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Background: Clear cell renal cell carcinoma (ccRCC) is the most common renal cancer
and it has the worst prognosis among all renal cancers. However, traditional radiological
characteristics on computed tomography (CT) scans of ccRCC have been insufficient to
predict the pathological grade of ccRCC before surgery.

Methods: Patients with ccRCC were retrospectively enrolled into this study and were
separated into two groups according to the World Health Organization (WHO)/International
Society of Urological Pathology (ISUP) grading system, i.e., low-grade (Grade I and II) group
and high-grade (Grade III and IV) group. Traditional CT radiological characteristics such as
tumor size, pre- and post-enhancing CT densities were assessed. In addition, radiomic
texture analysis based on the CT imaging of the ccRCC were also performed. A CT-based
machine learning method combining the traditional radiological characteristics and radiomic
features was used in the predictive modeling for differentiating the low-grade from the high-
grade ccRCC. Model performance was evaluated with the receiver operating characteristic
curve (ROC) analysis.

Results: A total of 264 patients with pathologically confirmed ccRCCwere included in this
study. In this cohort, 206 patients had the low-grade tumors and 58 had the high-grade
tumors. The model built with traditional radiological characteristics achieved an area under
the curve (AUC) of 0.9175 (95% CI: 0.8765–0.9585) and 0.8088 (95% CI: 0.7064–
0.9113) in differentiating the low-grade from the high-grade ccRCC for the training cohort
and the validation cohort respectively. The model built with the radiomic textural features
yielded an AUC value of 0.8170 (95% CI: 0.7353–0.8987) and 0.8017 (95% CI: 0.6878–
0.9157) for the training cohort and the validation cohort, respectively. The combined
model integrating both the traditional radiological characteristics and the radiomic textural
features achieved the highest efficacy, with an AUC of 0.9235 (95% CI: 0.8646–0.9824)
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and an AUC of 0.9099 (95% CI: 0.8324–0.9873) for the training cohort and validation
cohort, respectively.

Conclusion: We developed a machine learning radiomic model achieving a satisfying
performance in differentiating the low-grade from the high-grade ccRCC. Our study
presented a potentially useful non-invasive imaging-focused method to predict the
pathological grade of renal cancers prior to surgery.
Keywords: radiomics, clear cell renal cell carcinoma, computed tomography (CT), machine learning,
predictive modeling
INTRODUCTION

Clear cell renal cell carcinoma (ccRCC) constitutes 70%–80%
of all renal cancers (1–3) and it has a poor prognosis with a
cure rate under 70% even for a localized ccRCC treated by
radical nephrectomy (4–6). A novel four-tiered World Health
Organization (WHO)/International Society of Urological
Pathology (ISUP) grading (7) has been reported to have the
potential to predict prognosis in patients with ccRCC (8–10) who
may have the poorest prognosis among all patients with renal
cancer (11–13). The ccRCC tumors are usually subclassified into
two groups including the low-grade (Grade I and II) and the
high-grade (Grade III and IV) groups, reflecting the significant
difference in treatment strategy and prognosis between the two
groups (7, 10, 14). It has been shown that the higher ISUP grade
of ccRCC has greater biologic aggressiveness, and is associated
with worse survival (8, 9) and higher risk for recurrence after
partial (nephron-sparing) nephrectomy (15). Knowledge of ISUP
grade prior to surgery could guide clinical decision making (5,
16, 17). In addition, reliable ISUP grade obtained from a non-
invasive method such as imaging may alleviate the need for renal
biopsy (18), thus avoiding the risk of complications from
invasive biopsies such as bleeding, infection, tumor seeding the
biopsy needle path, and the relatively low accuracy in assessing
tumor grade based on the biopsy specimen (19). Therefore, there
is an unmet need to develop non-invasive methods for assessing
the pathological grade of ccRCC before surgery.

Non-invasive imaging-based method has been used in
assessing pathological grade of ccRCC before surgery (20–22).
Several traditional radiological characteristics such as tumor
size and CT enhancement patterns have been shown to be
correlated with the tumor grade (23). However, it has been
challenging to predict the pathological grade of ccRCC with the
existing limited information obtained from the traditional
radiological characteristics (21, 24). By contrast, radiomic
analysis involving the computerized extraction of data not
discernable to the human eyes could generate highly detailed
imaging features regarding tumor texture, shape, and image
intensity (25, 26). Such methods have been successfully used in
arcinoma; HE, hematoxylin and eosin;
tional Society of Urological Pathology;
on operator; pRCC, papillary renal cell
, random forest; SVM, support vector
on.

2

cancer research (25, 26), presenting the potential for identifying
tumor phenotype, pathological grade (27), and biological
behavior (28). Therefore, radiomic analysis is a potentially
useful method that could be used not only to evaluate tumor
heterogeneity but also to assess pathological grade for guiding
personalized cancer treatment. However, there has been limited
progress in developing non-invasive radiomic machine-learning
models to accurately differentiate the low-grade from the high-
grade ccRCC.

In this study, we analyzed the traditional radiological
characteristics of ccRCC on pre-surgical CT images including
the tumor size and CT density values. In addition, we performed
predictive modeling combining the features obtained from both
the traditional radiological assessment and the radiomic textural
analysis. We aimed to develop a radiomic machine learning
model to predict the ISUP grade of ccRCC tumors pre-surgically.
We hypothesized that integration of radiomic features into the
traditional radiological characteristics should improve the model
performance in differentiating the low-grade from the high-
grade ccRCC than using either the radiomic features or the
traditional radiological characteristics alone in building
the model.
METHODS

Patients
Patients were consecutively identified and retrospectively
included into this study through a careful assessment of our
medical records from June 1, 2010 to June 1, 2017. All patients
in this cohort underwent radical or partial nephrectomy with
curative intent in our hospital with a final pathological diagnosis
of ccRCC. Those patients with complete medical records
including pathological confirmation and pre-surgical CT
images were included, and their medical data including CT
images was collected by research personnel (QX, FZ, ZL, and
CW) for subsequent assessment. To avoid possible observer
bias, the researchers were tasked specifically for different aspects
of the study. For example, researcher 1 (ZL) with exposure to
the original data completed the data anonymization procedure
and did not participate in the subsequent analysis. The reminder
three researchers including FZ only dealt with anonymized data
and they were blinded to all radiological and clinicopathological
information of the patients. All enrolled patients were divided
January 2021 | Volume 10 | Article 570396
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into two cohorts, i.e., the training cohort and the validation
cohort, at a ratio of 3:1 randomly. Details of the exclusion
criteria and the patient recruiting process were shown in
Figure 1.

This study was approved by Ethic Committee and Institutional
Review Board in Xiangya Hospital of Central South University, P.
R. China (IRB#2017121011). Written informed consents were
waived due to the retrospective nature of this study.

Re-Analysis of Pathological Slides
For each patient, all pathological slides (including hematoxylin
and eosin [HE] and immunohistochemical [IHC] staining) were
re-analyzed by two pathologists specialized in urology (GG and
HY, with 6 and 25 years of experience in uropathology,
respectively). Each ccRCC grading was undertaken according
to the criteria of the ISUP grading system (7) (Supplementary
Table 1), and the ccRCC tumors were separated into two groups:
the low-grade group (Group 1: Grade I and II) and the high-
grade group (Group 2: Grade III and IV) (14). Consensus was
reached by discussion if differences in opinions existed.

Computed Tomography Imaging
All patients had a routine abdominal CT scan obtained on one of
our three CT scanners, i.e., a 16-MDCT (Brilliance 16, Philipps),
a 64-MDCT (SOMATOMDefinition, Siemens), or a 320-MDCT
(Aquilion ONE, Toshiba Medical Systems) scanner. CT imaging
included an acquisition of a pre-contrast phase and a contrast-
enhanced phase with a power injector (Ulrich CT plus 150,
Ulrich Medical, Ulm, Germany). Briefly, 90–100 ml of iodinated
contrast material (Ultravist 370, Bayer Schering Pharma, Berlin,
Germany) was administered intravenously at a rate of 3.0–3.5 ml
per second. Contrast-enhanced images at the nephrographic
Frontiers in Oncology | www.frontiersin.org 3
phase (scan with fixed delay time of 65 s) were obtained for all
patients. Since all patients had CT images for both the non-
enhanced phase and the nephrographic/portal venous phase, the
CT images from these two phases were included in this analysis.
All CT images were retrieved from our Picture Archiving
and Communication Systems (PACS, Carestrem, Canada), and
were downloaded to an external workstation (Leonardo;
Siemens Medical Solutions, Forchheim, Germany). All CT
images were reconstructed into the voxel size of 1×1×1mm3

for subsequent analysis.

Traditional Radiological Analysis
Two radiologists specialized in abdominal imaging (Reader 1: FZ
with 10 years of experience and Reader 2: GL with 25 years of
experience) reviewed the CT images independently. They were
blinded to all radiological and clinicopathological information of
the patients. They recorded the traditional CT imaging findings
including the tumor size measurements such as transverse
dimension in millimeter (mm), anteroposterior dimension
(mm), cranio-caudal dimension (mm), pre-enhanced CT
density value (CTpre) in Hounsfield units (HU), enhanced CT
density value (CTpost) in HU, and enhancement range in HU.

Radiomic Textural Feature Extraction
We used the pre-contrast non-enhanced CT images for radiomic
textural feature extraction due to the following reasons. In this
retrospective study with the images already acquired, we were
concerned about the potential confounding variables affecting the
contrast-enhanced images such as the inconsistent injection speed
of contrast medium and varying hemodynamics of each patient
after contrast administration. These variables may contribute to
varying contrast enhancement of the tumors that did not reflect the
FIGURE 1 | Study recruitment diagram with respect to inclusion and exclusion criteria.
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true tumor heterogeneity. On the contrary, pre-contrast non-
enhanced CT images were easy to acquire and were relatively
stable from one patient to another, which may show the inherent
tumor heterogeneity. In our study, the radiomic textural feature
extraction was performed only on the non-enhanced images.

For each patient’s CT scan, a representative axial image with
the largest cross-sectional measurement of the renal tumor was
selected. In order to eliminate the potential variance of CT
images obtained on the three different scanners, all original
CT images underwent normalization using the gray-scale
discretization method before textural feature extraction, with a
final 256 bins (Analysis Kit software, version V3.0.0.R, GE
Healthcare) (29, 30). Subsequently, we used the textural
analysis software (MaZda Version 4.6, Institute of Electronics,
Technical University of Lodz, Poland) (31) to perform the image
analysis. A region of interest (ROI) to outline the tumor
boundaries was drawn manually. The corresponding contrast-
enhanced CT images were used as references in delineating the
precise boundaries of the tumor on pre-enhanced images. All
contouring was reviewed and validated by two senior abdominal
radiologists (XY and GL) with 15 and 16 years of experience,
respectively, in interpreting genitourinary CT images.

For each patient, a total of 340 textural features were extracted
with the MaZda software based on corresponding ROI file,
including a gray-level histogram, a gradient, a run-length
matrix, a co-occurrence matrix, an autoregressive model and a
wavelet transform analysis.

Reproducibility of Textural
Feature Extraction
To evaluate the reproducibility of the radiomic textural feature
extraction, the inter-observer (Reader 1 versus Reader 2) and intra-
observer (Reader 1 twice) correlation coefficient (ICC) values were
accessed. The reader consistency and reproducibility were
determined according to the following criteria based on the ICC
value: poor (<0.20), fair (0.21–0.40), moderate (0.40–0.60), good
(0.61–0.80), and excellent (0.81–1.00). In general, an ICC exceeding
0.75 indicated good agreement.

The differences of the values for each feature between the two
groups, and the differences between the textural features
generated by Reader 1 (first time) and those by Reader 2, as
well as between the features twice-generated by Reader 1, were
analyzed using Mann-Whitney U test, independent samples t-
test or Kruskal-Wallis H test, where appropriate.

Inter-observer and intra-observer reproducibility was initially
analyzed with 50 randomly chosen patients’ CT images evaluated
by two radiologists (Reader 1 and Reader 2). To assess the inter-
observer reproducibility, Reader 1 and Reader 2 completed the
workflow as described previously (32).

A 0.2–1 cm2 circular ROI was used to measure CT attenuation
values of the tumors in HU. ROIs were placed on the solid parts of
the tumor for three times, then the average CT attenuation value
was recorded. Tumor size measurements including transverse
dimension (mm), anteroposterior dimension (mm), and cranio-
caudal dimension (mm), were all measured three times, and then
the average values were recorded.
Frontiers in Oncology | www.frontiersin.org 4
Statistical Analysis, Feature Selection,
and Prediction Model Building
IBM SPSS version 22.0.0 (IBM Corporation, Armonk, NY, USA)
was used to for statistical analyses. The differences about
quantitative radiomic features and the qualitative features
between the two groups, i.e., the low-grade group and the
high-grade group, were tested using the Wilcoxon rank-sum
test and the chi-square test respectively.

We used MATLAB 2017a (The Mathworks, Inc., Natick, MA,
USA) to perform the data processing, data reduction for feature
selection, and model building. The least absolute shrinkage and
selection operator (LASSO) method was performed to select the
features from the training cohort that possessed the most useful
predictive value. Based on these selected features, machine
learning methods including the Random Forest (RF) method
and the support vector machine (SVM) method were used to
generate the differentiation models according to the classification
algorithm developed in our previous report (32).

The differentiation models were developed in the training
cohort, and were validated in the validation cohort. The
classification efficiencies of the models were calculated using
the receiver operating characteristic (ROC) curves analysis. A P
value < 0.05 was considered statistically significant. The work
flow for radiomic feature extraction, feature selection and
classification model building was presented in Figure 2. Details
of the flow chart depicting the process of predictive modeling
was shown in Supplementary Figure 1.

Correlation Test Among Selected Features
A correlation matrix analysis was performed to evaluate
associations between the radiomic textural features and the
traditional radiological characteristics, including correlations of
features within each of these two groups, i.e., the low-grade
group and the high-grade group as well as between the
two groups.
RESULTS

Patient Characteristics Between
the Training and Validation Cohorts
Table 1 summarized the clinicopathological and traditional
radiological characteristics of this study cohort. There were no
significant differences in the clinical characteristics such as
gender and age between the training and the validation
cohorts. There were no significant differences in the
distribution of the low-grade and the high-grade ccRCC
between the two cohorts. No significant differences were noted
between the two cohorts regarding the tumor size measurements
or CT density values.

Patient Characteristics Between
the Low-Grade and the High-Grade Groups
The tumors size measurements in the low-grade group (Group 1)
were significantly smaller than those in Group 2. The CTpre
values of the Group 1 tumors were significantly lower than those
January 2021 | Volume 10 | Article 570396
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of the Group 2 tumors. In contrast, tumors in Group 1 showed a
higher CTpost value than the tumors in Group 2, although the
difference did not reach statistical significance (P=0.052).
However, when considering the CTpre values, the degree of
enhancement for Group 1 tumors was significantly higher than
that of the Group 2 tumors (P=0.001). Details of the
corresponding statistical results were presented in Table 2.

Reproducibility of Radiomic Feature
Extraction and Traditional Radiological
Assessment
Our results demonstrated satisfactory inter- and intra-observer
reproducibility of the radiomic feature extraction and the
traditional radiological assessment. The inter-observer ICCs of
for radiomic features between Reader 1 (first time) and Reader 2
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TABLE 1 | Comparison of patient characteristics between the training cohort
and the validation cohort.

Training cohort Validation cohort P value

Gender 0.923
Male 141(70.85%) 42(64.62%)
Female 58(29.15%) 23(35.38%)
Age (years) 53.22 ± 11.05 54.09 ± 10.78) 0.789
Group 0.344
Low ISUP grade 155 (77.89%) 51 (78.46%)
High ISUP grade 44 (22.11%) 14 (21.54%)
T-stage 0.817
T1 110 (55.28%) 37 (56.92%)
T2 89 (44.72) 28 (43.08%)
Tumor size (mm)
transverse 4.46 (1.36–11.55) 4.49 (1.78–8.88) 0.752
anterior-posterior 4.65 (0.88–12.36) 4.56 (2.09–10.53) 0.864
cranio-caudal 4.55 (1.13–18.74) 4.76 (1.94–13.14) 0.914
CT-pre (HU) 32.18 ± 8.32 33.05 ± 6.60 0.439
CT-V(HU) 79.46 (31.69–249.91) 77.79 (31.84–152.79) 0.949
Enhancement (HU) 47.83 (9.39–221.28) 44.99 (11.40–117.40) 0.841
January 20
21 | Volume 10 | Article
ISUP, International Society of Urological Pathology; CT-pre, CT value on pre-enhanced CT
image; CT-V, CT value on enhanced CT image during nephrographic/portal venous
phase; Enhanced, the HU values during the CT-V phase. HU, Hounsfield Units.
TABLE 2 | Comparison of patient characteristics between the low-grade and the
high-grade tumors.

Low ISUP grade High ISUP grade P value

Gender 0.368
Male 140(67.96%) 43(74.14%)
Female 66(32.04%) 15(25.86%)
Age (years) 53.19 ± 11.30 54.28 ± 9.77 0.508
T-stage <0.001
T1 127 (61.65%) 20 (34.48%)
T2 79 (38.35%) 38 (65.52%)
Tumor size (mm)
transverse 4.12 (1.36–11.55) 5.98 (1.87–10.44) <0.001
anterior-posterior 4.32 (0.88–11.05) 6.02 (1.54–12.36) <0.001
cranio-caudal 4.23 (1.13–12.23) 6.30 (1.91–18.74) <0.001
CT-pre (HU) 31.26 ± 7.93 36.41 ± 6.51 <0.001
CT-V (HU) 82.17 (31.69–249.91) 73.52 (38.58–152.79) 0.052
Enhancement (HU) 49.66 (9.39–221.28) 38.76 (10.58–117.40) 0.001
ISUP, International Society of Urological Pathology; The interval values in parentheses
refer minimum- maximum; CT-pre, CT value on pre-enhanced CT image; CT-V, CT value
on enhanced CT image during nephrographic/portal venous phase; Enhanced, the HU
values during the CT-V phase. HU, Hounsfield Units.
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ranged from 0.761 to 0.893. The intra-observer ICC of Reader 1
with two extraction performances ranged from 0.781 to 0.909. As
a result, the radiomic features extracted by Reader 1 were used in
all subsequent analysis. The inter-reader analysis achieved good
to excellent agreement in traditional radiological evaluation
(ICC = 0.687–0.936). The ICC values for the traditional
radiological features were not high, which could be explained by
the following reasons. First, the traditional radiological features
such as CT density may vary from one scan to another due to
inherent tumor heterogeneity. In addition, the solid components
of tumors might not be homogenously enhancing and therefore
may result in variations in local delineation of ROIs for CT density
measurements. Second, there may be subtle differences in CT
density among the three different CT scanners. Third, the renal
tumors were generally small and the solid enhancing parts of the
renal tumor were even smaller in size. Any minor variations in
local delineation of ROI between the readers may result in a large
difference in ICC. However, caution was taken in delineation of
ROIs and all measurements were performed three times with the
average values being recorded.

Model Built With Radiomic Textural
Features
A total of 340 features were extracted from pre-enhanced CT
images for each patient. Of all the textural features, 19 features
Frontiers in Oncology | www.frontiersin.org 6
were finally selected to build a textural signature (Rad-score)
after performing LASSO for feature selection. This process was
included in the Supplementary Files (Supplementary Files:
Equation 1). The same set of features was also used to build a
RF classifier (score 2). A SVM classifier (SMV 1) was built based
on the two models. The SVM 1 classifier achieved a classification
performance with an AUC value of 0.8170 (95% CI: 0.7353–
0.8987) and 0.8017 (95% CI: 0.6878–0.9157) in the training and
validation cohorts, respectively (Figure 3).

Model Built With Traditional Radiological
Characteristics
The traditional radiological characteristics including the
transverse dimension, cranio-caudal dimension, CTpre, and
enhancement range were selected using the LASSO method
(Supplementary Files: Equation 2) (score 4), and a RF model
(Score 5) was built through the same modeling process as
performed for the radiomic textural features. Based on scores 4
and 5, a new SVM classifier (SVM 2; Score 6) was created. The
AUC of SVM2 was 0.9175 (95% CI: 0.8765–0.9585) and 0.8088
(95% CI: 0.7064–0.9113) in the training and validation
cohorts, respectively.

Based on SVM1 (Score 3) and SVM2 (Score 6), the final
classification model built by the SVM method (SVM3; Score 7)
was constructed. This model provided an AUC of 0.9235 (95%
A B

D E

C

FIGURE 3 | Classification efficiencies of the three support vector machine (SVM) models. (A) Model built with radiomic textural features. (B) Model built with
traditional radiological characteristics. (C) Model built with both radiomic textural features and traditional radiological features. (D) Receiver operating characteristic
(ROC) curve analysis for the training cohort. (E) Receiver operating characteristic (ROC) curve analysis for the validation cohort. LASSO, least absolute shrinkage and
selection operator; SVM, Support vector machine.
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CI: 0.8646–0.9824) with a sensitivity of 0.8780 (95% CI: 0.7561–
0.9756) and a specificity of 0.9167 (95% CI: 0.8611–0.9722) in the
training cohort, and a AUC of 0.9099 (95% CI: 0.8324–0.9873)
with a sensitivity of 0.9412 (95% CI: 0.7647–1.0000) and a
specificity of 0.8871 (95% CI: 0.7742–0.9839) in the validation
cohort (Table 3 and Figure 4).

Correlation Among All Features Used
in Modeling
We obtained a correlation matrix to evaluate the correlations
among all the features included in the final model. As shown in
Figure 5, the correlations were relatively high among the four
selected traditional radiological characteristics (0.036–0.883),
and were varied among the 19 selected radiomic textural
features (0.000–1.000). Interestingly, although a few radiomic
textural features (including Mean, Variance, Perc_01, and
Perc_99) presented high correlation indices (0.923–0.929), the
remaining 15 radiomic textural features had relatively low
correlation indices (0.004–0.375), which justified using the
features from both the radiomic texture and the traditional
radiological assessment to build a more reliable predictive model.
DISCUSSION

In this study, we utilized pre-surgical CT images to develop a
radiomic machine learning model for differentiating the low-
grade from the high-grade ccRCC. Our machine learning models
incorporating optimal radiomic textural features achieved an
AUC up to 0. 92 in the training cohort and 0.91 in the validation
cohort. Our study provided promising data for potentially using
noninvasive imaging-based method to predict pathological grade
of ccRCC.

We included several traditional radiological characteristics in
the modeling process, including tumor size measurements, T
staging information, and CT density values (21). These
commonly used radiological characteristics have been used to
predict tumor progression and pathological grade with some
success (17, 21, 23, 24). However, to the best of our knowledge,
our results showed for the first time that the model built with
these traditional radiological characteristics was not stable
enough to make a reliable prediction of pathological grade for
ccRCC. Nevertheless, these radiological characteristics were
visible to the human eye and could be conveniently assessed by
radiologists and trained imaging personnel. These radiological
characteristics have been valuable in clinical practice and we
therefore should include them in predictive modeling. On the
other hand, our study also showed low correlation index between
the traditional radiological characteristics and the radiomic
textural features, indicating these two different kinds of
features may contribute different rather than redundant tumor
information. Our study showed the potential of combining the
observed radiological characteristics and the radiomic
computational approach to improve model performance.

The mechanism underlying our satisfying radiomic model
performance is not clear. Imaging features of tumor heterogeneity
may represent the phenotypes of tumor (26, 33, 34).
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Tumor heterogeneity may potentially be expressed phenotypically
in images as intratumoral heterogeneity and could be
comprehensively assessed by imaging analysis (17, 33).
Therefore, it is reasonable to speculate that radiomic textural
features in our study may represent tumor heterogeneity, thus
being relevant in predicting pathological grade as indicated in
prior literature (26, 33–37). For texture features, we found that the
features prompting the model to classify renal tumors as high-
grade ccRCC mainly belonged to histogram (such as: variance),
run-length matrix (such as: run length nonuniformity, and gray
level nonuniformity. with the higher values of these textural
features, there were corresponding higher LASSO scores,
indicating the higher risk of the tumor being classified as a
higher-grade ccRCC. Regarding the traditional radiological
Frontiers in Oncology | www.frontiersin.org 8
features, the LASSO regressors included the tumor size
measurements, CTpre density value and the enhanced degree of
the tumor. It is understandable that the larger the tumor poses the
greater risk of being high-grade because of greater tumor
heterogeneity. In addition, higher-grade tumors may have worse
pathological differentiation and tumor necrosis, which may lead
to a lower degree of enhancement.

Our study was generally in line with prior reports of renal
cancer assessed with machine learning radiomics (29, 38–41).
Our model performance was comparable to the prior studies
which had AUC values reaching 0.86~0.98 for predicting
pathological grade of renal cancers. However, our method for
radiomic analysis was different from others in that we extracted
radiomic features from one representative pre-enhanced axial
FIGURE 4 | Classification efficiency for the training cohort and the validation cohort for the support vector machine (SVM) models.
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CT image containing the maximal cross-sectional tumor
dimensions while others obtained radiomics from contrast-
enhanced images on both CT and magnetic resonance
imaging. There were several advantages in our novel approach.
First, our method was feasible and could be readily adopted as
non-enhanced images were routinely included in CT imaging of
renal cancer. It is easier to acquire the non-enhanced images than
the contrast-enhanced images, and the image quality for the non-
enhanced images could be better controlled than the contrast-
enhanced images. In addition, our method could be used in
patients who could not have contrast-enhanced imaging due to
either contrast allergy or abnormal renal function which is
especially relevant in patients with renal cancers. Secondly, the
contrast-enhanced images may vary depending on the
distribution and amount of contrast agents in the tumor tissue,
which could be affected by multiple variables such as the type of
contrast agent used, the injection speed, the hemodynamic
conditions of the patients, etc (32). Therefore, our approach of
using non- enhanced images could alleviate the concerns
stemming from the potential image variations due to contrast
enhancement. Lastly, our single image strategy could be useful
for our planned multicenter clinical trials because of its
simplicity to use and its readiness to be standardized among all
participating centers. Furthermore, the acceptable efficiency of
Frontiers in Oncology | www.frontiersin.org 9
our method using the single image at the maximal cross-
sectional tumor level has been reported in our own
publication (32).

It should be noted that our satisfying model performance in
predicting the pathological grade of ccRCC could be partly
related to the classification algorithm used in the present
study. This algorithm was developed by our team, and has
been successfully applied in our current and previous studies
(32). The basic logic of this classification algorithm was to treat
LASSO and RF as weak regressors in the whole algorithm, which
respectively reflected the classification attributes of the research
object. We then used the SVM algorithm to combine these two
to finally achieve the purpose of enhancing the classification
effect. In addition, the final regressed scores from this algorithm
could be binarized for further prediction. Nevertheless, our
modeling algorithm was far from being comprehensive. More
work is needed to further improve the classification performance
by continually optimizing and improving the structure of the
data mining algorithms.

We recognized that there was an apparent contradiction in
our feature selection for the final model building. The
contradiction was that we used the non-enhanced CT images
for radiomic feature extraction but included the degree of
CT enhancement as part of the traditional radiological
FIGURE 5 | Correlation matrix test among all 19 radiomic textural features and four traditional radiological features (bold font) used in predictive modeling. S-S,
indicating the craniocaudal dimension of the tumor; L-R, indicating the transverse dimension of the tumor.
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characteristics in the final model. We believe we could
resolve this apparent contradiction with the following
explanation. First, the degree of CT enhancement was one of
the most important radiological characteristics assessed by
radiologists. Due to limitations of human visual inspection, the
traditional radiological characteristics are usually limited in
number including only the tumor size measurement and CT
densities on both pre- and post-contrast images as in our study.
Therefore, it was important to include it in the model building in
our attempt to keep the few commonly reported characteristics
which reflects the current clinical radiological practice. Second,
while the traditional radiological assessment could only provide
descriptive information on tumor characteristics, radiomics
could extract a multitude of computational quantitative
imaging features about tumor heterogeneity not visible
to human eyes. Therefore, these two approaches in our
study with one using non-enhanced images and another using
enhanced images were complimentary rather than contradictory
to each other and the combination of both strengthened the
model performance as shown in our study.

This study had several limitations. First, this was a
retrospective study conducted at a single institution, and case
selection bias seemed inevitably. In addition, although there were
264 patients with ccRCC included in our study, our sample
size was still modest for a machine learning study given
heterogeneous disease distribution. Second, our validation
cohort used to test the model efficiency was from the same
institution as the training cohort, therefore making it challenging
to generalize our results to other institutions and other disease
settings. Future large-scale independent prospective multicenter
studies are needed to validate our results. Third, our study was
focused on ccRCC which constituted most of the renal cancer.
However, it was not sufficient for a complete survey of renal
cancer since other renal cancer subtypes could have similar
imaging features and therefore should be evaluated in future
studies. Moreover, our study was limited in that an accurate
imaging-pathological correlation for each patient could not be
performed in this retrospective study, which could have been
helpful to assess the underlying pathological basis of our model
performance. Lastly, the CT images in this study were obtained
in three different CT scanners, which may be variable in terms of
imaging quality due to inherent differences among the scanners.
This may in turn potentially affect the textural features and
model performance.

In summary, we developed a radiomic machine learning
model with the pre-surgical CT images, achieving a satisfying
performance in differentiating the low-grade from the high-
grade ccRCC. Our approach integrating the traditional
radiological characteristics and the radiomic textural features
improved the performance of our prediction models. Our
study presented a potentially useful non-invasive imaging-
focused method to predict the pathological grade of renal
cancers prior to surgery, which should assist in clinical
decision making for selecting cancer treatment strategies and
for informing prognosis.
Frontiers in Oncology | www.frontiersin.org 10
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