
REVIEW
published: 26 October 2020

doi: 10.3389/fonc.2020.576559

Frontiers in Oncology | www.frontiersin.org 1 October 2020 | Volume 10 | Article 576559

Edited by:

Sungpil Yoon,

Sungkyunkwan University,

South Korea

Reviewed by:

Kenneth K. W. To,

The Chinese University of

Hong Kong, China

Frantisek Staud,

Charles University, Czechia

*Correspondence:

Anna Seelig

anna.seelig@unibas.ch

Specialty section:

This article was submitted to

Pharmacology of Anti-Cancer Drugs,

a section of the journal

Frontiers in Oncology

Received: 26 June 2020

Accepted: 31 August 2020

Published: 26 October 2020

Citation:

Seelig A (2020) P-Glycoprotein: One

Mechanism, Many Tasks and the

Consequences for Pharmacotherapy

of Cancers. Front. Oncol. 10:576559.

doi: 10.3389/fonc.2020.576559

P-Glycoprotein: One Mechanism,
Many Tasks and the Consequences
for Pharmacotherapy of Cancers
Anna Seelig*
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P-glycoprotein or multidrug resistance protein (MDR1) is an adenosine triphosphate (ATP)
binding cassette transporter (ABCB1) intensely investigated because it is an obstacle to
successful pharmacotherapy of cancers. P-glycoprotein prevents cellular uptake of a
large number of structurally and functionally diverse compounds, including most cancer
therapeutics and in this way causes multidrug resistance (MDR). To overcome MDR,
and thus improve cancer treatment, an understanding of P-glycoprotein inhibition at the
molecular level is required. With this goal in mind, we propose rules that predict whether a
compound is a modulator, substrate, inhibitor, or inducer of P-glycoprotein. This new set
of rules is derived from a quantitative analysis of the drug binding and transport properties
of P-glycoprotein. We further discuss the role of P-glycoprotein in immune surveillance
and cell metabolism. Finally, the predictive power of the proposed rules is demonstrated
with a set of FDA approved drugs which have been repurposed for cancer therapy.

Keywords: P-glycoprotein inhibition, P-glycoprotein upregulation, P-glycoprotein substrate binding, membrane-

mediated binding, pattern recognition 1, cancer metabolism, immune surveillance, immune suppression

INTRODUCTION

“The evolution of multidrug resistance (MDR) remains one of the major barriers to a control or
cure of cancer” (1). Although, MDR is multifactorial in etiology it is essentially associated with
overexpression of ATP binding cassette (ABC) transporters (2, 3). ATP-binding cassette (ABC)
transporters constitute a ubiquitous superfamily of integral membrane proteins, divided into seven
subfamilies (ABCA to ABCG). The functional unit of ABC transporters consists of two nucleotide
binding domains that hydrolyze ATP in a magnesium dependent manner, and two transmembrane
domains (4, 5) that bind and translocate a large number of exogenous and endogenous compounds
across membranes. The best investigated ABC transporter is P-glycoprotein (Pgp/MDR1/ABCB1)
(molecular mass, MM= 170 kDa). It is encoded by the multidrug resistance gene (mdr/MDR) and
was originally identified in colchicine resistant Chinese hamster ovary cells by Juliano and Ling
(6). Amplification of the MDR genes in mammalian cell lines by a single agent (e.g., colchicine)
induced cross-resistance to a remarkably wide range of compounds with no obvious structural
or functional similarities (7). The mdr/MDR gene has three isoforms in rodents (mdr1a, mdr1b,
and mdr2) and two isoforms in humans (MDR1 and MDR2). MDR1 functions as transporter of
amphiphilic compounds including drugs and certain lipids (8), whereas MDR2 is primarily a lipid
transporter (9, 10). The isoforms exhibit partially overlapping substrate specificity.

The multidrug resistance proteins (MRPs, ABCCs) (11–13) and the breast cancer resistance
protein (BCRP, ABCG2) (14) are further ABC family members that contribute to MDR
[see e.g., (15)]. The three transporters also exhibit partially overlapping substrate specificity
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with Pgp and recognize compounds based on related physical-
chemical principles (16–18). Such redundancies are typical for
important cellular defense mechanisms.

Many tumor types overexpress Pgp (19) [for review see (20–
23)] which prevents cancer drugs from reaching their cellular
targets. Conventional cytotoxic drugs that interfere with DNA
replication pathways, killing the rapidly dividing cancer cells (24)
are particularly prone to extrusion by Pgp. But also newer agents
that block the growth and spread of cancer cells by targeting
specific molecular pathways (24), generally interact with Pgp.
To overcome MDR in cancer chemotherapy it therefore seemed
auspicious to search for appropriate Pgp inhibitors.

Numerous compounds were positively tested as Pgp inhibitors
in cellular assays. One of the most tested first generation
inhibitors is verapamil, a calcium channel antagonist, used
as a racemic mixture in the nanomolar concentration range
for treatment of cardiovascular diseases (25). As Pgp is not
enantioselective, the less toxic enantiomer, R-verapamil, was
chosen, but nevertheless exhibited significant side effects, because
micromolar concentrations are required for Pgp inhibition (26).
Less toxic and more efficient second, third and fourth generation
inhibitors were developed (27, 28), but despite these efforts, the
overall approach failed in clinical settings (23, 29). Although, the
reasons for failure are multifaceted, the “dose limiting toxicity
and the lack of specificity of Pgp inhibitors” (3) were considered
as the key factors. Additional, less well understood issues related
to the role of Pgp in immunosurveillance and metabolism
are emerging.

In the following we discuss how and where Pgp captures
and releases its substrates, recapitulate the consequences of Pgp
inhibition in absorption and excretion, and give some insight
into the role of Pgp in immunosurveillance and metabolism of
cancers. Based on this analysis, we discuss a set of FDA approved
drugs, previously repurposed for cancer treatment (30) with
respect to their interaction with Pgp.

THE FLOPPASE MODEL AND THE
CONSEQUENCES FOR DRUG PGP
INTERACTIONS

The key question for understanding Pgp—drug interactions is in
which environment Pgp captures its substrates. This is important
because, the forces driving drug binding to Pgp differ distinctly

Abbreviations: AIF, Apoptosis inducing factor; AMPK, AMP-activated kinase;
AP-1, Activator protein 1 (transcription factor); Bax, Apoptosis regulator, bcl-2-
like protein 4; Bcl-2, Bcl-2 (B-cell lymphoma 2); COX-1, COX-2, Cyclooxygenase;
DHFR, Dihydrofolate reductase; DHODH,Dihydroorotate dehydrogenase; EGFR,
estimated glomerular filtration rate; FOXO3α, Forkhead transcription factors;
GABA, γ-Aminobutyric acid; HDAC I, HDAC 2, Histone deacetylase; HIF-1α,
Hypoxia-inducible factor 1-alpha; HMG-CoA, β-Hydroxy β-methylglutaryl-CoA;
IKK, IκB (kinase master regulator of NF-κB signaling); IL-6, Interleukin-6; IL-8,
Interleukin-8; MCP-1, Monocyte chemoattractant protein 1 (cytokine); MetAP-
2, Methionine aminopeptidase 2; MMPs, Matrix metallopeptidases; mTOR,
Mammalian target of rapamycin; NF-κB, Nuclear factor κ-light-chain-enhancer
of activated B cells; p21, Cyclin-dependent kinase inhibitor (CKI); p53, Tumor-
suppressor gene (TSG); PDGFR, Platelet-derived growth factor; STAT 3, Signal
transducer and activator of transcription 3; TNFα, Tumor necrosis factor
(cytokine); VEGF, Vascular endothelial growth factor.

depending on whether binding takes place in the aqueous phase
or in the lipid phase as outlined below.

In 1992 Gottesman and Higgins (31) discussed two possible
models for Pgp function, the pump model and the “flippase”
model. The pump model assumes that drugs interact with Pgp
in the cytoplasmic aqueous phase, are then pumped across
the lipid bilayer membrane, and are released directly into the
extracellular aqueous phase. The “flippase” model assumes that
drugs first partition into the lipid membrane and then interact
with the transmembrane part of Pgp that “flips” the drug from
the cytoplasmic to the outer leaflet. From the outer leaflet drugs
either diffuse into the extracellular aqueous phase, or flip back
to the cytoplasmic leaflet, where they are recaptured. More
recently, the movement from the inner to the outer leaflet was
defined as flopping, and the inverse movement as flipping. For
clarity, we therefore address the model (31) as floppase model in
the following.

The floppase model was essentially based on experiments
showing that drug binding to Pgp occurs in the cytoplasmic
membrane leaflet (32). An unambiguous proof of the floppase
activity of Pgp [described as a solvation exchange mechanism
(33, 34)], was provided by Omote and Al-Shawi (35). They
investigated the transport activity of Pgp proteoliposomes (i.e.,
Pgp reconstituted in lipid vesicles) using permanently charged
spin-labeled verapamil that cannot passively diffuse across the
membrane. Labeled verapamil was added to the outside of the
vesicles, then partitioned into the outer leaflet of the lipid bilayer,
where it was captured by Pgp and was “transported” to the inner
leaflet with a turn-over number of 5.8/s. “Transport” lead to a 10-
fold accumulation of labeled verapamil in the inner membrane
leaflet of the vesicle. Due to the permanent charge on verapamil a
high positive surface potential developed, most likely preventing
full transport to the inner leaflet. It should be noted that due to
the orientation of Pgp in vesicles, transport from outer to the
inner leaflet is observed, whereas in cells transport works from
the inner to outer leaflet. In the case of amphiphilic drugs (that
are generally not permanently charged) high Pgp activity leads to
continuous flopping, concomitant expansion of the extracellular
membrane leaflet and eventually to membrane budding. This
phenomenon plays an important role in immunostimulation (3).

The X-ray structures of the nucleotide free (apo) Pgp (36, 37),
showing a wide opening toward the cytoplasm combined with
the simple and thus appealing alternate access model (38), led to
a paradigm shift, restoring the pump model [see e.g., (39)]. Pgp-
substrate binding is thus currently mostly assumed to take place
in the cytoplasmic, aqueous environment and consequently, to be
driven by hydrophobic interactions between the protein and the
substrate. Because of its relative simplicity, this approach seems
particularly attractive for molecular modeling.

At first sight, both models seem to be supported by
experimental evidences. However, it should be noted that
the key requirement for crystallization is to immobilize the
protein. Although, precious information is gained from protein
structures, obtained by X-ray crystallography, they are not
necessarily functional (4, 40). Nevertheless, much research has
focused on the properties of the open cleft, thereby neglecting the
lipid phase.
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In contrast, we provided strong quantitative support for
the flopping model by Higgins and Gottesman (31). Drugs
interacting with Pgp are all amphiphilic, either electrically
neutral, or cationic. They orient with their polar part toward the
polar head group region of lipids and with their hydrophobic
part toward the hydrophobic fatty acyl chain region. A “turn-
around,” flipping or flopping movement of an amphiphilic
molecule moving from one leaflet to the other is therefore
required. Moreover, amphiphilic drugs partition avidly into lipid
membranes. The concentrations of drugs in the lipid phase are
therefore orders of magnitude higher than in the aqueous phase,
as demonstrated by surface activity and isothermal titration
calorimetry measurements (ITC) [e.g., (41)].

Thus, drug binding to Pgp is best described as a two-
step binding process, starting with a lipid-water partitioning
step of the drug (characterized by a free energy of lipid-water
partitioning), followed by a transporter-lipid binding step of
the drug, (characterized by a free energy of transporter-lipid
binding). The overall transporter-water binding step (described
by the free energy of transporter-water binding) can then be
expressed as the sum of the free energy of lipid-water partitioning
and the free energy of the drug binding to Pgp in the lipid
membrane. The free energy of transporter-water binding and
the free energy of lipid-water partitioning are experimentally
accessible, but not the free energy of the drug binding proper.
However, the latter can be determined as the difference of the
two measurable free energies (Figure 1) (for details see legend to
Figure 1).

Themovement of a drug from the aqueous phase into the lipid
membrane is the consequence of hydrophobic interactions, caused
by the entropy gain from the release of bound water molecules
as the drugs enter the membrane. To capture an amphiphilic,
hydrophobic molecule, immersed in the very hydrophobic lipid
environment, hydrophobic interactions would not help. In the
following we will show that Pgp captures drugs by a different type
of interactions.

Thus, we prove the validity of the floppase model (31) and
quantify for the first time the affinity of drugs to Pgp in the lipid
membrane (42–44) as suggested earlier (45).

The Forces Governing Drug Capture by
Pgp From the Membrane
Drug binding to the transporter can be approached in two ways
either by first looking at the transporter or by first looking
at the captured molecules. In the case of Pgp the second
approach was particularly revealing. Searching for recurrent
structural elements in hundreds of Pgp substrates showed that
all compounds interacting with Pgp exhibit at least one pattern
formed from electron donor groups or π-electron rings in
specific distances from each (i.e., hydrogen bond acceptor groups,
HBA’s) (Figure 2) (18, 46, 49, 50). Because of the low dielectric
constant of the lipid phase (ε ∼ 2) compared to the aqueous
phase (ε ∼ 80), electrostatic interactions are up to 40-fold higher
in the membrane interior than in the aqueous phase which is
favorable for binding of drugs in the membrane and release at
the lipid-water interface.

FIGURE 1 | Drug binding to Pgp follows a two-step binding process (left-hand
side): a lipid water partitioning step described the free energy of lipid-water
partitioning
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or “binding affinity” of the drug to the lipid membrane (1)
and a transporter-lipid binding step with the free energy of transporter-lipid
binding
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or “binding affinity” of the drug to the transporter within the lipid
phase (2). The overall transporter-water binding step described by the free
energy of transporter-water binding
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can then be expressed as the sum
of the two individual steps (3). The parameters
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(3) and
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(1) are
directly measurable, and the parameter
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(2) is determined as the
difference of the two [(3)–(1) = (2)]. This approach allows to quantitatively
assess the affinity of drugs to Pgp in the lipid membrane. At the right-hand
side, we show a molecule that escapes the transporter by passive diffusion.

Not only drugs, but also many other endogenous compounds,
such as steroid hormones, and exogenous compounds, such
as detergents, carry recognition patterns for Pgp. Notably,
detergents are bound and flopped by Pgp at concentrations
much below those affecting the lipid membrane packing
density (43, 51). As detergents are available with varying
numbers of hydrophobic methylene, or hydrogen bond acceptors
groups, respectively, they are particularly valuable for systematic
investigations of compound binding and transport by Pgp. Using
such detergents, we found that addition of a methylene group
to a compound enhances membrane partitioning and thus also
binding to the transporter with a gain in free energy of 1GCH2

≈ −3 kJ/mol (43, 44), which corresponds to an increase in
the binding constant by a factor of ∼ 6. Conversely, addition
of an ethoxyl group (i.e., a HBA group) is unfavorable for
membrane partitioning, however, it enhances binding of the
molecule to Pgp within the membrane by 1GHBA ≈ −2.5 to
−4 kJ/mol (depending on the location of the HBA group within
the lipid membrane relative to the lipid-water interface) (42–44)
(Figure 3). Drug binding to Pgp thus works on a modular basis
(Figure 3).

Looking at the transporter, revealed two binding locations,
simultaneously accommodating at least two identical (52) or also
non-identical molecules (53). The observation of two molecules
bound to Pgp at high, inhibitory concentrations was later also
observed by other approaches [e.g., (42, 54, 55)].
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FIGURE 2 | Electron donor or hydrogen bond acceptor patterns observed in
P-glycoprotein substrates. (A) Patterns formed by electron donor pairs with a
spatial separation of 2.5 ± 0.3 Å (type I unit). (B) Patterns formed either by
three electron donor groups with a spatial separation of the outer two electron
donor groups of 4.6 ± 0.6 Å, or by two electron donor groups with a spatial
separation of 4.6 ± 0.6 Å (type II unit). “A” denotes a hydrogen bond acceptor
group (electron donor group) and the numbers in brackets indicate the first
and the nth atom with a free electron pair (46). The relevant hydrogen bond
acceptor groups are >C=O (carbonyl group), -O- (ether groups), -NR3, -N=,
-S-, R-F, >C(C6H5). All molecules that contain at least one type I or one type II
unit were found to interact with Pgp substrates. Molecules that contain a type
II unit seem to be in addition, inducers of Pgp over-expression (46), possibly
via the pregnane X receptor pathway (PXR) (47). Groups that do not interact
with Pgp are -OH, -NH2, or >NH, however, since they reduce passive diffusion
(48) they may be present in substrates.

Scrutinizing the potential translocation pathways for possible
interaction sites with the HBAs and π-electron rings in drugs,
we found ample hydrogen bond donor groups (HBD) and π-
electron rings (e.g., phenyl or tryptophan rings) that could form
hydrogen bonds, π-π stacking, and π-cation interactions with
drugs (17, 18). Transport of substrate molecules along these
groups in the transmembrane helices of Pgp is most likely a
stochastic process [for details see (40, 44)]. This assumption is
consistent with the finding that the exchange of single, aromatic
groups for cysteine in the drug binding region had little effect
on drug binding, which was explained with the redundancy of
binding sites (56). As cysteine residues exhibit a hydrogen bond
acceptor group they may mechanistically even substitute for
aromatic residues (18).

Thus, we demonstrated that Pgp captures drugs within the
lipid membrane via weak electrostatic interactions between
HBAs, including phenyl rings and tryptophanes (i.e., π-electron

FIGURE 3 | Modular binding principle. The free energies of lipid-water
partitioning (yellow) and the free energies of transporter-lipid binding (blue) of
n-alkyl-β-D-glucopyranosides and n-alkyl-β-D-maltopyranosides are plotted
vs. the alkyl chain lengths: C6-gluc (1), C7-gluc (2), C8-gluc (3), C9-gluc (4),
C10-gluc (5), C12-gluc (6), C6-malt (7), C8-malt (8), C9-malt (9), C10-malt (10),
C11- malt (11), C12-malt (12), C13-malt (13). The suffix n indicates the number
of carbon atoms. All the compounds are allocrites for Pgp (43). The binding
affinity to maltosides with two type I patterns to Pgp in the lipid membrane is
twice as strong as the binding affinity of glucosides with one type II pattern
(shown in blue). The binding affinity of the hydrophobic anchors to the
membrane increases with the length n shown in yellow). The binding affinity of
the compounds from water to the transporter is the sum of the two.

donor systems), in drugs and HBDs (i.e., π-electron acceptor
systems) in the transmembrane region of Pgp. Two or three
HBAs are arranged in specific patterns forming type I or type
II units, respectively. Minimally one such pattern is required
for transport by Pgp, but several patterns can be present in one
drug molecule. These weak electrostatic interactions are ideal for
attracting drugs in the lipid environment and for releasing them
as soon as water is available (44).

WHAT DEFINES A PGP MODULATOR,
INHIBITOR, SUBSTRATE, INDUCER, AND
ALLOCRITE?

The Pgp ATPase activity assay provides the most direct
measurement of effective drug transport by Pgp (26, 57–59). For
every drug transported at least one ATP molecule is hydrolyzed
(58). Pgp exhibits basal activity with a turnover number around
1/s (57). If measured as a function of concentration of small and
medium size molecules, such as verapamil (MM = 454.6 g/mol),
the Pgp ATPase activity first increases, reaches a maximum
at intermediate concentrations (for verapamil at 10µM), and
decreases again at higher concentrations, yielding bell-shaped
activity curves as observed in classical ATPase assays as well
as in a coupled enzyme assay that allows for ATP regeneration
(16). It is assumed that one molecule per Pgp is bound in the
rising branch, andmore than one in the falling branch. Molecules
are still transported if more than one molecule is bound to the
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transporter. The effect of two molecules simultaneously bound
to the transporter was elegantly demonstrated by linking two
quinines, which as a monomer shows a high, and as a dimer
a strongly reduced ATPase activity (60). For drugs the rate of
transport decreases exponentially with increasing affinity to the
transporter (45, 61). Thereby, transport (flopping) and release of
a drug are most likely the rate limiting steps in the transport cycle
of Pgp.

PgpModulators are compounds that are rather small (MM<

450 g/mol) and carry at least two HBAs thus one type I or type
II pattern to interact with Pgp. Depending on the concentration
applied they either enhance or reduce the Pgp ATPase activity,
i.e., modulate it. As shown below modulators show no net
transport by Pgp.

Pgp Inhibitors are compounds that slow down the rate of
Pgp ATPase activity and transport. Thus, modulators applied
at high concentrations, in the falling branch of the ATPase
activity curve act as inhibitors [e.g., verapamil at 50µM (57)].
If applied together with further compounds interacting with Pgp,
much lower concentrations can lead to inhibition. As Pgp can
accommodate two or more than two non-identical molecules
per transport cycle, Pgp inhibition often occurs unintendedly,
if more than one drug is applied, a phenomenon dubbed drug-

drug interactions.
Generally, the inhibitory power of a compound can be

enhanced by either strengthening the affinity of the drug to the
membrane, by making the molecule more hydrophobic, e.g.,
by increasing the number of methylene groups (as observed in

third and fourth generation inhibitors), or by strengthening the
affinity of the drug to the transporter (by increasing the number
of hydrogen bond acceptor groups), or both. Cyclosporine
A is a classic example with many hydrogen bond acceptor
groups that is more efficient than verapamil as inhibitor [e.g.,
(51)]. Increasing the inhibitory power of drugs with increasing
number of hydrogen bond acceptor groups has been repeatedly
demonstrated (42, 45, 62).

Substrates are generally assessed by bidirectional transport
assays [e.g., (63)] that reveal apparent or net (not effective)
transport. A substrate is therefore defined as a compound that
shows net efflux (i.e., higher active efflux by Pgp than passive
influx) in a transport assay. We will show below that substrates
can be defined as molecules that carry at least on hydrogen bond
acceptor pattern and exhibit a MM > 450 g/mol.

Effective and net transport are practically identical if passive
diffusion (or passive flipping) is much slower than active flopping
or transport. This is true for zwitterionic phosphatidylcholine
(PC) lipids. The turnover number for PC lipids in pure
lipid vesicles (without transporters) was assessed as 1/2.4min
for flipping and as 1/4.2min for flopping (64). A lipid
floppase such as MDR2 with a turnover number around
1/s is thus able to maintain the asymmetry of a biological
membrane with palmitoyl-oleoyl-phosphatidylcholine, POPC
(MM = 760.1 g/mol) exclusively in the outer leaflet of human
bilayer membranes.

Vinblastine, a cytotoxic drug with a similar molecular mass
(MM = 811 g/mol) diffuses or flips however, more rapidly

FIGURE 4 | Adapted from Vucetic et al. (66): “The influence of ROS increases with cancer progression and is tightly linked to Pgp expression. Once formed, cancer
progression seems to be further stimulated by a mild pro-oxidative state, due to intensified metabolism and ROS-producing foci. Importantly, this state is still
maintained within the “redox homeostatic range” thanks to strongly upregulated AOD of cancer cells. However, due to maximized AOD, cancer cells do not support
further increase in ROS levels and thus cross the threshold into the state of “oxidative stress.” If ROS levels increase further (e.g., due to chemotherapy), the only way
for cancer cells to prevent further damage is by decreasing ROS production via cell-cycle arrest to repair damage and prevent cell death (cytostatic effects of ROS).”
Cells react to ROS by upregulating cellular antioxidant defense (AOD) mechanisms and in parallel induce mdr1b mRNA and Pgp overexpression (67). “However, if
ROS burst induces irreversible damage and/or there is not enough components required for repair systems (e.g., glutathione), cancer cells experience programmed
cell death or necrosis (cytotoxic effects of ROS) (66)”.

Frontiers in Oncology | www.frontiersin.org 5 October 2020 | Volume 10 | Article 576559

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Seelig P-Glycoprotein Consequences for Cancer Pharmacotherapy

than PC lipids (57), because it is almost non-charged at neutral
pH. Smaller drugs (i.e., modulators) diffuse rapidly, and can
escape the transporter to a large extent. Thus, small modulators
reach the cytoplasm, despite being transported more rapidly than
larger compounds.

To disentangle the parameters affecting net transport of a
drug, we assessed the rate of effective drug transport bymeasuring
the Pgp-ATPase activity and calculated the passive flux through
the lipid membrane, as it is too fast to be measured for most
drugs with the current methods (65). Passive flux decreases
exponentially with the cross-sectional area of the drug molecule
as well as with the packing density of the lipid membrane (65).
The rate of drug diffusion can thus vary by orders of magnitude,
depending on the cross-sectional area of the molecule and the
membrane packing density. The rate of Pgp-mediated active
transport also varies, decreasing exponentially with increasing
drug affinity to Pgp. If passive diffusion and active transport are
plotted vs. the size of drugs, it becomes evident that the variation
in passive diffusion is much higher, than the variation in active
transport [Figure 4 in (65)].

Thus, whether or not a drug can be classified as substrate,
depends on the cross-sectional area of the drug, as well as
on the lipid composition that defines the lipid lateral packing
density (65, 68). Notably, the packing density changes with the
lipid composition of the membrane and increases e.g., with the
cholesterol content, which generally increases with age. If we
assume a lateral packing density for biological membranes at T
≈ 37◦C of πM = 30 mN/m, the critical cross-sectional area above
which a compound becomes a “substrate” for Pgp was assessed
as AD ≥ 70 Å2 by a theoretical (65) and a phenomenological
approach (69). This cross sectional area can be approximated
with a molecular mass MM > 450 g/mol.

Pgp inducers carry at least one type II pattern (Figure 2).
Type II patterns are particularly abundant in Pgp cytotoxic
cancer drugs (46). If inducers are small they act as modulators.
If they are large they are “substrates,” and if they carry many
patterns they inhibit Pgp ATPase activity and transport already
at low concentrations and act as inhibitors.

Compounds carrying type II patterns have the ability to
induce Pgp expression via nuclear receptors such as the pregnane
X receptor (PXR), a ligand-activated nuclear receptor (NR) (70)
and the signaling the c-Jun N-terminal kinase (JNK)/AKT/NF-
κB) pathway. Thereby AKT stands for protein kinase B (PKB).
Examples are rifampine, hyperforin (47) and deoxynivalenol
(71), all carrying type II patterns.

In this context it is interesting to note that ferulic acid, which
is strongly acidic (pKa 3.27) and is no Pgp allocrite, reverses
Pgp expression and MDR via inhibiting the phosphatidylinositol
3-kinase (PI3K)/AKT/NF-κB signaling pathway (72).

To rejoin all compounds (modulators, inhibitors, substrates
and inducers) interacting with Pgp, the expression allocrite

was coined (39). Allocrites thus carry at least one HBA. The
definitions in their simplest form are summarized in Table 1.

PGP IN ABSORPTION AND EXCRETION

Pgp is a “housekeeping” protein, expressed in many tissues of
the healthy human body. It is expressed at the apical surface

of the epithelia in the gastrointestinal tract and prevents drug
and toxin uptake into the blood capillaries. It is thus a primary
factor limiting the bioavailability of many orally administered
drugs, including oral chemotherapeutic agents (73). Pgp not only
limits toxin and drug absorption in the gastrointestinal tract,
but most importantly, also facilitates their elimination from the
intestine, the liver, kidney (74). Moreover, it reduces uptake of
xenobiotics from blood into the brain at the blood-brain barrier
(BBB) (i.e., endothelial cells of the blood vessels in the central
nervous system) (75). Expression of Pgp is also detected in the
adrenal gland, the pregnant uterus, the placental trophoblasts,
the testes, and hematopoietic stem cells [for review see (76)].
Pgp is moreover present in intracellular membranes such as the
endoplasmic reticulum (77) and the nuclear envelope (78).

Valuable information on the impact of total Pgp inhibition
can be inferred from experiments with mdr1 knock-out mice
(79). Under culture conditions, knock-out mice exhibited normal
viability, but showed altered pharmacokinetics, which had a
profound effect on the tissue distribution and especially the
brain accumulation of drugs. As demonstrated accidentally, a
treatment with ivermectin, a pesticide to counteract a mite
infestation, also used against river blindness in humans, was well
tolerated by wild type mice, but turned out to be fatal for the
mdr1 knock-out littermates. In the absence of Pgp, the highly
neurotoxic ivermectin was no longer prevented from reaching
the central nervous system (80).

In cancer treatment, a therapeutic window for Pgp inhibition
exists only if the expression level of Pgp in tumors is not higher
than the expression level in the other tissues (27, 29). To find the
concentration range of inhibitors tolerated by an individual (or
to assess the therapeutic window), ideally, the level of Pgp in the
different tissues should be measured, under clinical conditions.
However, this is technically demanding and often limited by
sensitivity issues as e.g., in the case of 19FNMR (nuclear magnetic
resonance), with fluorinated drugs (81).

The inter-individual variability of Pgp expression is moreover
high and depends on diverse factors including gender (82),
ethnicity, age, and body mass index (BMI) (83). The Pgp
expression level can additionally vary as a function of time with
X-ray irradiation (84), ultra violet light irradiation (85), heat
shock (86), and importantly, with diet, medication, metabolism
and disease state (as discussed below).

Thus, systemic inhibition of Pgp without careful assessment
of its feasibility is not advisable, even if the compounds used to
“inhibit” Pgp are per se non-toxic. Pgp inhibition nevertheless
remains an important issue, because many cancer drugs may
act as Pgp inhibitors. Moreover, many therapeutic regimens
include several drugs that together lead to Pgp inhibition.
The phenomenon of so-called drug-drug interactions can be
significant in drug regimens for cancer therapy.

PGP IN IMMUNOSURVEILLANCE

In the absence of external manipulations, the immune
system protects the host against oncogenesis and controls the
immunological features of developing tumors (87). As outlined
by Zitvogel et al. (87), this process, called cancer immunoediting,
consists of three phases: “first, the elimination of malignant
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cells by the immune system; second, the establishment of
an equilibrium between genetically unstable malignant cells
and the immune system, which reflects the immunoediting
imposed by the immune system on cancer cells; and third, the
escape of neoplastic cell variants with reduced immunogenicity,
which ultimately form clinically manifest neoplasms.” Clinically
significant resistance occurs only when the pre-existing resistant

TABLE 1 | Rules for predicting modulators, substrates, inhibitors and inducers.

Type of

allocrite

Patterns determining

interaction with Pgp

Cross-sectional area

determining diffusion ratesb

Modulator Patterns ≥ 1 type I or type IIa AD < 70 Å2, MM < 450 g/mol

Inhibitor Patterns ≥ type I or type II AD no limit

Substrate Patterns ≥ 1 type I or type II AD > 70 Å2, MM > 450 g/mol

Inducerc Patterns ≥ 1 type II AD no limit

aHydrogen bond acceptor, i.e. π-electron donor patterns, formed by the following groups:

>C=O, -O-, -NR3 (tertiary amino groups, but not secondary and primary amino groups),

-N=, -S-, R-F,>C(C6H5), are required for an interaction with Pgp (46). π-electron systems

such as phenyl residues can act as hydrogen bond acceptors and can moreover undergo

π-π stacking interactions.
bThe parameters that slow down passive diffusion are most importantly the cross-

sectional area, AD, (or the MM) and the charge (pKa value) of the drug (34, 65). Hydrophilic

groups that do not interact with Pgp including -OH, >NH, -NH2 groups also slow down

passive diffusion (48).
c Induction e.g., via pregnane X receptor (47).

Pgp allocrites are amphiphilic and either electrically neutral or cationic.

FIGURE 5 | A cartoon showing a cell with the pathways related to NF-κB and
p53. The mitogen activated protein kinase (MAPK) signaling pathways
up-regulate the expression of Pgp via NF-κB and protect it from degradation.
NF-κB can directly bind to the MDR promotor. The p38 MAPK pathway
mediates cell death, cell differentiation and cell cycle checkpoints. It is
activated in response to oxidative stress, cytokines and DNA damage. p38
MAPK is primarily located the cytoplasm, but upon stimuli that induce DNA
double strand breaks it enters the nucleus. The p53 protein is involved in cell
cycle control, apoptosis, and lipid catabolism.

phenotypes are able to proliferate extensively, a process governed
by eco-evolutionary dynamics (1, 88).

Mounting evidence indicates that Pgp has important
functions in cancer immunosurveillance (89–94). Although,
Pgp’s role in immunity has long been realized [e.g., (95)], it is
not fully understood, and has so far mostly been ignored in
classical chemotherapy. Pgp is expressed in different cell types
of the innate immune system [including macrophages, dendritic
(DCs), and natural killer (NK) cells] as well as in different cell
types of the adaptive immune system [including lymphocytes,
bone marrow (B), and importantly thymus (T) cells (CD4+ and
CD8+ cells)] (96).

In many cell types of the immune system, Pgp is co-
localized with pattern recognition receptors (PRRs), including
toll-like receptors (TLRs). PRRs are single-pass membrane-
spanning receptors that recognize structurally conserved
molecules, stemming from microbes, including nucleotides,
and lipids. TLRs moreover, recognize certain drugs (97)
carrying the same recognition patterns as allocrites for
Pgp (Figure 2) (46). Pgp and PRRs, thus show partially
overlapping substrate specificity. They seem however to
differ with respect to their charge preferences. Whereas, Pgp
binds cationic and electrically neutral compounds, including
nucleosides, PRRs rather recognize anionic nucleotides and are
strongly activated by the bacterial lipid A, flanked by anionic
phosphate groups. Together with Pgp, a pattern recognition
transporter (PRT), PRRs constitute an effective defense
system against compounds carrying characteristic “danger”
patterns that could interfere with the genetic information of
cells (46).

Pgp is involved in the excretion of inflammatory cytokines
from T cells or T lymphocytes (TCs) (89, 98) and DCs (73,
91). The cytokines extruded are the tumor necrosis factor
(TNF)-α and INF-γ, which both play key roles in antiviral
effects and immunosurveillance of cancer (87). Whether Pgp
directly extrudes cytokines, or whether it rather extrudes
some other physiologically relevant substrates that indirectly
stimulate cytokine secretion, is not yet fully clarified. It is
therefore of interest to know how the function of immune cells
carrying Pgp is influenced by drugs which are also transported
by Pgp.

Experiments with human alloimmune TCs in vitro revealed
that inhibition of Pgp with tamoxifen reduced TNF-α and IFN-
γ by ∼80% (89). Pgp inhibition with R-verapamil in mice also
significantly reduced the serum levels of TNF-α and IFN-γ,
and enhanced the level of interleukin-6 (IL-6) (98). Elevated
concentrations of IL-6 may indicate an ongoing inflammatory
response, observed during the chemotherapy of cancers (99)
or viral infections (100). Infection of the monocytic cell
line THP-1with the bacterial pathogen Listeria monocytogenes
transcriptionally induced Pgp, which activated a Type I IFN-
response against L. monocytogenes bacteria. Both, inhibition of
Pgp function by verapamil, or inhibition of its transcription using
mRNA silencing, led to a reduced Type I response (i.e., reduced
IFN release) in infected cells (101).

Drug-induced high levels of IL-6 correlate with high levels
of the INFγ-inducible immunosuppressive ligand PD-L1 (102)
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and high levels of Pgp (103). PD-L1 on tumor cells interacts
with PD-1 on T-cells leads to immune evasion, PD-L1 represents
a novel biomarker for immune checkpoint blockade therapy
(102, 104, 105).

Thus, Pgp modulators and inhibitors, including verapamil,
glucocorticoids, cytostatics, clacineurin inhibitors, TOR-
inhibitors (106) and many more (107) dampen or dysregulate
the immune response. For comparison, mice deficient in mdr1a,
spontaneously develop colitis (108) and mdr2-knockout mice,
develop inflammation-associated hepatocellular carcinoma
(109, 110).

Together, these findings demonstrate that therapeutic
strategies that involve Pgp inhibition dampen or dysregulate
immune reactions and may even lead to immune evasion. Thus,
Pgp transporter capacity is essential for proper development of a
balanced immune response by TCs and DCs against cancer cells.

PGP AND CANCER METABOLISM

Homeostasis of cellular metabolism is vital to maintaining a
balanced physiological activity. A critical part of metabolism
is oxidative phosphorylation, a process that uses oxygen to
produce ATP in mitochondria. Cells flooded with cytotoxic
drugs, try to minimize this burden by overexpressing Pgp e.g.,
via the PXR pathway that induces MDR (47). As extrusion of a
single drug molecule by Pgp requires hydrolysis of at least one
molecule of ATP (58), MDR significantly enhances the cellular
ATP requirements. High rates of oxidative phosphorylation may,
produce reactive oxygen species (ROS) as a byproduct, which
causes oxidative damage, mutagenesis, and may initiate cancer.
ROS development is particularly high, if cells are exposed either
to very low or very high glucose levels (111).

Cells strongly overexpressing Pgp may become hypersensitive
or collaterally sensitive to modulators such as verapamil
(112) or lovastatin (113), if applied at maximum activity
over an extended period of time which leads to cell death.
Interestingly, hypersensitivity was attenuated if higher, inhibitory
concentrations were applied, where ATPase activity (and thus
ROS production) decreased again (112). Inhibitors of Pgp
ATPase activity such as PSC 833 and ivermectin also reduced
hypersensitivity to verapamil in MDR cells. Thus, apoptosis in
resistant cell lines was likely mediated by ROS, produced in
response to the high ATP activity by Pgp.

The high cellular oxygen requirement to drive Pgpmay locally
reduce the oxygen tension, which stimulates expression of the
redox-sensitive transcription factor hypoxia-inducible factor-1
(HIF-1α). HIF-1α directly binds to the MDR gene promotor
region inducing glycolysis (114) and further upregulats Pgp
(115) to remove oxidized molecules and particularly oxidized
nucleosides (46). HIF-1α thus acts as a cellular antioxidant
defense (AOD) mechanism and attenuates ROS production.
Thus, similar to healthy cells, cancer cells allocate significant
energy to maintaining the intracellular redox balance (66) as
illustrated in Figure 4.

The shift of cancer cells to glycolysis was discovered by
Warburg (116). However, in contrast to early assumptions,
cancer cells retain the capacity for oxidative phosphorylation and
can in principle still consume oxygen at a rate similar to that of

normal cells (117–119). As oxidative stress is generally transient
(120) and oxidative stress and glycolysis seemmutually exclusive,
we assume that the two effects are both transient and alternate.

Moreover, glycolysis may enhance the MDR phenotype of
cancer cells, in a Pgp-independent manner, with consequences
for the lipid bilayer membrane. Glycolysis slightly acidifies the
extracellular medium and renders the cytoplasm slightly more
basic (121). Under normal conditions the outer leaflet of the lipid
membrane is composed of lipids with zwitterionic POPC and
cholesterol, whereas the inner leaflet is composed of lipids with
the zwitterionic phosphatidyl ethanolamine (PE) and negatively
charged phosphatidyl serine (PS) head groups, respectively. Due
to the more basic cytoplasm, PE (with pKa 9.8 ± 0.1) may
partially deprotonate, which allows for PE scrambling and a loss
of strict membrane asymmetry. Because the head group of PE
is smaller than the head group of PC, the lateral lipid packing
density of the outer leaflet increases, which leads to reduced
partitioning of drugs into the outer membrane leaflet, enhancing
the “MDR phenotype” independent of Pgp.

The mdr1/MDR1 gene promotor region contains numerous
transcription factor binding sequences. The forkhead
transcription factors O1 (FOXO1 and FOXO3a) which,
induced by the silent information regulator 1 (SIRT1), enhance
the mdr1/MDR1 promotor activity. The nuclear factor-kappaB
(NF-κB) (122) also enhances themdr1/MDR1 promotor activity.
NF-κB is kept silent in the cytoplasm via interaction with the
inhibitory protein IκBα and transmigrates into the nucleus upon
activation. Constitutively active NF-κB has been found in the
nucleus of some cancer cells. NF-κB can also interfere with p53
transcriptional activity through the competition for cofactors,
which constitutes a second potential mechanism for the NF-κB
antiapoptotic effect (122) (Figure 5).

A long-established link exists between p53 and the Mdr1
gene promoter (123–125). The p53 protein is involved in cell
cycle control, apoptosis, and lipid catabolism. Whereas p53
down regulates Pgp, the mutated forms of p53 are no longer
able to induce apoptosis and enhance Pgp activity and lipid
anabolism, which leads to tumor growth (126, 127). Consistent
with these findings a p53-null mouse model revealed elevated
Pgp expression in kidney, spleen and testis, suggesting a tissue-
specific regulation of Pgp (128, 129). More recently it was shown
that not only insufficient, but also excessive p53 expression has
deleterious effects and results in cell death, lipid accumulation,
inflammation and compromised tissue functionality (129).

If cells with a metabolic “deficit” undergo apoptosis induced
by p53, Pgp is no longer required and is therefore down regulated.
However, if apoptosis does not occur, as in cells carrying p53
mutants, Pgp continues working to eliminate oxidative waste and
might be required also for lipid metabolism.

FDA APPROVED DRUGS REPURPOSED
AS NF-κB INHIBITORS AND THEIR
INTERACTIONS WITH PGP

Trial and error is still themost common procedure in cancer drug
application. To improve prediction of resistance development
in cancer therapy the physiological regulation of Pgp (ABCB1)
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TABLE 2 | FDA approved non-cancer drugs repurposed for cancer treatment analyzed for their interactions with P-glycoprotein.

Drug Original indication,

mechanism

New anticancer

indication,

mechanism

Mol mass

(g/mol)

pKa LogP Pgp interactions

predicted (see

Table 1)

Pgp interactions

measured

Metformin Diabetes Mellitus
AMPK ↑a

Breast,
adenocarcinoma,
prostate, colorectal
AMPK ↑, NF-κB ↓, TNF
↓, MCP-1 ↓

129.2 12.3 −0.92 -NR3

No type I/ II units
No allocrite
No substrate

(130, 131)
No substrate

Valproic acid Antiepileptic
GABA ↑

Leukemia, solid tumors
HDACI ↓, HDACII ↓,
NF-κB ↓, IL-6 ↓

144.2 5.14 2.8 No type I/ II units
No allocrite
No substrate

(132)
No substrate

Aspirin Analgesic,
antipyretic
COX-1 ↓, COX-2 ↓

Colorectal cancer
Prostate cancer
COX-2 ↓, NF-κB ↓,
AP-1 ↓

180.2 3.5 1.19 1 type II unit
Allocrite/modulator
Inducer

(133, 134)
(135)
Inducerb

Nitroxoline Antibiotic Bladder, breast cancer
MetAP-2 ↓

190.2 6.88 1.99 No type I/ II units
No allocrite

–

Thalidomide Antiemetic in
pregnancy
TNF-α ↓

Multiple myeloma
NF-κB ↓, STAT3 ↓

258.2 11.59 0.33 -NR3

2 type II units
Allocrite/modulator
Inducer

(136)
Inducerd

Leflunomide Rhematoid arthritis
DHODH ↓

Prostate Cancer
PDGFR ↓, EGFR ↓,
FGFR ↓, NF-κB ↓

270.2 10.8 2.8 -NR3

Type II unit
Allocrite
Inducer

(137)
Interaction with
BCRPc

Zoledronic acid Anti-bone resorption

Osteoclast ↓

Multiple myeloma,
prostate cancer, breast
cancer
CXCR-4 ↓, MMPs ↓,
IL-6 ↓, Bcl-2 ↓, Bax ↑,
FOXO3α ↑

272.0 0.7, 6.7 No allocrite –

Celecoxib Osteoarthritis,
rheumatoid arthritis
COX-2 ↓

Colorectal cancer, lung
cancer
COX-2 ↓, NF-κB ↓

381.4 11.1 3.53 -NR3,
1 type I unit
Allocrite

(138)
Pgp repressionb

Vesnarinone Cardioprotective Oral cancer, leukemia,
lymphoma
NF-κB ↓, IL-8 ↓, VEGF
↓, AP-1 ↓

395.5 2.86 -NR3, 1type I unit
Allocrite/modulator

(139)
Inhibitore

Statins, e.g.,
Lovastatin

Myocardial infarction

HMG-CoA
reductase ↓

Prostate cancer,
leukemia
NF-κB ↓, HMG-CoA
reductase ↓

404.5 4.26 ∼4 2 type I units
Allocrite/modulator

(113)
Modulatorf

Noscapine Antitussive,
antimalarial,
analgesic
Bradykinin ↓

Multiple cancer types
NF-κB ↓, HIF-1α ↓,
Bcl-2 ↓, p21 ↑, p53 ↑,
AIF ↑

413.4 12.86
7.14

2.85 -NR3, 2 type I,
1 type II units
Allocrite
Inhibitor
Inducer

(140)
Inhibitor

Wortmannin Antifungal Leukemia
NF-κB ↓, AP-1 ↓

428.1 – – Type I / II units
Non-amphiphilic
MRP2 substrate

(141)
MRP2 substrate

Methotrexate Acute leukemia
DHFR ↓

Osteosarcoma, breast
cancer, Hodgkin
lymphoma
NF-κB ↓, TNF-α ↓

454.2 4.8, 5.5 0.74 -NR3,
2 type I or
1 type II
Substrate

(142)
Substrateg

Minocycline Acne Ovarian cancer, glioma
MMPs ↓

457.5 g – −0.03 -NR3,
1 type II unit
Substrate
Inhibitor
Inducer

(143)
Substrate
Inhibitor

(Continued)
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TABLE 2 | Continued

Drug Original indication,

mechanism

New anticancer

indication,

mechanism

Mol mass

(g/mol)

pKa LogP Pgp interactions

predicted (see

Table 1)

Pgp interactions

measured

Thio-
colchicoside

Muscle relaxant
GABA ↓

Leukemia, multiple
myeloma
NF-κB ↓

563.2 12.74 0.34 -NR3,
Type I/II units
Substrate
Inhibitor
Inducer

(144)

Rapamycin Immunosuppressant
mTOR ↓

Colorectal cancer,
lymphoma, leukemia
NF-κB ↓, IL-6 ↓, IKK ↓

914.19 ∼9 4.3 -NR3,
Type I / II units
Substrate
Inhibitor

(145)
Substrate
Inhibitor

aAMPK, AMP-activated protein kinase; AIF, apoptosis-inducing factor; AP-1; Bax, Bcl-2-associated X protein; Bcl-2; BCRP, breast cancer resistance protein; CXCR-4, CXC chemokine

receptor-4; DHFR, dihydrofolate reductase; DHODH, dihydroorotate dehydrogenase; FGFR, fibroblast growth factor receptor; FOXO, forkhead homeobox type O; GABA, γ-aminobutyric

acid; HIF-1α, hypoxia-inducible factor-1α; HMG-CoA; IKK; MCP-1, monocyte chemoattractant protein-1; MetAP, methionine aminopeptidase; MMP, matrix metalloproteinase; mTOR;

NF-κB; p21; p53; VEGF; ↑, upregulation; ↓, downregulation.
bConflicting data may be due the fact that Aspirin is a Pgp inducer [see also (136)] and possibly may at the same time reduce Pgp expression via COX-2 inhibition. The same is true for

celecoxib. Specific COX-2 inhibition may be used as a new therapeutic strategy to prevent seizure-induced P-glycoprotein up-regulation at the blood-brain barrier (138).
cPgp and BCRP have overlapping substrate specificity (16, 18).
dTreatment with thalidomide produced a concentration- and time-dependent induction of Pgp expression in rat trophoblasts. By contrast, in human trophoblasts, thalidomide decreased

the expression of Pgp in a concentration- and time-dependent manner. The difference of trophoblast behavior between both culture models, i.e., rat and human is also noted in vivo for

the teratogenic effect of thalidomide between rat and human.
eMost allocrites can be inhibitors at high concentrations.
fP-glycoprotein expressing cells exhibited a collateral sensitivity to lovastatin. Collateral sensitivity occurs when allocrites strongly activates the Pgp ATPase activity and produce ROS,

see e.g., Verapamil (112).
gThus, a deficiency in the methotrexate (MTX) carrier enables Pgp to confer resistance to MTX, suggesting that hydrophilic compounds become Pgp substrates when they enter cells

by passive diffusion.

The table is adapted from Gupta et al. (30).

and other ABC transporters such as MRPs (ABCCs) and BCRP
(ABCG2), with partially overlapping substrate specificities (16–
18) need to be considered in more detail. Here we suggest a set
of simple rules (Table 1) to predict for any drug, based on its
chemical structure, whether and how it interacts with Pgp.

For proof of principle we use a set of known, FDA approved
drugs, previously repurposed for cancer therapy (30) (Table 2,
Figure 6). These drugs, downregulate the nuclear factor-κB (NF-
κB). As NF-κB plays a crucial role in various biological processes,
including immune response, inflammation, cell growth and
survival, and development of malignant tumors, inhibiting NF-
κB signaling has potential therapeutic applications in cancer and
inflammatory diseases (146). Downregulation of NF-κB should
in particular enhance apoptosis by p53 (147). Although NF-κB
inhibition could be beneficial in treating inflammatory diseases
and cancer, questions regarding the balance between efficacy and
safety need to be considered since NF-κB function is required
for maintaining normal immune responses and cell survival [for
detailed information see review (148)].

Table 2 includes 16 drugs (column 1), the original indication
with mechanisms (column 2), and the new antitumor indications
with mechanisms (column 3) (30). To describe the drugs from
the physical chemical point of view, the molecular mass, the pKa

value (for charge estimation) and LogP value (for lipophilicity)
(columns 4, 5 and 6) [see (65)]. The number and type of
recognition patterns per drug for the interaction with Pgp
(column 7) and the predictions of whether or not the drug is
an allocrite, modulator, substrate, inhibitor or inducer, assessed
according to rules in Table 1, are given in column 8 and
can be compared with the experimental data in the literature

(column 9). An excellent agreement between the predicted
behavior of the drugs (column 8) and the experimental Pgp data
(column 9) proves that interactions of drugs with Pgp can be
reliably predicted on the basis of this broad physical chemical
analysis. Further confirmation for the developed approach came
from in silico predictions based on large data sets, e.g., (133,
149). These simulations come to similar conclusions regarding
relevant groups for the overall interactions of drugs with Pgp,
however, without any insight into the binding mechanism (i.e.,
differentiation between partitioning into the membrane and
binding proper to Pgp within the lipid membrane that determine
overall Pgp binding).

CONCLUSIONS

We demonstrate that Pgp, unlike other transporters, captures
drugs in the lipid membrane by attracting them via weak
electrostatic interactions (including hydrogen bonding, π-π
stacking, and π-cation interactions). The interactions are
strong in the lipid membrane and are overcome as soon
as the polar part of the amphiphilic drugs sense water at
the membrane-water interface. We further demonstrate
that Pgp is a pattern recognition transporter that shows
overlapping substrate specificity with pattern recognition
receptors (PRRs) (section The Floppase Model and the
Consequences for Drug Pgp Interactions). Pgp gets inhibited
or, more accurately, slowed down, when its cargo is large.
This happens more often than expected, particularly
when complex drug regimens are applied, because Pgp
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FIGURE 6 | The chemical structures of the drugs listed in Table 2 are shown in the order of increasing molecular mass and hydrogen bond acceptor groups are
highlighted in blue.

can simultaneously accommodate different drug molecules
(section What Defines a Pgp Modulator, Inhibitor, Substrate,
Inducer and Allocrite?). Inhibiting Pgp bears the danger

of intoxication due to enhanced drug uptake and reduced
metabolite excretion (section Pgp in Absorption and Excretion).
Moreover, it leads to immunosuppression and finally immune
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evasion which is mostly overlooked as yet (section Pgp
in Immunosurveillance).

Healthy and cancer cells try to maintain homeostasis.
However, this is challenging in the presence of cytostatic drugs.
To remove toxins, cells upregulate Pgp that consumes ATP.
Enhanced oxidative phosphorylation to provide sufficient ATP,
causes reactive oxygen species (ROS). ROS in turn damage
cells by causing oxidative debris or oxidized nucleosides that
are also cytotoxic. To counteract this phenomenon and to
reduce oxidative stress, cells switch to glycolysis via HIF-1α and
again upregulate Pgp for cleaning up (section Pgp and Cancer
Metabolism). We finally show that simple rules (derived from
the quantitative thermodynamic and kinetic analyses of Pgp-
drug interactions) allow predicting whether a drug will be a Pgp
ATPase modulator or inhibitor, will be exported by Pgp or will
further induce Pgp. As a proof of concept we apply these rules
to analyze a set of FDA approved drugs, repurposed for cancer
therapy (30). An excellent agreement between predictions and
published experiments is obtained. These predictions may help
to improve treatment regimens.

As an aside, trying to kill multi-resistant bacteria on a systemic
basis using an antibacterial cocktail to inhibit efflux transporters
over a short period of time may be feasible. However, using Pgp
inhibitors or combinations of several drugs that together inhibit
Pgp over longer periods of time is not curative or life prolonging.
The complexity of cancer metabolism could here only be touched
on and more effort will be required to characterize the individual
cancer types and find ways to subtly shift homeostasis back to
states that approach “healthy” conditions.
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