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Objectives: To develop a radiomics nomogram that incorporates contrast-enhanced
spectral mammography (CESM)-based radiomics features and clinico-radiological
variables for identifying benign and malignant breast lesions of sub-1 cm.

Methods: This retrospective study included 139 patients with the diameter of sub-1 cm
on cranial caudal (CC) position of recombined images. Radiomics features were extracted
from low-energy and recombined images on CC position. The variance threshold, analysis
of variance (ANOVA) and least absolute shrinkage and selection operator (LASSO)
algorithms were used to select optimal predictive features. Radiomics signature (Rad-
score) was calculated by a linear combination of selected features. The independent
predictive factors were identified by ANOVA and multivariate logistic regression. A
radiomics nomogram was developed to predict the malignant probability of lesions. The
performance and clinical utility of the nomogram was evaluated by receiver operating
characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA).

Results: Nineteen radiomics features were selected to calculate Rad-score. Breast
imaging reporting and data system (BI-RADS) category and age were identified as
predictive factors. The radiomics nomogram combined with Rad-score, BI-RADS
category, and age showed better performance (area under curves [AUC]: 0.940, 95%
confidence interval [CI]: 0.804–0.992) than Rad-score (AUC: 0.868, 95% CI: 0.711–
0.958) and clinico-radiological model (AUC: 0.864, 95% CI: 0.706–0.956) in the validation
cohort. The calibration curve and DCA showed that the radiomics nomogram had good
consistency and clinical utility.
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Conclusions: The radiomics nomogram incorporated with CESM-based radiomics
features, BI-RADS category and age could identify benign and malignant breast lesions
of sub-1 cm.
Keywords: nomogram, small lesion, breast, radiomics, contrast-enhanced spectral mammography
INTRODUCTION

Breast cancer is a malignant tumor that endangers women’s
health and quality of life. The development of medical imaging
technology and the widespread use of breast cancer screening
have gradually increased the detection rate of small breast lesions
(1). For small lesions, malignant signs are not obvious due to the
lack of specificity in imaging features. Existing imaging methods
have difficulty making accurate qualitative diagnosis; thus, breast
lesions recognized as breast imaging reporting and data system
(BI-RADS) category 4 or 5 are usually recommended for biopsy
(2). However, the results of biopsy are affected by the biopsy site
and material (3), and the small amount of biopsy tissue cannot
cover the entire lesion, preventing biopsy from fully reflecting the
heterogeneity of the whole lesion. Moreover, the small size of
lesions brings difficulty for clinicians in performing a successful
biopsy, and as an invasive examination, biopsy has the risk of
causing serious complications, such as severe bleeding and
infection (4, 5). Therefore, using non-invasive methods to
discriminate the nature of small lesions and help radiologists
and clinicians make accurate diagnosis and clinical decision
is important.

Mammography is a common examination method for breast
diseases, but has difficulty finding small lesions, especially in
dense breasts. Initial results showed that contrast-enhanced
spectral mammography (CESM) had higher specificity in the
diagnosis of breast cancer than mammography (6). Breast
ultrasound can evaluate breast lesions with the combination of
morphology and blood flow, but is insensitive to calcification.
Breast magnetic resonance imaging (MRI) has high sensitivity
(90.1%) and accuracy (82.8%) in distinguishing breast lesions
(7), but showed lower accuracy on small lesions than on
advanced lesions (8). Moreover, MRI has not been used as a
routine examination method due to its long imaging time
and contraindications.

CESM is an emerging technology that combines intravenous
iodine contrast enhancement with digital mammography. After
intravenous contrast injection, high-energy and low-energy
mammography are taken. Recombined images are generated by
subtracting the unenhanced tissue on post-processing system. The
low-energy images are equivalent to mammography, showing
various signs of lesions such as calcification and distorted
structure. The recombined images retain the abnormal enhanced
area, and the degree of lesion enhancement indirectly reflects the
blood supply of the lesion. Related research showed that CESM had
similar sensitivity (94% vs. 99%) and higher positive predictive value
(93% vs. 60%) in detecting breast cancer compared with MRI (9).

In clinical settings, using above-mentioned methods to
determine the nature of small breast lesions is still a challenge
2

(10), and the accuracy depends on the experience of radiologists.
In 2012, the concept of radiomics was first proposed by Lambin
et al. (11). A goal of radiomics is to convert medical images into
collectable, high-fidelity, and high-throughput data, and use
radiomics features to develop predictive models and support
clinical decisions (12, 13). To some extent, radiomics has solved
the problem of quantitative assessment of tumor heterogeneity
and has shown great advantages in clinical application, such as
lesions discrimination, prediction of cancer molecular subtypes,
and prediction of lymph node metastasis (14–18).

At present, studies that focus on classification of small breast
lesions are very limited. Our research extracted radiomics
features from CESM images and aimed to establish a radiomics
nomogram based on radiomics signature and clinico-
radiological predictive factors to automatically identify benign
and malignant breast lesions of sub-1 cm.
MATERIALS AND METHODS

Patients and Cohorts
This retrospective study was approved by the institutional Ethics
Committee. A total of 2,439 patients underwent CESM
examination from July 2017 to August 2019. The inclusion
criteria included (a) the diameter of lesion was less than 1 cm
on cranial caudal (CC) position of recombined image, (b)
diagnosed with a definite pathology result, and (c) surgery
within 14 days after CESM examination. The exclusion criteria
included (a) multifocal or bilateral breast lesions, (b) biopsy
before CESM examination, and (c) patients underwent
neoadjuvant chemotherapy before CESM examination. Finally,
139 women (mean age=46.20 ± 11.02 years; range=17–71 years)
were enrolled in this study, including 39 malignant lesions and
100 benign lesions (Figure 1). The patients were separated into a
training cohort with 104 lesions (75 benign and 29 malignant
lesions) and a validation cohort with 35 lesions (25 benign and
10 malignant lesions) randomly with the ratio of 8:2.

CESM Image Acquisition
All patients underwent CESM examination on a full-digital breast
machine (Senographe DS Senobright, GE Healthcare). The contrast
agent Omnipaque 300 (GE Healthcare, Inc., Princeton, NJ) was
injected into the upper arm vein with the dose of 1.5 ml/kg and the
injection flow rate of 3.0 ml/s. The mammogram was obtained after
injecting the contrast agent for 2 min. Same as the compression
method of mammography, the CC position and mediolateral
oblique (MLO) position photography were performed on bilateral
breast. After low-energy exposure and high-energy exposure, eight
images were collected within 5 min, including four low-energy and
October 2020 | Volume 10 | Article 573630

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Lin et al. CESM-Based Radiomics Nomogram
four high-energy images. Then, four recombined images were
acquired by post-processing system.

Clinico-Radiological Characteristics
The diameters of lesions were measured on CC position of
recombined images. The CESM images were evaluated by two
radiologists (reader 1 with 10 years of experience on breast imaging,
and reader 2 with 6 years of experience on breast imaging)
according to BI-RADS. Differences in BI-RADS category between
the two readers were determined by another radiologist with 15
years of experience on breast imaging. Considering that the
background parenchymal enhancement (BPE) and breast density
may be the risk factors of breast cancer (19, 20), BPE was evaluated
on MLO position of recombined images in bilateral breast
according to enhancement range (21) and breast density was
evaluated on MLO position of low-energy images in bilateral
breast according to the amount of fibroglandular tissue.

Image Segmentation and Radiomics
Feature Extraction
All Digital Imaging and Communications in Medicine (DICOM)
images were acquired from the Picture Archiving and
Communication System (PACS) and uploaded to Radcloud
(Huiying Medical Technology Co., Ltd.). Reader 1, who was blind
Frontiers in Oncology | www.frontiersin.org 3
to the pathology reports, identified the regions of interest (ROIs)
and segmented manually on low-energy and recombined images of
CC position. A sample of segmentation process is shown in Figure
2. Data preprocessing was conducted before features extraction by
standardizing the images. Quantitative radiomics features were
extracted from ROIs on Radcloud platform (http://radcloud.cn/).
The extracted features were divided into three categories: first-order
statistics, shape- and size-based, and texture features.

To calculate the intra- and inter-observer agreement of
feature extraction, 30 breast lesions were selected randomly by
statistical software. Reader 2 used the same method to extract
radiomics features, and after 3 months, reader 1 repeated features
extraction. Inter- and intra-correlation coefficients (ICCs) were
calculated to assess the reproducibility of radiomics features, and
ICCs > 0.75 was considered to represent good agreement.

Radiomics Feature Selection and
Radiomics Signature Construction
The variance threshold, analysis of variance (ANOVA), and least
absolute shrinkage and selection operator (LASSO) methods
were used to reduce the redundant features and select optimal
radiomics features. The threshold of variance threshold method
was 0.8; thus, the eigenvalues of the variance smaller than 0.8
were removed. In ANOVA method, all the features that showed
FIGURE 1 | Flow chart of patients enrolment.
October 2020 | Volume 10 | Article 573630
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significant differences (p < 0.05) between benign and malignant
lesions were included. For LASSO algorithm, the optimal LASSO
alpha parameter was set by five-fold cross validation and
radiomics features with non-zero coefficients within the
training cohort were finally selected.

The radiomics signature (Rad-score) of each lesion was
calculated by a linear combination of selected features, which
were weighted by their respective coefficients.

Development of the Radiomics Nomogram
Using data from the training cohort, one-way ANOVA and
multivariate logistic regression were performed to analyze
independent predictive factors related to the identification of
benign and malignant breast lesions, including clinico-
radiological characteristics (age, tumor diameter, BI-RADS
category, BPE, and density) and Rad-score. After multivariate
logistic regression, variables with P<0.05 were considered as
independent predictive factors. A radiomics nomogram was
developed by multivariate logistic regression. Rad-score and
clinico-radiological model were also developed in the training
cohort to estimate the value of radiomics.

Validation of the Nomogram
The receiver operating characteristic (ROC) curves and the area
under curves (AUC) were performed to evaluate the predictive
performance of the nomogram in the training and validation
cohorts. The calibration curves were used to evaluate the
agreement between the observed results and predicted
probability. The clinical utility of the nomogram was evaluated
through quantifying the net benefit under different threshold
probabilities in the validation cohort by decision curve analysis
(DCA). Net benefit is defined as the proportion of true positive
minus the proportion of false positive as weighted by the relative
risk of false positive and false negative results. The formula of net
Frontiers in Oncology | www.frontiersin.org 4
benefit is as follows:

Net benefit  =  
True positive count

n

−
False positive count

n
(

Pt
1 − Pt

),

where n is the number of patients ; and Pt is the
threshold probabilities.

Statistical Analysis
The training cohort (80%) was used to develop radiomics
nomogram, while the validation cohort (20%) was only utilized
for assessment. The pathology results were used as gold standard in
classifying benign and malignant lesions. Continuous variables (age
and diameter) were compared by t-test, while qualitative variables
(BI-RADS category, BPE, and density) were analyzed by chi-square
test or Fisher’s exact test. One-way ANOVA and multivariate
logistic regression analysis were used to select the significant
predictive factors in identifying benign and malignant lesions. The
DeLong test was used to compare the difference between AUCs in
Rad-score, clinico-radiological model, and radiomics nomogram.
The statistical analysis was performed in R software (version 3.4.1)
and SPSS (version 26). The “glmnet,” “glm,” “rms,” “pROC,”
“CalibrationCurves,” and “DecisionCurve” packages were used.
P < 0.05 was regarded as a statistically significant difference.
RESULTS

Clinico-Radiological Characteristics
A total of 27.9% and 28.6% of patients were found with malignancy
in the training and validation cohorts, respectively, with no significant
difference (p=0.938). The clinico-radiological characteristics between
benign and malignant lesions of the training and validation cohorts
FIGURE 2 | Examples of regions of interest (ROIs) segmentation on contrast-enhanced spectral mammography (CESM) images. (A, C) The low-energy and recombined
images on cranial caudal (CC) position, respectively. (B, D) The ROIs of breast lesions were drawn manually on low-energy and recombined images, respectively.
October 2020 | Volume 10 | Article 573630
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are shown in Table 1. Significant differences in age (p=0.001),
diameter (p=0.011), and BI-RADS category (p<0.001) but no
significant differences in BPE (p=0.393) and density (p=0.221) were
found between benign and malignant lesions in the training cohort.

Radiomics Feature Selection and
Radiomics Score Construction
The inter- and intra-observer reproducibility of features extraction
has achieved with ICC > 0.75 both between the two different
radiologists and the same radiologist 1. A total of 2,056 features
were selected from 2,818 radiomics features using variance threshold
method. Then, 103 features were further selected by ANOVA
method. Finally, the optimal 19 features were selected with non-
zero coefficients in LASSO logistic regression (Figure 3 andTable 2).

Rad-score of each lesion was calculated by the 19 radiomics
features. Rad-score showed a significant difference between
benign and malignant lesions in the training cohort (p<0.001),
Frontiers in Oncology | www.frontiersin.org 5
and the optimal cutoff value was 0.376 in distinguishing benign
and malignant lesions.

Development of the Nomogram
In the training cohort, diameter (p=0.017), BI-RADS category
(p<0.001), and age (p<0.001) were input to multivariate logistic
regression after one-way ANOVA. In the multivariate logistic
regression, Rad-score and age (both p<0.05) were proven to be
the independent predictive factors in identifying benign and
malignant lesions. The radiomics nomogram was developed with
Rad-score, BI-RADS category, and age (Figure 4). To estimate
the value of radiomics nomogram, clinico-radiological model
was built with BI-RADS category and age.

Validation of the Nomogram
Figure 5 displays the ROCs of Rad-score, clinico-radiological
model, and radiomics nomogram in the training and validation
TABLE 1 | Clinico-radiological characteristics in the training and validation cohorts.

Training cohort (n=104) P Validation cohort (n=35) P

Benign(n=75) Malignant(n=29) Benign(n=25) Malignant(n=10)

Age, years (mean ± SD) 43.87 ± 10.63 51.90 ± 9.16 0.001* 42.64 ± 10.37 56.10 ± 7.88 0.001*
Diameter, cm (mean ± SD) 0.81 ± 0.17 0.90 ± 0.14 0.011* 0.81 ± 0.14 0.96 ± 0.05 <0.001*
BI-RADS category <0.001* 0.039*
3 8 0 3 0
4A 38 2 14 2
4B 20 11 4 4
4C 8 11 4 2
5 1 5 0 2

BPE 0.393 0.646
minimal 26 13 9 5
mild 46 16 15 5
moderate 3 0 1 0
marked 0 0 0 0

Density 0.221 0.157
entirely fatty 7 3 0 1
scattered fibroglandular 56 25 22 9
heterogeneously dense 12 1 3 0
extremely dense 0 0 0 0
October 2020 | Volume 10 | Article
BI-RADS, Breast Imaging Reporting and Data System; BPE, Background Parenchymal Enhancement; SD, standard deviation. *P < 0.05.
A B

FIGURE 3 | Lasso algorithm for radiomics features selection. (A) Least absolute shrinkage and selection operator (LASSO) coefficient profiles of the 103 features.
The y-axis represents coefficient of each feature. The optimal value of alpha was 0.0214, and the optimal –log(alpha) was 1.67, where 19 features with non-zero
coefficient were selected. (B) Mean square error path using five-fold cross-validation.
573630
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cohorts. The optimal cutoff value of Rad-score, clinico-radiological
model, and radiomics nomogram was 0.376, 0.369 and 0.512,
respectively. The AUCs of Rad-score, clinico-radiological model
and radiomics nomogram in the training cohort were 0.903 (95%
CI, 0.830–0.953), 0.889 (95% CI, 0.812–0.942) and 0.961 (95% CI,
0.904–0.989), respectively; and AUCs in the validation cohort were
0.868 (95% CI, 0.711–0.958), 0.864 (95% CI, 0.706–0.956), and
0.940 (95% CI, 0.804–0.992), respectively. DeLong test showed that
there was significant difference between clinico-radiological model
and radiomics nomogram (p=0.019) in the training cohort, but
showed no significant difference in the validation cohort (p=0.153).
The radiomics nomogram showed higher accuracy and specificity
than Rad-score and clinico-radiological model in predicting benign
and malignant lesions (Table 3).

The calibration curves of radiomics nomogram demonstrated
good consistency between predictive outcome and observation in
Frontiers in Oncology | www.frontiersin.org 6
the training and validation cohorts (Figure 6). The DCA
indicated that radiomics nomogram could add more net
benefits than “all treatment” or “none treatment” with the
threshold probability range from 0 to 1.0, while Rad-score and
clinico-radiological model could add more net benefit with the
range of 0–0.78 and 0.09–0.75, respectively (Figure 7). Figure 8
showed the clinical use of the nomogram in two patients, who
were both diagnosed with BI-RADS 4B category by radiologists.
DISCUSSION

The popularity of breast cancer screening has significantly
increased the detection rate of small lesions, but making
accurate qualitative diagnosis is still a challenge for
radiologists. Our study discussed the potential ability of
TABLE 2 | Least absolute shrinkage and selection operator (LASSO) coefficient profiles of the 19 features.

Radiomics Features Coefficients

Low-energy_wavelet-LLL_firstorder_Range 0.089292756
Low-energy_wavelet-HLL_firstorder_10Percentile −0.021570008
Recombined_wavelet-LHH_firstorder_Median 0.023354281
Recombined_wavelet-HHH_glszm_GrayLevelNonUniformity 0.022899496
Low-energy_wavelet-HHH_ngtdm_Contrast −0.025332901
Low-energy_wavelet-LHL_glszm_LowGrayLevelZoneEmphasis −0.082688563
Recombined_wavelet-LLH_firstorder_Kurtosis −0.024670295
Recombined_wavelet-HHH_glszm_SizeZoneNonUniformityNormalized −0.03792366
Recombined_wavelet-LHH_glrlm_RunVariance 0.04721272
Low-energy_wavelet-LLH_firstorder_Minimum −0.019677652
Low-energy_wavelet-LLH_ngtdm_Strength 0.03722361
Recombined_wavelet-LHL_glszm_GrayLevelNonUniformityNormalized 0.018366436
Low-energy_wavelet-LHL_gldm_HighGrayLevelEmphasis −0.007483205
Recombined_wavelet-HLL_glszm_SmallAreaLowGrayLevelEmphasis −0.062991217
Recombined_wavelet-HHH_glcm_SumSquares −0.003659382
Recombined_wavelet-HHL_glszm_SmallAreaHighGrayLevelEmphasis 0.009975399
Low-energy_wavelet-HLH_gldm_SmallDependenceLowGrayLevelEmphasis −0.013119935
Low-energy_wavelet-HHH_glrlm_ShortRunEmphasis −0.024312171
Recombined_wavelet-HHH_gldm_GrayLevelVariance −0.026478317
October 2020 | Volume 10 |
glszm, gray level size zone matrix; ngtdm, neighborhood gray tone difference matrix; glrlm, gray level run length matrix; gldm, gray level dependence matrix; glcm, gray level co-occurrence matrix.
FIGURE 4 | Radiomics nomogram with Rad-score, Breast imaging reporting and data system (BI-RADS) category, and age incorporated.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Lin et al. CESM-Based Radiomics Nomogram
CESM-based radiomics in identifying benign and malignant
breast lesions of sub-1 cm. Our results indicated that the
radiomics nomogram combined with the radiomics signature
and clinico-radiological variables could preoperatively predict
the nature of small breast lesions with acceptable performance.

Radiomics is an emerging discipline based on traditional
imaging examination and artificial intelligence. Radiomics
features provide a stable and non-invasive approach to reflect
the heterogeneity of lesions by revealing the texture features in
depth. In this study, although the prediction accuracy of Rad-
score was slightly lower than that of BI-RADS category, the
radiomics nomogram combined with Rad-score was higher in
accuracy and specificity than BI-RADS category only. This
showed that radiomics could be used as an important
supplement to clinico-radiological information in identifying
benign and malignant small lesions. Luo et al. (22) extracted
the radiomics features from the ultrasound images of BI-RADS
category 4 and 5 patients, and analyzed the Rad-score containing
9 radiomics features and BI-RADS category, founding that the
radiomics nomogram combined with Rad-score and BI-RADS
category had the best predictive performance.

Gibbs et al. used radiomics analysis based on different MRI
parameter maps to discriminate small benign and malignant breast
lesions, yielding best AUC of 0.78 in the test set (23). A study by Lo
et al. (24) conducted radiomics analysis on 96 BRCA-positive
Frontiers in Oncology | www.frontiersin.org 7
patients. They found that combining MRI-based radiomics with
machine learning could improve the accuracy of the diagnosis of
small breast masses in BRCA mutation carriers. And compared
with the BI-RADS classification alone for assessment, radiomics
could provide higher accuracy of 0.815. Our results also showed that
CESM-based radiomics had good performance in identifying
benign and malignant small breast lesions, and had AUCs of
0.903 and 0.868 in training and validation cohort, respectively.

The calibration curve is often used to verify the predictive effect
of the prediction model by comparing actual probability with
predictive probability. Our results showed that the predictive
probability had high agreement with actual probability. In DCA,
the theoretical relationship between the threshold probability and
the relative values of false positive and false negative results was used
to determine the clinical utility of the prediction model (25). In our
study, DCA estimated the clinical value of radiomics nomogram
and showed that the radiomics nomogram added more net benefit
than “full treatment” or “none treatment”. This finding further
confirmed that combining radiomics features with other available
clinico-radiological data can improve the effectiveness of individual
clinical decision making.

Our research has several advantages. First, to our knowledge,
using CESM-based radiomics to identify benign and malignant
breast lesions has not been previously reported. CESM has great
advantages of showing calcification and reflecting blood flow,
A B

FIGURE 5 | Receiver operating characteristic (ROC) curves of Rad-score, clinico-radiological model and radiomics nomogram in the training (A) and validation (B) cohorts.
TABLE 3 | Predictive performance of three models.

Training cohort Validation cohort

AUC(95% CI) Sensitivity Specificity AUC(95% CI) Sensitivity Specificity

Rad-score 0.903
(0.830–0.953)

0.793 0.933 0.868
(0.711–0.958)

0.700 0.800

Clinico-radiological model 0.889
(0.812–0.942)

0.897 0.840 0.864
(0.706–0.956)

0.800 0.920

Radiomics nomogram 0.961
(0.904–0.989)

0.897 0.960 0.940
(0.804–0.992)

0.800 0.960
October 2
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and can provide additional information on detecting breast
diseases (26). Our results showed that CESM-based radiomics
had better predictive performance in identifying benign and
malignant breast lesions with an AUC of 0.940 compared with
Frontiers in Oncology | www.frontiersin.org 8
mammography-, ultrasound- and MRI-based radiomics
(AUC=0.80, 0.928, 0,921) (22, 27, 28). Second, to ensure the
reproducibility of feature extraction, only the features with
ICCs>0.75 were qualified for the final analysis. Third, we used
A B

FIGURE 6 | Calibration curves of radiomics nomogram in the training (A) and validation (B) cohorts. The diagonal line represents the perfect prediction of the
radiomics nomogram. The black solid line represents the calibration curve of radiomics nomogram. The calibration curves are close to the diagonal line both in the
training and validation cohorts, which shows that the prediction probability have good agreement with the actual probability.
FIGURE 7 | Decision curve analysis (DCA) for the prediction models in the validation cohort. The y-axis represents the net benefits, while the x-axis represents the
threshold probability. The red line represents the Rad-score. The blue line represents the clinico-radiological model. The black line represents the radiomics
nomogram. The gray line represents the assumption that all patients were included in benign group. The dotted black line represents the assumption that all patients
were included in malignant group. The decision curve shows that radiomics nomogram can add more net benefit than “none” or “all” treatment with the threshold
probability range from 0 to 1.0.
October 2020 | Volume 10 | Article 573630
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nomogram to predict benign and malignant small breast lesions.
As a highly individualized visual prediction tool, nomogram has
shown great potential in predicting disease progression and
prognosis (29). The proposed nomogram could help clinicians
choose the most appropriate treatment based on the
predicted probability.

Admittedly, our study still has some limitations. First, the
patients in this study were enrolled from a single institution with
a limited number. Due to the small amount of patients in the
validation cohort, this might have a certain impact on the
validation of the proposed models. Mispredictions of a small
number of lesions might cause significant difference. Despite the
promising prospect of our results, a multicenter study with more
balanced samples is warranted to prove the robustness of the
proposed nomogram. Second, the ROIs were obtained manually;
however, intra- and inter-correlation coefficients have shown
good reproducibility in feature extraction. Previous studies have
shown that the semi-automatic segmentation method could
obtain relatively high intra- and inter-observer reproducibility
(30, 31). Further work should use semi-automatic segmentation
to draw the ROIs. Finally, the radiomics features were extracted
on two-dimensional (2D) ROIs. Compared with three-
dimensional (3D) features, 2D features may lose some
important information that may fully describe the features of
the entire lesion. However, studies have shown that 2D features
had better performance than 3D features in lung cancer (32, 33).

In conclusion, the radiomics nomogram combined with
CESM-based radiomics signature, BI-RADS category, and age
demonstrated good predictive performance, calibration, and
clinical utility in identifying benign and malignant breast
lesions of sub-1 cm. CESM-based radiomics could serve as a
potential tool to help clinicians make optimal clinical decision
prior to biopsy or surgery and avoid overtreatment of
benign lesions.
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FIGURE 8 | Clinical use of two patients who were both diagnosed with BI-RADS 4B category. The breast lesions of the two patients had similar imaging features on
the contrast-enhanced spectral mammography (CESM) images, and the arrow points were the lesions of the two patients. (A, B) A 35-year-old woman, whose
malignancy probability was calculated less than 10% by nomogram, was confirmed as fibroadenoma by pathological examination. (C, D) A 41-year-old woman,
whose malignancy probability was calculated at about 62% by nomogram, was confirmed as invasive ductal carcinoma by pathological examination.
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