccination or CHI, the immune system equipped
with effectorT-cells can exert its antitumoral function immediately.
Currently, three classes of effector T-cells are in the process of being
approved: tumor-infiltrating lymphocytes (TIL), genetically
modified T-cells with a chimeric antigen receptor (CAR), and T-
cells targeted with a specific genetically modified T-cell receptor
(TCR). In ACT approaches, T-cell lymphocytes are isolated from
tumors of individual patients, modified, selected and expanded ex
vivo, then reinfused into the patient (Figure 2).

Tumor-Infiltrating Lymphocytes
It has been shown that the presence of TILs is associated with a
good prognosis of cancer and that TILs isolated from tumor
tissue show a selective antitumor activity (59).

Preclinical and clinical studies on TIL’s ACT show clinical
response rates and sustained remission rates in metastatic CRC
(60). Recently, modern molecular analysis has shown that
melanoma regression-inducing TILs are polyclonal T-cell
populations that recognize different neoantigens on tumor cells
(61). This finding confirms the long postulated assumption that
neoantigens on tumor cells are the main target of immune
system recognition (62) and explains the good response rates
toward ACT therapies with TILs in melanoma, a tumor entity
with one of the highest mutational burdens, or in MSI-H patients
(6). Therefore, the establishment of methods for the selection of
neoantigen reactive TILs may lead to improved therapeutic
success also in other tumor types.

Genetically Modified T-Cells
The idea of genetically modified T-cells was developed to target
directly and more specifically tumor cells with activated T-cells
November 2020 | Volume 10 | Article 569017
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that have specific T-cell receptors (TCRs). The production of
TCR-modified T-cells is carried out by transfection or transduction
of autologousT-cellswith vectors, which code for tumor-specifica/b
TCRs.They canbe isolatedbydifferentmethods (63, 64).Anypatient
whose tumorexpresses the tumorantigen and the correctMHCallele
may benefit from such therapy approaches. In the complementary
strategy of CAR-modified T-cells, CAR genes are expressed in
autologous T lymphocytes. CAR are transmembrane single-chain
fusion proteins and the centerpiece of which is an extracellular
antibody binding site, which, in contrast to conventional TCR,
recognizes an intact surface structure on tumor cells. This Ab
binding site is linked to one to three TCR intracytoplasmic
signaling regions via a transmembrane region. They serve to
initialize T-cell activation signals. CAR modified T-cells are
activated and proliferate MHC-independent in vivo after exposure
to the antigens. This can lead to tumor cell lysis and the formation
of an Ag-specific immune memory (64). Today it is assumed
that especially T-cells in early stages of differentiation (naive and
central memory T-cells) are particularly suitable for ACTwith gene-
modifiedT-cells (65).The cancer researchershave succeeded inusing
genetic engineering to produce third-generation CAR receptors,
which can transmit at least three signals, or the fourth generation,
known as TRUCK, which can be combined with cytokines (66, 67).

To date, CAR therapy has been less successful in solid tumors. In
order to be able to better control geneticallymodifiedT-cells, it would
be advantageous to be able to switch them on and off after infusion.
Therefore, Anja Feldmann, Dresden-Rossendorf, and their
colleagues have developed special CAR-T-cells that are initially
inactive and can be temporarily “armed” only when needed by an
externally added factor against tumors. These are short-lived mono-
or bispecific molecules, for example against the growth factor EGFR
(“epidermal growth factor receptor”), which make the connection
between the cytotoxic T-cells and the tumor cells and thus the T
lymphocytes to the cancer cells. Such UniCAR T-cells can be
inactivated again by omitting the activating factors (68).

Several pilot studies with TCR-modified T-cells indicate a
good response of various solid and hematological tumors to this
therapeutic strategy; these include melanomas, synovial
sarcomas, multiple myelomas, colorectal and hepatocellular
carcinomas (64). Clinical studies with CAR-modified T-cells
have so far been conducted predominantly with anti-ERBB2
specificity for the treatment of CRC/mCRC (69). However,
ACT with gene-modified T-cells has often been associated with
side effects. Thus, strong immune responses against healthy
target tissue could be elicited if the target antigen is not
expressed exclusively on tumor cells (“on-target toxicity”) or
result in cross-reactivities. Neurotoxicities are other frequently
observed side effects (60, 64). The severe side effects of treatment-
induced massive T-cell activation and associated excessive cytokine
secretion, which occur in particular during CAR-modified T-cell
therapies, can now be treated well with tocilizumab, a mAb directed
against the interleukin-6 receptor (IL6R).

In solid tumors, CAR modified T-cell therapies have not been
widely accepted. This is due to the lack of antigens expressed
exclusively on tumor cells. In addition, oncological T-cell
therapies are extremely costly. Initial clinical trials to combine
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ACT with other immuno-oncological therapeutics (CHI and
vaccines) or targeted therapies are passing different clinical trials.
IMMUNOTHERAPIES TARGETING
CANCER STEM CELLS

CSCs are resistant to conventional chemotherapies due to their
quiescent cell states and are considered the main drivers of disease
relapse and cancer metastasis (70, 71). In recent studies, a diversity
of new antigens has been described that are expressed on colorectal
CSCs but are absent in the tumor bulk (non-CSC population) and
healthy tissues. These antigens provide promising targets to
eradicate CSCs by directed T-cell responses thereby disrupting
the generation of new cancer cells. In this regard, the antigen ASB4
has recently been described to be upregulated in colorectal CSCs.
Interestingly, treatment with adoptively transferred effector CD8+

T-cells specifically targeting ASB4 led to the elimination of CSCs
and suppressed tumor growth in vivo (71). Glycoprotein A33
(GPA33) was found to be universally expressed on CSCs and
non-CSCs populations using a panel of cancer stem-like cell lines
derived from human CRC specimens. Treatment with a bispecific
GPA33–CD3 monoclonal antibody (MGD007), recruiting human
T-cells, induced lysis of GPA33 expressing CRC cells and reduced
tumor growth in vivo in NOD/SCIDmice subcutaneously injected
with a 1:1 mixture of colorectal cancer cell lines (LS174T and
Colo205) with purified T-cells (72). The surface markers CD133
and CD44 have been shown to enable the discrimination of
colorectal CSCs and non-CSCs (73, 74). Radiotheranostic
targeting of colorectal CSCs using Prominin 1 (PROM1; known
as CD133) and CD44 monoclonal antibodies labeled with
radioodine led to a significant inhibition of tumor growth and
prolonged mean survival of xenografted mice injected with HT29
CRC cell line (75). Besides immunotherapy-based approaches to
target CSCs in CRC/mCRC, novel options are emerging thatmight
play a pivotal role in future treatment regimens targeting and
eliminating CSCs. Tankyrase-inhibitors have been shown to
effectively reduce the CD44-positive COLO-320DM cell
population resembling CSC properties. Moreover, co-treatment
of tankyrase-inhibitors with Irinotecan significantly decreased
tumor growth of COLO-320 xenogra f t tumors in
immunodeficient mice and showed higher efficiency than single
treatment (76). Mithramycin-A (Mit-A) treatment, an antibiotic
that inhibits the binding of transcription factors to DNA, led to a
reduction in size and numbers of tumor spheroids derived from the
CRC cell lines, HT29, HCT116, and KM12 compared to standard
treatment with 5-fluorouracil and oxaliplatin (FUOX). In addition,
PROM1 expression and ALDH activity of tumor spheroids were
downregulated upon Mit-A treatment demonstrating a direct
suppressive effect on cancer cell stemness (77, 78).
GUTMICROBIOMEAND IMMUNOTHERAPIES

There is emerging evidence that the gut microbiome plays a
pivotal role in carcinogenesis, immunity and might affect cancer
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response to immunotherapies (79, 80). In CRC, the interactions
between gut commensals, immune cells, and cancer cells build a
complex and not fully understood network that might drive or
inhibit cancer progression depending on various factors such as the
composition of the patient’s microbiome (Figure 3). In 2009, Wu
et al. for the first time described that colonization with
entertoxigenic Bacteroides fragilis (BTF) and BTF toxin-mediated
colitis followed by recruitment of T helper type 17 (Th17) cells
increase the chances of inflammation-induced colorectal cancer
(81). The state of the gut microbiome has also been linked to CHI
response in melanoma and renal cell carcinoma patients. In this
regard, Chaput et al. described better response rates of patients
suffering frommetastaticmelanoma to treatments with the CTLA4
inhibitor, ipilimumab, based on an intact and stable state of the gut
microbiome. Patients whose microbiota was enriched by
Faecalibacteria or other Firmicutes survived significantly longer
and showed higher rates of ipilimumab-mediated induction of T-
cells compared to patients without evidence of gut colonization by
Faecalibacteria (82). Moreover, preclinical and clinical studies
revealed that treatment with antibiotics disrupting the
equilibrium of the normal gut microbiome result in a
compromised efficacy of anti-PDCD1 therapies. RET melanoma
Frontiers in Oncology | www.frontiersin.org 9
andMCA-205 sarcomamice that were pre-treated with antibiotics
survived significantly shorter undergoing anti-PDCD1 and anti-
CTLA4 treatment compared to mice without antibiotic pre-
treatment. Moreover, in an anti-PDCD1/CD247 treated cohort of
140 non-small cell lung cancer and 67 renal cell carcinoma patients,
reduced overall survival could be observed in those that underwent
additional antibiotic therapies (83).

Besides the microbiome, many other exogenous and
endogenous factors affect cancer progression and therapy
response. However, the interplays between these exposures and
their effects on cancer progression and therapy response are not
well investigated and are therefore an emerging field of scientific
interest. The transdisciplinary discipline of molecular
pathological epidemiology (MPE) uses molecular pathological
signatures to elucidate these complex interactions on disease
progression and provide new concepts of disease prediction and
treatment. In CRC research, MPE projects led to significant
progress in the understanding of cancer heterogeneity between
different CRC subtypes based on the analysis and wholesome
evaluation of genetic, epigenetic and microbial statuses of CRC
patients and have a great potential to improve precision based
medicine in the future (84–88).
FIGURE 3 | Role of the gut microbiome on immune-checkpoint blockade therapies. Composition of the gut microbiota can affect host antitumor immunity. Uptake
of distinct good bacterial flora (e.g., Bifidobacteria, Escherichia coli, and Lactobacillus) or bacteria-derived products by DCs can enhance the antigen-processing
steps and presentation by DCs and thereby affect the response to CHI therapies (e.g., anti-PDCD1 or anti-CD247). As a result, this will lead to the activation of
cytotoxic T lymphocytes or more increased secretion of interleukins and interferons (e.g., IL17 or INFG) by activated T helper cells. However, bad bacterial species
(e.g., Campylobacter, Enterococcus faecalis, and Clostridium difficile) might have a negative effect on DC activation and CHI therapies by inducing inflammation and
disrupting the gut microbiome homeostasis. CC, cancer cell; CSC, cancer stem cell; CTL, cytotoxic T lymphocyte; DC, dendritic cell; ICB, immune-checkpoint
blockade; IEC, intestinal epithelial cell; IFNs, interferons; ILs, interleukins; Th, T-helper cell; TME, the tumor microenvironment.
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CONCLUSION

Within a few years, immunotherapy has become a successful
oncological therapeutic strategy. It has the potential to induce
sustained tumor remission in various tumor entities including
CRC/mCRC, which could significantly improve the overall
survival of cancer patients.

Tumor vaccination is highly complex and the optimal
combination of antigens, adjuvants and administration routes
is not yet clearly identified. From today’s perspective, the future
of oncological vaccination strategies lies in the development of
targeted oncological vaccines based on patient-specific
neoantigens and in the combination of various therapeutic
strategies such as CHLs, CAR T-cells, or adaptive cell therapies.

Among other developed immunotherapy strategies,
checkpoint inhibitors showed a great success rate as a potential
immuno-oncological therapy, in particular for dMMR mCRC.
However, to date, the economic impact of these therapies largely
remains unknown. It is shown that although both single or
combination CHI were superior to chemotherapy in dMMR
mCRC, they were less cost-effective.
Frontiers in Oncology | www.frontiersin.org 10
In T-cell therapies, the response rates vary greatly depending
on the underlying disease. Whether and to what extent this
benefit can be transferred to other tumors will have to be shown
in further studies. In the near future, modern molecular biology
techniques might enable the development of patient-specific
neoantigen-specific receptors for ACT.

While the role of tumor vaccination is currently unclear, the
clinical successes of CHI and ACT with T-cells show that
therapeutic manipulation of the immune system represents a
new successful oncological treatment strategy for CRC. Co-
targeting of CSCs as the disease initiating and maintaining
population of cancer cells might increase the success rate of
current CRC treatment approaches. Immuno-oncology has the
potential to induce sustained tumor regression and significantly
improve overall survival in many tumors including mCRC.
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