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Cancer remains the second leading cause of mortality worldwide. In the course of this

multistage and multifactorial disease, a set of alterations takes place, with genetic and

environmental factors modulating tumorigenesis and disease progression. Metabolic

alterations of tumors are well-recognized and are considered as one of the hallmarks of

cancer. Cancer cells adapt their metabolic competences in order to efficiently supply their

novel demands of energy to sustain cell proliferation andmetastasis. At present, there is a

growing interest in understanding the metabolic switch that occurs during tumorigenesis.

Together with the Warburg effect and the increased glutaminolysis, lipid metabolism

has emerged as essential for tumor development and progression. Indeed, several

investigations have demonstrated the consequences of lipid metabolism alterations in

cell migration, invasion, and angiogenesis, three basic steps occurring during metastasis.

In addition, obesity and associated metabolic alterations have been shown to augment

the risk of cancer and to worsen its prognosis. Consequently, an extensive collection

of tumorigenic steps has been shown to be modulated by lipid metabolism, not only

affecting the growth of primary tumors, but also mediating progression and metastasis.

Besides, key enzymes involved in lipid-metabolic pathways have been associated

with cancer survival and have been proposed as prognosis biomarkers of cancer. In

this review, we will analyze the impact of obesity and related tumor microenviroment

alterations as modifiable risk factors in cancer, focusing on the lipid alterations co-

occurring during tumorigenesis. The value of precision technologies and its application

to target lipid metabolism in cancer will also be discussed. The degree to which lipid

alterations, together with current therapies and intake of specific dietary components,

affect risk of cancer is now under investigation, and innovative therapeutic or preventive

applications must be explored.

Keywords: lipid metabolism, cancer prognosis, tumor microenviroment (TME), obesity, cancer risk, precision

medicine, precision nutrition

INTRODUCTION

Cancer is a significant public health problem and is the second leading cause of death globally
(1). The World Health Organization (WHO) has indicated that lung, prostate, colorectal (CRC),
stomach, and liver cancers are among the most frequent types of cancer in men, whereas
breast, CRC, lung, cervical, and thyroid cancers are the most frequent among women. Together
with the genetic alterations, environmental factors orchestrate the multifactorial and multistage
characteristics of cancer, modulating the expression of both tumor suppressor genes and oncogenes.
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One of the hallmarks of cancer is the abnormal regulation
of cellular metabolism (2). Tumor cells exhibit high rates
of aerobic glycolysis and an increased anabolism to support
growth, proliferation, and survival. Consequently, metabolism-
related pathways have acquired enormous relevance in cancer
research. Together with the Warburg effect and the increased
glutaminolysis, lipid metabolism plays a key role in cancer
metabolic reprogramming (3). Lipids, a highly diverse class
of biological molecules, exert three main functions in the
cells. First, they are employed for energy storage, principally
as triacylglycerol esters and steryl esters, in lipid droplets
(LDs). In addition, lipids are structural components of
cellular membranes, and they also operate as metabolic
signaling messengers (4). The sterol regulatory element-
binding proteins (SREBPs) are transcription factors that
coordinate and regulate the synthesis of lipids. They act
in response to upstream signaling networks and to the
intracellular nutrient status, to regulate the expression of
enzymes involved in cholesterol and fatty acid (FA) synthesis
and uptake (5).

Together with genetic alterations mediating the
metabolic reprogramming in a cell autonomous manner,
cancer progression and dissemination also depend on
the availability of nutrients and oxygen at the tumor
microenvironment. Tumors communicate with the surrounding
microenvironment, which includes fibroblasts, adipocytes,
immune cells, endothelial cells, and components of the
extracellular matrix—to support cancer proliferation and
dissemination (6).

Furthermore, key lipid metabolism genes have been
proposed as prognostic biomarkers in several types of cancer
associated with tumor recurrence and/or survival (7, 8).
Indeed, the role of lipid metabolism alterations in tumor
cell migration, invasion, and angiogenesis has been clearly
demonstrated (9–11).

The technical improvement and development of “omics”
approaches, together with the availability of large public
accessible databases, have redefined current strategies of cancer
research (12) allowing to reanalyze, recapitulate, and update
our knowledge of the relevance of lipid metabolism–related
genes in cancer. Genomics and transcriptomics are being
applied for precision medicine purposes in cancer. The design,
validation, and use of polygenetic scores open a window of new
opportunities to integrate “omics” technologies into clinical
advice. Moreover, proteomics, metabolomics, lipidomics,
and metagenomics will complete the full scenario (13).
Additionally, clinical trials combining current chemotherapies
with natural bioactive compounds toward altered lipid
metabolism represent a promising strategy to improve cancer
treatment (14).

In this review, we will discuss about the role of lipid
metabolism alterations in cancer. We will explore their
mechanism of action and their oncologic implications. Moreover,
we will analyze current reports and knowledge of lipid
metabolism biomarkers in the most frequent types of cancer.
Finally, we will investigate their emergent use in precision
medicine and precision nutrition strategies.

IMPACT OF OBESITY IN CANCER

In recent years, it has demonstrated that cancer malignancy
not only relays on the genetic factors—oncogenic and tumor
suppressor alterations—from patients, but also on environmental
factors associated with lifestyle (15). In this regard, it has
been shown that up to one-third of cancer deaths could be
prevented by modifying environmental factors related to lifestyle
such as physical activity and diet, alcohol consumption, and
smoking. Unhealthy diets—high consumption of saturated FAs
or high-glucose-content beverages—are also associated with the
development of systemic metabolic alterations including obesity,
insulin resistance, and metabolic syndrome, among others.
Obesity, which is defined as a high body weight with excessive
adipose tissue accumulation, can be considered as a chronic,
multifactorial, and proinflammatory disease (6, 16). Obesity
is a risk factor for several chronic diseases including type 2
diabetes mellitus, cardiovascular diseases, hepatic steatosis, and
cancer initiation and progression (17, 18). In fact, the overall
risk of cancer death is around 1.5- to 1.6-fold in individuals
with a body mass index higher than 40 kg/m2 (19). The
main types of cancer where obesity has been found associated
with are prostate cancer (20), postmenstrual endometrial (21),
breast cancer (22), ovary (23), bladder (24), liver (25), colon
(26), and pancreas (22). During obesity, adipocytes accumulate
in locations not classically associated with adipose tissue. Fat
accumulation in ectopic sites is classified as central adipose
tissue with systemic effects and locally accumulated adipose
tissue supporting tumor microenvironment. The central adipose
tissue leads to alterations in the levels of steroidal sex hormones,
decreased insulin sensitivity, and low-grade inflammation (27),
and it has been associated mainly with CRC (27) and breast
cancer (6, 28). In addition, visceral depots of adipose tissue
may provoke alterations in the cellular composition of cells
surrounding the tumormicroenvironment contributing to tumor
cell proliferation and dissemination such as in the case of tumors
located close to adipose tissues, such as breast, ovary, or colon
tumors (6, 29).

The effects of tumor cells at the tumor microenvironment
has been also found to associate with drug resistance (30).
Cancer-associated adipocytes present metabolic features that
sustain tumor progression and dissemination, because of
the release of FAs and proinflammatory mediators, which
contribute to support the surrounding tumor microenvironment
(6). Thus, ovarian cancer partially relies on lipids provided
by adipocytes at the tumor microenvironment (29, 31).
Moreover, the hyperplasia and hypertrophy of adipose tissue
diminish the levels of oxygen available, promoting angiogenesis,
which may contribute to tumor dissemination (32). In this
regard, breast, gastric, and colon cancers preferentially grow
in adipocyte-enriched environments. In addition, excess of
adipose tissue induces low chronic inflammation augmenting
the circulating levels of proinflammatory interleukins (IL-
6 and IL-8), tumor necrosis factor α, vascular endothelial
growth factor (VEGF), and prostaglandins and leukotrienes,
which have protumorigenic effects. Arachidonic acid (AA)
is the main precursor of proinflammatory lipid mediators,
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such as prostaglandins, thromboxanes, and leukotrienes, which
promote proliferation, cell survival, and dissemination of cancer
cells. Inflammatory prostaglandins, such as prostaglandin E2
produced by COX2 (cyclooxygenase 2), activate epidermal
growth factor receptor cell signaling to promote angiogenesis
and the expression of matrix metalloproteases in colon cancer
(33). Prostaglandins have been shown to inhibit the antitumor
immune response by diminishing the activation of cytotoxic
CD8+ T lymphocytes and the infiltration of natural killer cells
and dendritic cells to the tumor (34). In this regard, COX2
inhibitors have been demonstrated to augment the response to
immune checkpoint inhibitors in melanomas (35, 36).

In addition, it has been described that obese individuals
present an altered gut microbiota and disrupted intestinal
epithelium barrier. Dysbiosis is associated with microbial
diversity together with an increase in proinflammatory species.
Intestinal dysbiosis has been associated with gastric, CRC, and
esophageal cancers (37, 38). Thus, the design of microbiota-
targeting therapies is now considered as a feasible strategy in
the clinic.

Because of the important metabolic link between obesity
and the tumorigenic process (Figure 1), effective control of
the nutritional and metabolic status of individuals (control of
glucose, lipid levels, blood pressure, and chronic inflammation)
might represent a specific and mechanistic approach to prevent
and/or ameliorate cancer progression. In this scenario, precision
nutrition has emerged as a complementary therapeutic tool in
the management of metabolic alterations associated with cancer
prognosis. Personalized nutrition compiles nutrigenetics (genetic
variants and epigenetic signatures), deep phenotyping, and a
wide spectrum of data concerning metabolic personalization
through omics technologies—transcriptomics, metabolomics,
lipidomics, and metagenomics. Importantly, nutritional
interventions based on the knowledge of how nutrients
and bioactive dietary compounds interact with the genome,
metabolism, microbiome, etc., at the molecular level, represent
an effective tool to fight against metabolic alterations.

LIPID METABOLIC REPROGRAMMING OF
ONCOGENIC PATHWAYS IN CANCER

Cancer cells present metabolic alterations to provide the
additional requirements of energy and metabolites for cancer
cell proliferation and dissemination (2). Enormeous diversity
exists between the different types of cancer, and even within
the same tumor. Moreover, cancer cells are characterized by the
continuous capacity to adapt to changes in the levels of nutrients
and oxygen at the tumor microenvironment (6). The altered
tumor metabolism depends not only on the cell autonomous
genetic alterations, but also on additional factors including
diet, food behavior, exercise, and microbiome. All these factors
together will determine the biology of the developing tumor (39)
(Figure 1).

One of the most frequent metabolic alterations observed in
cancer is the increased of the glycolytic pathway, independently
of the oxygen levels (Warburg effect) (40). Aerobic glycolysis

in cancer is coupled to increase glutamine metabolism for the
anaplerosis of intermediated of the tricarboxylic acid (TCA)
cycle (41). In addition, different studies including in vitro,
preclinical, and clinical trials have demonstrated the relevance
of lipid metabolism to sustain cancer initiation and progression
(6). The inhibition of lipid metabolic enzymes has been shown
to induce tumor regression, to inhibit the metastatic spread,
and/or to avoid drug resistance. Lipids not only are structural
components of biological membranes, but also provide energy
by means of β-FA oxidation (β-FAO), control the redox
homeostasis, and act as signaling molecules affecting a plethora
of crucial processes in cancer including proliferation, migration,
invasion, transformation, tumor microenvironment reshaping,
and/or modulation of inflammation (42). Cholesterol is a
key component of the cell membranes affecting its fluidity,
stabilizing specific areas (lipid rafts) to transduce intracellular
cell signaling pathways (43), and being precursor of steroidal
hormones (44). In addition, lipids are also signaling molecules
such as proinflammatory prostaglandins or tromboxanes—
synthesized from omega-6 AA (45), or anti-inflammatory
omega-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid,
which availability depends on lipids provided from diet.

Herein, we describe potential strategies to target the altered
lipid metabolism in cancer. In addition, as the uptake of high
levels of saturated FAs from diet is a risk factor in several types of
cancers, strategies to diminish lipolysis and promotion of healthy
diets should also be considered.

Activation of de novo Lipogenesis and
Cholesterogenesis
Lipid metabolism alterations affect not only tumor cell
proliferation, but also dissemination and resistance to
chemotherapeutic drugs (46). Most of adult tissues obtain
FAs, cholesterol, and lipids from diet; meanwhile, de novo
synthesis of FAs and cholesterol is restricted to the liver
and adipocytes. Tumors frequently present the capability to
activate the de novo synthesis of cholesterol and FAs (47)
making them more independent from externally provided lipids
(48, 49). Importantly, targeting enzymes associated with de novo
lipogenesis and/or the mevalonate pathway has been shown to
inhibit tumor growth (6, 50).

FAs are synthesized from cytoplasmic acetyl-CoA (AcCoA),
generated from citrate produced from glucose, glutamine, or
acetate (48). ATP-citrate lyase (ACLY) generates AcCoA and
oxaloacetate (OAA) from citrate (48, 51). AcCoA carboxylases
(ACC1/2) carboxylase AcCoA to formmalonyl-CoA. Subsequent
condensation steps, catalyzed by FA synthase (FASN), forms the
16-carbon saturated FA palmitate. Palmitate is then elongated
by FA elongases (ELOVL) and desaturated by stearoyl-CoA
desaturase (SCD1) or FA desaturases (FADS) to form other
nonessential FAs, such as the 18-carbon monounsaturated FA
(MUFA) oleate (C18:1) (Figure 2).

Many enzymes implicated in de novo synthesis of FAs and
cholesterol have been proposed as biomarkers for prognosis in
specific types of cancer. FASN is found upregulated in prostate
and breast cancer (47, 52), and ACLY has been shown to support
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FIGURE 1 | Relevance of lipid metabolism alterations in cancer. Illustrated is the crucial role of (i) oncogenic mutations supporting the lipid metabolism reprogramming

in cancer, together with (ii) systemic lipid metabolic alterations associated with obesity—as an environmental modifiable risk factor. Precision interventions should

include therapeutic clinical drugs targeting identified lipid metabolism molecular targets together with nutritional interventions—bioactive compounds, diet-derived

ingredients—considering the nutritional and metabolic status of patients. T2DM, type 2 diabetes mellitus; IR, Insulin Resistance; TME, tumor microenviroment; CAAs,

cancer-associated adipocytes; FAO, fatty acid oxidation; FA, fatty acid.

tumor formation and transformation (51). Inhibition of several
enzymes of de novo lipogenesis, such as FASN, and ACC1 and
ACC2, has been tested in different cancer models showing their
relevance on tumor growth inhibition (53).

Similarly, inhibition of hydroxymethylglutaryl-CoA
(HMGCoA) reductase (HMGCR), by statins, leads to inhibition
of cell proliferation of breast cancer cells (54) and tumor
regression in several preclinical mouse models, and it is being
tested in clinical trials (43). The overexpression of enzymes of the
mevalonate pathway has been proposed as biomarkers of poor
prognosis in breast cancer (55). Cholesterol is generated by the
mevalonate pathway, by condensation of two AcCoA molecules
to form 3-HMGCoA, which is then reduced to form mevalonate,
and then isoprenoid farnesyl-pyrophosphate. Several studies
have shown that targeting the synthesis of cholesterol inhibits
cancer cell proliferation and transformation (56).

De novo synthesis of FAs and cholesterogenesis are
transcriptionally regulated by SREBPs, which are downstream
oncogenic pathways including PI3K/Akt (57) and c-Myc (47)
(Figure 2).

The SREBP family includes three transcription factors:
SREBP1a and SREBP1c, which are derived from SREBF1 gene
by alternative splicing (58), and SREBP2, which is encoded by
SREBF2 gene. SREBPs are bound to the endoplasmic reticulum
(ER) as inactive precursors (59). When the intracellular levels
of cholesterol are high, insulin-induced genes interact with

SREBP-cleavage–activating proteins (SCAPs) to retain SREBP
inactive precursors attached to the ER. When cholesterol levels
are low, SCAPs facilitate the translocation SREBPs to the
Golgi apparatus to be further processed releasing the active
forms (56). SREBP1 promotes the expression of lipogenic
genes; meanwhile, SREBP2 regulates the expression of genes
involved in the synthesis, uptake, and efflux of cholesterol.
Nevertheless, SREBP1 and SREBP2 have overlapping activities.
Both SREBP1 and SREBP2 are found overexpressed in several
cancers. Regulation of the intracellular content of cholesterol
has also been shown crucial for cancer cell survival. The ATP-
binding cassette transporter (ABCA1) controls the efflux of
cholesterol to ApoA-coated lipoproteins (57). Recently, it has
been demonstrated that activation of p53 increases the retrograde
transport of cholesterol from the plasma membrane to the ER, to
prevent SREBP2 maturation (60). In addition, cholesterol levels
are fine tune regulated by microRNA33—encoded by an intron
within the SREBF2 gene (51)—which targets ABCA1. In addition,
the esterification of cholesterol for storage in LDs, by sterol
O-acyltransferase 1 (ACAT1), has been shown to augment the
survival in prostate cancer (61).

Fatty Acid Oxidation in Cancer
In addition to de novo synthesis of FAs and cholesterol, the
mobilization of intracellular FAs for FAO at mitochondria is
crucial for cancer survival and dissemination. It is well-known
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FIGURE 2 | Main metabolic pathways related to lipid metabolism in cancer: Illustration of pathways and genes implicated in de novo lipogenesis—fatty acids and

cholesterol biosynthesis. ABCA1, ATP-binding cassette subfamily A member 1; ABCG1, ATP-binding cassette subfamily G member 1; ABCG4, ATP-binding cassette

subfamily G member 4; ABCG5, ATP-binding cassette subfamily G member 5; ABCG8, ATP-binding cassette subfamily G member 8; ACAT, acetyl-CoA

acetyltransferase; ACC, acetyl- CoA carboxylase; ACLY, ATP citrate lyase; ACSL, acyl-CoA synthetase long chain; AGPAT, 1-acylglycerol-3-phosphate

O-acyltransferase; CD36, CD36 molecule; CPT1, carnitine palmitoyltransferase; DGAT, diacylglycerol O-acyltransferase; FA, Fatty acids; FASN, fatty acid synthase;

GPAT, glycerol-3-phosphate acyltransferase; HDL, high-density lipoprotein; HMGCR: 3-hydroxy-3-methylglutaryl-CoA reductase; HMGCS,

3-hydroxy-3-methylglutaryl-CoA synthase; LDL, low-density lipoprotein; LDLR, low-density lipoprotein receptor; LPIN, Lipin; NR1H2, nuclear receptor subfamily 1

group H member 2; NR1H3, nuclear receptor subfamily 1 group H member 3; PLIN, perilipin; PPARγ, peroxisome proliferator-activated receptor γ; PTGS,

prostaglandin-endoperoxide synthase; SCD1, stearoyl-CoA desaturase; SREBP1, Sterol regulatory element binding transcription factor 1; SREBP2, sterol regulatory

element binding transcription factor 2; TCA, tricarboxylic acid cycle.

that tumor cells present higher levels of reactive oxygen species
(ROS) than not tumor cells, which allow them to activate
prosurvival and epithelial-to-mesenchymal transition programs
to support cancer progression and dissemination. Nevertheless,
excessive ROS may promote apoptotic cell death. It has been
demonstrated that enzymes implicated in the mobilization
of intracellular neutral lipids provide metabolic flexibility to
increase the levels of FAs for oxidation at mitochondria. In
the FAO pathway, acyl-CoAs are cyclically dehydrogenated,
hydrated, and decarboxylated, resulting in the progressive
shortening of the FA, together with the production of NADH and
FADH2 and AcCoA. NADH and FADH2 will be used for ATP
production in the electron transport chain, and AcCoA can enter
the Krebs cycle. AcCoA together with OAA gives rise to citrate,
which after being exported to cytoplasm, can enter two metabolic
pathways to produce cytosolic NADPH (62).

Enhanced mitochondrial β-oxidation of FAs has been
described in pancreatic cancer (63, 64) and in metastatic breast
cancer (65). FAOnot only provides energy when glucose becomes
limiting, but it also contributes to a better control of the oxidative

stress, by augmenting the intracellular levels of NADPH (66).
Increased FAO augments survival in leukemia and gliomas by
counteracting the metabolic oxidative stress. Moreover, FAO has
been shown crucial for the survival of cells from solid tumors
when undergoing loss of attachment, which triggers anoikis or
cell death due to oxidative stress (67, 68).

In addition, FAO is also influenced by the tumor
microenvironment such as in the case of ovarian cancers,
which preferentially metastasizes to the omentum enriched
in adipocytes, which provides lipids for ATP and NADPH
production to control metabolic stress during metastasis.

Regulation of FA Storage and Intracellular
FA Mobilization (Lipolysis and Lipophagy)
De novo synthesis of FAs in cancer cells is coupled to additional
processes to accommodate the increase in the intracellular lipid
content, to preserve the homeostasis between lipid storage
and lipid mobilization (69). FAs from de novo lipogenesis
are accumulated into neutral lipids (stored in LDs) and
phospholipids (in membranes). LDs are complex and dynamic
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organelles consisting of a neutral lipid core surrounded by a
phospholipid monolayer and a complex proteome associated.
LDs itself have been proposed as novel diagnostic biomarkers
for glioblastoma. It has been demonstrated that while they are
not detectable in low-grade gliomas or normal brain tissues, they
are common in glioblastoma, the most lethal brain tumor (70).
Among the LD-associated proteins, there are enzymes of the
sterol biosynthetic pathway, the acyl-CoA metabolism (ACSLs),
and triacylglycerol (TAG) biosynthesis. Structural proteins, such
as perilipins (PLINs) or caveolins, are critical for the integrity
of LDs to avoid collapse and to protect them from lipolysis
(Figure 2). Cancer cells present higher amounts of LDs than
normal cells (71). Increased expression of PLIN2 has been shown
to favor the accumulation of LDs (72), contributing to a better
control of the ER stress, to increase the protection against ROS,
and to augment the resistance to therapeutic drugs in cancer
cells. On the contrary, PLIN2 depletion significantly attenuated
the proliferation of colon cancer cells (73), supporting the LD-
associated proteins as potential druggable targets for cancer
treatment (11).

The increase in de novo synthesis of FAs in cancer cells
requires efficient and complementary lipolytic mechanisms to
accommodate the intracellular lipid content. Thus, lipolysis
allows the stored lipids to be available for the synthesis of
phospholipids and lipid signaling mediators and/or to increase
the levels of ATP or NADPH when required. Several enzymes
involved in lipolysis—adipose TAG lipase (ATGL), hormone-
sensitive lipase (HSL), monoacylglycerol lipase (MAGL)—
have been described to promote tumorigenesis (74). In this
sense, ATGL knockdown in HCT116 CRC cells reduced cell
proliferation (75). Increased levels of MAGL are associated with
aggressive cancer types such as melanoma and ovarian and
breast cancer (74), and inhibition of MAGL suppresses cancer
cell migration, invasion, and survival (76). Recently, it has been
demonstrated that glioblastomas, which acquire large amounts of
free FAs, upregulate diacylglycerol-acyltransferase 1 (DGAT1) to
store the excess FAs into triglycerides and LDs (77). Inhibition of
DGAT1 disrupted lipid homeostasis, resulting in increased levels
of ROS leading to apoptotic cell death.

In addition, a specific function of autophagy associated with
the regulation of the intracellular lipid content—lipophagy—has
been described to augment resistance to cell death in cancer (78).

Extracellular Lipid Uptake
In addition, similar to normal cells, cancer cells can uptake
exogenous lipids when de novo lipogenesis is inhibited.
Upregulation of cell surface receptors, such as cluster of
differentiation 36 (CD36) (Figure 2), has been found to augment
metastasis (79, 80). CD36 inhibition diminished tumor growth
and metastasis in preclinical models of prostate cancer (80).
Moreover, the expression of low-density lipoprotein receptor
(LDLR) for the internalization of low-density lipoproteins
(LDLs) has been found upregulated in renal cell carcinoma
(RCC) cells (81). FA-binding proteins (FABPs) contribute to
augment the lipid uptake, as well as the intracellular lipid
trafficking in cancer cells (82). In breast cancer and glioblastoma
cell lines, it has been shown that the uptake of extracellular

FAs during hypoxia is sustained by the upregulation of FABP3
and FABP7; meanwhile, FABP5 increases cell proliferation and
growth in prostate cancer (83).

Control of Saturated vs. Unsaturated FAs
Depending on the source of FAs, de novo lipogenesis
or extracellular lipid uptake, the levels of saturated FAs
incorporated in the phospholipids of cell membranes are
different. The lipogenic pathway increases the saturation level
of cell membranes with saturated and MUFAs (84), which
are less sensitive to suffer lipid peroxidation compared to
polyunsaturated acyl chains (PUFAs) mainly obtained from
diet. This way, de novo lipogenesis contributes to augment
the resistance to oxidative stress and chemotherapy in cancer
cells (85).

Nevertheless, excessive accumulation of saturated FAs in the
cell membranes can lead to lipotoxicity. In this regard, SCD1
inhibition induces ER stress and apoptosis in cancer cells and
diminishes the tumor growth in xenografts models of colon
and lung cancers (86). During tumor growth, inner parts of the
tumors are faced to hypoxia and reduced nutrient availability.
Tumors have developed different strategies to balance the
levels of saturated vs. unsaturated FAs. Thus, tumors anticipate
lipotoxicity by augmenting the uptake of MUFAs/PUFAs from
plasma, which are further stored into LDs or incorporated
into phospholipids at the cell membranes. As SCD1 activity
requires oxygen, during hypoxia some tumors rely on the activity
of DGATs to incorporate MUFAs into TG, which are further
accumulated into LDs (Figure 2). In addition, tumors balance,
via the Lands cycle, the levels of saturated vs. unsaturated FAs
in the phospholipids at the cell membranes. Recently, a process
known as ferroptosis has been described associated with high
levels of MUFA/PUFAs in the phospholipids of cell membranes,
which induce cell death by means of their oxidation through
the Fenton pathway. Long-chain FA acyl CoA synthetases
(ACSLs)—implicated in the long chain FA activation—may
control ferroptosis, as distinct isoforms use distinct substrates.
Meanwhile, ACSL4 has PUFAS as main substrates such as AA,
ACSL3 can activate both MUFAs and PUFAs, allowing a better
control of the excessive accumulation of PUFAs in phospholipids
(87). In addition, ACSL3 allows a better control of FA distribution
between LD storage or β-FAO, providing a better control of the
oxidative stress (42).

LIPID METABOLISM ALTERATIONS AND
CANCER PROGNOSIS

Alterations of lipid metabolism genes are found in many
tumor types, predominantly, but not exclusively, because lipid
metabolism can modulate different cellular processes that go
from plasmatic and organelle membrane organization and
plasticity (88, 89), substrate supply for ATP synthesis, (62) and
intracellular cell signaling activation (90). Cancer tissues display
abnormal activation of de novo lipogenesis and cholesterogenesis
(91). Extremely proliferative cancer cells exhibit an intense
lipid and cholesterol avidity, which they satisfy by increasing
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TABLE 1 | Prognostic value of lipid metabolism–related genes.
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the uptake of dietary or exogenous lipids and lipoproteins or
activating lipogenesis or cholesterol synthesis (3). Importantly,
this aberrant lipid metabolism does not only influence the
primary tumor, but the exogenous lipids produced by tumor
microenvironment can also influence malignancy (14, 92–95).
Besides, three basic steps during metastasis: migration (96),
invasion (9, 10) and angiogenesis (97, 98), are affected by lipid
metabolism regulation (11).

Nowadays, there are increasing evidences of the role of lipid
metabolism alterations as biomarkers of cancer prognosis and
survival. Here, we are going to review previous knowledge on
the prognostic value of lipid-related genes that belong to FAs
and cholesterol pathways (Figure 2) in the most frequent types of
cancer according to the WHO: lung, CRC, breast, and prostate.

Furthermore, “omics” data publicly available in huge
searchable databases facilitate addressing specific medical issues
in thousands of patients. Remarkably, The Cancer Genome
Atlas (TCGA) gene expression dataset (https://www.cancer.
gov/tcga) and The Human Protein Atlas website together with
The Pathology Atlas online tool (https://www.proteinatlas.org/
humanproteome/pathology), which contains mRNA data from
TCGA study and protein expression data from different forms
of human cancer (99–101), allowing us to obtain a global view
of the putative implications of lipid metabolism–related genes
in cancer prognosis. Data from TCGA visualized using The
Pathology Atlas online tool, are summarized in Table 1.

Fatty Acid–Related Alterations as
Biomarkers of Cancer Prognosis and
Survival
De novo FA biosynthesis occurs in the cellular cytoplasm. FAs
originate from acetyl-coenzyme A, which is mostly provided
by citrate produced by the TCA cycle. Switch of citrate into
AcCoA is catalyzed by ATP citrate lyase (ACLY) (Figure 2).
Consequently, ACLY is a key enzyme connecting carbohydrate
to lipid metabolism by producing AcCoA from citrate for both
FA and cholesterol synthesis (61). Several studies have associated
ACLY expression in tumor tissues with worse prognosis. ACLY
overexpression correlated with stage, differentiation grade, and
a poorer prognosis in non–small cell lung cancer (NSCLC)
(61). Besides, in combination with the glucose transporter
GLUT1, ACLY was also an independent prognostic factor for
overall survival (OS) in node-negative patients with NSCLC
(102). However, one study reports that young NSCLC patients
overexpressing ACLY had longer OS, in contrast to older
patients where overexpression of ACLY appears to predict the
opposite prognosis (103). ACLY also facilitates colon cancer cell
metastasis, and high expression levels of ACLY and Catenin β1
(CTNNB1) protein were positively correlated with metastasis of
colon cancer (104). Data from TCGA showed ACLY as a putative
unfavorable marker of cervical and liver cancer (Table 1).

At the genomic level, single nucleotide polymorphisms (SNPs)
in ACLY gene have been described as independent cancer
prognostic markers in Asiatic populations. SNP rs9912300 in
ACLY gene was significantly associated with OS in lung cancer
patients (165). rs9912300 and rs2304497, both functional ACLY
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SNPs, exhibited a significant association with risks of death and
recurrence in patients with advanced stages of colon cancer (166).

The following step of FA biosynthesis involves the activation
of AcCoA to malonyl-CoA, which is catalyzed by AcCoA
carboxylase (ACC) (Figure 2). ACC is a complex multifunctional
enzyme system. There are two ACC forms, α (ACACA) and
β (ACACB), encoded by two different genes. High phospho-
acetylCoA carboxylase (pACC) was an independent marker for
prediction of better survival in lung adenocarcinoma patients
(105), and low pACC levels detected by immunohistochemistry
were associated both with worse OS and progression-free survival
in advanced stage CRC (167). In the same line, gene expression
analysis reported that patients with upregulation of six of
these hub genes (genes with high correlation in candidate
modules) (ACACB, acyl-CoA dehydrogenase medium chain,
adiponectin, C1Q and collagen domain containing, acyl-CoA
synthetase short-chain family member 2, phosphoenolpyruvate
carboxykinase 1 and PLIN1) displayed improved breast cancer
prognosis (106). In TCGA dataset, ACACA gene expression is
an unfavorable risk factor for liver cancer, whereas ACACB is a
favorable prognostic factor for both renal and pancreas tumors
(Table 1). Finally, it has been described in prostate cancer that
genetic alterations of ACACA, FASN, and SREBF1 predicted
worse overall patient survival (168).

Malonyl-CoA is coupled to themultifunctional enzyme FASN.
Repeated cycles of acetyl group’s condensation produce the
primary FA palmitate that can suffer separate elongation and/or
unsaturation cycles to yield other FA molecules (169) (Figure 2).
FASN is the key enzyme necessary for the de novo synthesis of
long-chain FAs. FASN has been found overexpressed in nearly
all of cancer tissues, and its expression is associated with a
poorer prognosis.

One study reported that FASN gene expression was higher
in the adjacent non-cancer tissue than in the NSCLC tissue,
but authors concluded that it was a weaker predictor of shorter
patient survival (170). However, a correlation analysis between
expression levels of CD276 (B7-H3) and FASN exhibited a
positive correlation with poor prognosis in clinical lung cancer
tissues (107).

FASN levels were clearly upregulated in CRC tissues with
high expression of FASN significantly associated with lymph
node metastasis (108), liver metastasis (109), TNM (tumor,
node, metastasis) stage, and poor prognosis (36). Moreover, a
significant association was shown between FASN and VEGF
expression, suggesting the involvement of FAS in tumor
angiogenesis (110). Interestingly, one study reported that,
among non-obese patients with colon cancer, tumoral FASN
overexpression is associated with better survival, while among
moderately overweight or obese patients, FASN overexpression
may predict a poorer outcome (111). Furthermore, a panel of five
genes including FASN (ACOT8/ACSL5/FASN/HMGBCS2/SCD1)
has been reported to display a improved prognostic performance
than validated clinical risk scales, and it is applicable for early
discovery of CRC and tumor recurrence (112). Finally, FASN
levels in serum were also examined in CRC patients, where
it was associated with tumor stage (171), and high FASN
levels are considered as a promising independent predictor of

CRC with advanced phases, late clinical stages, and shorter
survival (172).

FASN is associated with poor prognosis in breast and prostate
cancer, and its inhibition is selectively cytotoxic to human
cancer cells (113). FASN was found overexpressed in most
of the triple-negative breast cancer (TNBC) patients but not
always correlated with OS or disease-free survival. High FASN
was significantly associated with positive node status (114). A
greater part of clinically HER2-positive tumors was achieved as
FASN overexpressors. Reclassification of HER2-positive breast
tumors based on FASN gene expression predicted a significantly
inferior relapse-free and distant metastasis-free survival in
HER2+/FASN+ patients (115).

A substantial subset of prostatic cancers displays clearly
elevated expression of immunohistochemically detectable FASN,
a feature that has been associated with poorer prognosis (116–
119). Furthermore, high expression level of FASN resulted in
a significantly poor prognosis of pancreatic cancer (173), and
data from TCGA study suggest that FASN expression could be
a marker of bad outcome in cervical and renal cancer (Table 1).

In addition, several genetic changes in FASN gene have been
associated with cancer prognosis. Two SNPs rs4246444 and
rs4485435 were significantly associated with the recurrence of
NSCLC (165). Finally, as it has been previously mentioned in
prostate cancer that genetic alterations of FASN together with
ACACA and SREBF1 predicted worse prognosis (168).

Then, FAs are activated with CoA by fatty acyl-CoA
synthetases (ACSLs) (Figure 2), which is essential for
phospholipid and triglyceride synthesis and lipid modification of
proteins in addition to for FA β-oxidation (169).

Family of long-chain acyl-CoA synthetases has been
extensively proposed as putative prognostic biomarkers of
cancer. ACSL3 is up-regulated in lung cancer compared to
the healthy lung tissue (174), and recently, an association
with ACSL3 expression, NSCLC prognosis, and the efficacy of
statins treatment has been discovered (L. P. Fernandez et al.,
unpublished results). ACSL3 was also found to be overexpressed
in estrogen receptor–negative breast cancer (175) and prostate
cancer (176). ACSL1 and ACSL4 overexpression was associated
with a poor clinical outcome in stage II CRC patients (7–
9, 120, 121). In addition, ACSL4 is considered a biomarker for
liver and breast cancers (122, 177). By contrast, downregulation
of ACSL5 in breast cancer was associated with a poorer prognosis
(121, 123). There have not been reported associations between
ACSL6 and cancer survival (178).

An in silico study (121) also suggested that high ACSL1
expression was associated with worse outcome in lung cancer
patients, and ACSL3 overexpression was associated with worse
survival in patients with melanoma. In contrast, high ACSL3
expression predicted a better prognosis in ovarian cancer. In
the same study, ACSL4 overexpression predicted bad prognosis
in CRC, but good prognosis in breast, brain, and lung cancers.
High expression of ACSL5 predicted good prognosis in breast,
ovarian, and lung cancers. Finally, low ACSL6 predicted a
worse prognosis in acute myeloid leukemia. In silico analysis of
TCGA data (Table 1) suggested that ACSL1, ACSL4, and ACSL5
are associated with favorable outcome in renal, urothelial, and
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endometrial cancers, respectively, whereas ACSL3 expression
predicts poor survival in lung and liver tumors.

Genetically, a 3′-UTR polymorphism in ACSL1 is associated
with ACSL1 expression levels and poor clinical outcome in
CRC patients (14, 120). Patients carrying the ACSL1 rs8086
T/T genotype had significantly reduced disease-free survival
compared with patients carrying the C/T or C/C genotype,
with 3-fold higher risk of recurrences. T/T genotype for rs8086
is correlated with worse clinical outcome and simultaneously
associates with high ACSL1mRNA levels (14, 120).

Stearoyl CoA desaturase 1 (SCD1) catalyzes the rate-limiting
step in the synthesis of MUFAs that are the main components of
tissue lipids. SCD1 has been associated with tumor development,
late stage, and reduced survival in lung adenocarcinoma (124).
Together with other three lipid metabolism–related genes
(ABCA1,ACSL1, and AGPAT1), SCD1 expression separated stage
II colon cancer patients with a 5-fold higher risk of relapse (7).
Moreover, positive associations between SCD1 expression and
CRC patient clinical status and the expression of cancer stem
cell–related genes (WNT and NOTCH signaling) were found
based on TCGA data analysis (125). In the same line, high SCD1
expression is associated with shorter survival in breast cancer
patients (126). Table 1 shows that SCD1 is an unfavorable marker
of survival in renal and urothelial cancer in TCGA tumors. Other
desaturases have also been analyzed as prognostic markers, and,
for example, reduced expression of FADS1 suggests pessimistic
prognosis for NSCLC patients (127).

Glycerol-3-phosphate acyltransferase (GPAT) catalyzes
the first step in the production of almost all membrane
phospholipids. GPAT transfers an acyl group from acyl-CoA
or acyl-ACP at the sn-1 or-2 position of glycerol 3-phosphate
originating lysophosphatidic acids (LPAs) (179). LPA is a
substrate for synthesis of numerous important glycerolipid
intermediates, such as storage lipids, extracellular lipid
polyesters, and membrane lipids (Figure 2). Four GPATs
have been discovered; nevertheless, only GPAT1 (GPAM) has
been related to cancer outcome. High GPAT1 expression has
been associated with reduced OS in ovarian cancer (180).
Data from TCGA suggested that GPAT1 could be a favorable
prognostic marker in renal cancer, while GPAT3 is a putative
biomarker of good prognosis in renal cancer in contrast to
urothelial cancer. Finally, GPAT4 expression could have a risk
effect in ovarian and endometrial cancers, and a protective one
in prostate and urothelial cancer (Table 1).

LPA is further metabolized to phosphatidic acid (PA)
by AGPATs (1-acylglycerol-3-phosphate O-acyltransferases)
(Figure 2). AGPAT1 belongs to previously mentioned
transcriptional signature where combined analysis of four
genes, ABCA1, ACSL1, AGPAT1, and SCD1, is associated with
higher risk of relapse in stage II CRC patients (7). Furthermore,
individuals with upregulation of AGPAT1 expression have an
increased risk of CRC recurrence, independently of tumor stage
(8). Expression of AGPAT2 was significantly related to decreased
OS as well as to shorter progression-free survival in ovarian
cancer patients younger than 60 years (181). When we consider
tumors from TCGA study, several associations were found
(Table 1). AGPAT3 is a marker of good prognosis in renal cancer

and predicts bad outcome in cervical cancer. High expression
levels of AGPAT4 may be associated with poor prognosis in
cervical and renal cancers, whereas AGPAT5 is an unfavorable
prognostic marker in liver cancer and a favorable one in CRC.

Then PA is converted to diacylglycerol (DAG) by LPIN, a
PA phosphatase. Three LPIN isoforms have been described.
LPIN1 is upregulated in lung adenocarcinoma tumor tissues,
and high LPIN1 expression was correlated with poor prognosis
of patients with lung adenocarcinoma (134). In breast cancer,
previous results seem to indicate that the high LPIN expression is
related to a good prognosis (135). However, in basal-like TNBC,
high LPIN1 expression correlates with the poor prognosis of
these patients (136). In TCGA dataset analysis, LPIN2 appears
as a favorable prognostic marker in head and neck cancers,
while LPIN3 could be an unfavorable biomarker of endometrial,
ovarian, and renal tumors (Table 1).

The final step in triacylglycerols synthesis is catalyzed by
DGAT, which esterifies the DAG with a FA. Two human
DGAT isoforms have been described (182). The expression of
DGAT2 in HER2-positive breast cancer was decreased and was
closely related to patient prognosis (140). However, data from
TCGA reported DGAT2 as an unfavorable prognostic factor for
endometrial cancer (Table 1).

Subsequently, TAGs could be stored in LDs, and PLINs,
an LD surface family of proteins, are necessary for optimal
lipid storage and FA release. There are multiple PLIN proteins
encoded by mRNA splice variants of a single PLIN gene.
PLIN1 expression in lung adenocarcinoma is associated with
apocrine-like features and poor clinical prognosis (137). In
contrast, PLIN1mRNA expression is significantly downregulated
in human breast cancer. The reduced expression of PLIN1 is an
independent predictor of OS in estrogen receptor–positive and
luminal A-subtype breast cancer patients (138). Also in breast
cancer, low expression of PLIN2 was associated with favorable
prognosis (139). The prognostic effects of PLINs in several types
of cancer from TCGA analysis are multiple and very diverse
(Table 1).

Eicosanoids are biologically active metabolites of AA and are
produced by cyclooxygenases 1 and 2 (COX1 and COX2) [also
known as prostaglandin-endoperoxide synthase 1 and 2 (PTGS1
and PTGS2)]. They are overexpressed in a variety of malignant
tumors. It has been reported that the mRNA levels of COX-
1 and COX-2 in lung cancer patients were significantly higher
than in normal patients (183). However, another study reports
that in tumor cells COX-2 rather than COX-1 expression may
account for the variable prostanoid production seen in NSCLC
(128). It is clear that multivariate analysis showed that tumoral
COX-2 mRNA expression and lymph node status were the
most important independent prognostic predictors for NSCLC
survival and disease relapse (129). Elevated COX-2 expression in
tumors was significantly associated with lower survival in NSCLC
and might be useful in identifying patients who would benefit
from additional therapies for managing their disease (130).

The same tendency was observed in CRC, where elevated
COX-2 expression, but not that of COX-1, was significantly
associated with reduced survival and recognized as an
independent prognostic factor (131). However, it has been
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reported that COX-1 and COX-2 expression is highly variable in
Dukes’ C tumors, and changes in COX-1 expression may be of
importance in CRC (184).

COX-2 expression level and its prognostic value are also a
matter of debate in breast cancer (185). Nevertheless, at least
eight immunohistochemical reports have explored expression of
COX-2 in a total of 2,392 primary breast carcinomas, of which
40% were found to be COX-2 positive (132). At least, four
studies have detected that overexpression of COX-2 is linked to
poor prognosis in breast cancer. These studies provide the basis
for further estimation of a possible therapeutic effect of COX
inhibitors in therapy of breast cancer.

In prostate cancer, a subset of Chinese patients with high-
COX-2 expression showed minor disease-free and OS rates than
those with low COX-2 expression. In this work, univariate and
multivariate analyses suggested that the status of COX-2 protein
expression was an independent prognostic factor for patients’
survival (133).

Data from TCGA showed COX-1 and COX-2 as unfavorable
markers of renal cancer, whereas only COX-1 was a risk
biomarker of urothelial cancer (Table 1).

Chronic inflammation is a recognized risk factor for CRC,
and polymorphisms in genes regulating inflammatory processes
appear to modify the risk of neoplasia and the efficacy of non-
steroidal anti-inflammatory drugs in CRC chemoprevention.
COX-1 polymorphism G213G was significantly associated with
an increased CRC (186). Finally, another study reports fourCOX-
1 variants that were associated with CRC survival. rs1213266 was
associated with approximately 50% lower CRC mortality. Three
other variants, including L237M, resulted in significantly elevated
CRC mortality risk (187).

Proteins related to FAs transportation are also relevant as
cancer biomarkers. Carnitine palmitoyltransferase, CPT1A, is a
protein that is responsible for the translocation of FAs from
the cytosol to the mitochondrial matrix, where FA oxidation
occurs. Associations of shorter disease-free survival with CPT1A
positivity in invasive lobular carcinoma of the breast have been
found (142).

Another study recognized a gene expression signature
composed of 19 genes associated with FAO that was significantly
associated with breast cancer patient survival. These 19 genes
are referred to as the “fatty acid oxidation (FAO)” signature.
Included in this signature were genes that have previously been
identified as the core components of the FA β-oxidation pathway,
such as CPT1A. Moreover, the expression of CPT1A was elevated
in estrogen receptor–positive, compared to estrogen receptor–
negative tumors and cell lines (143). Data from TCGA clearly
confirm a CPT1A association with poor prognosis in breast
cancer, whereas CPT1A is a marker of good prognosis in renal
cancer and CPT1C in pancreas (Table 1).

Other relevant FA transporter is CD36. CD36, a scavenger
receptor expressed in multiple cell types, mediates lipid uptake,
immunological recognition, inflammation, molecular adhesion,
and apoptosis. CD36 has been continually proposed as a
prognostic marker in diverse cancers, mostly of epithelial
origin (breast, prostate, ovary, and colon) and also for hepatic
carcinoma and gliomas (141). Through systematic analysis of

the multiple omics data from TCGA, it has been found that the
most widely altered lipid metabolism pathways in pan-cancer
are FA metabolism, AA metabolism, cholesterol metabolism,
and peroxisome proliferator-activated receptor (PPAR) signaling.
Genes related to lipid metabolism and immune response that
were associated with poor prognosis were discovered including
CD36 (188).

Cholesterol-Related Alterations as
Biomarkers of Cancer Prognosis and
Survival
First step of cholesterol or mevalonate pathway is catalyzed by
acetyl-coenzymeAACAT1 (Figure 2). ACAT1 is amitochondrial
enzyme that catalyzes the reversible formation of acetoacetyl-
CoA from two molecules of AcCoA. An increased expression of
ACAT1 in intratumor cholesteryl ester–rich breast tumors was
reported (189). Also it has been proposed that ACAT1 expression
could serve as a potential prognostic marker in prostate cancer,
specifically in differentiating indolent and aggressive forms of
cancer (144, 145). Data from TCGA suggest that ACAT1 is a
marker of good prognosis in liver and renal tumors. Interestingly,
isoform 2 (ACAT2) is a marker of good prognosis in CRCs,
whereas in endometrial and renal tumors, ACAT2 has the
opposite effect (Table 1).

Next step in cholesterol synthesis is mediated by 3-hydroxy-
3-methylglutaryl-CoA synthase (HMGCS). This enzyme, with
two isoforms, condenses AcCoA with acetoacetyl-CoA to form
HMG-CoA, which is the substrate for HMG-CoA reductase.
HMGCS2 expression is associated with reduced clinical prognosis
and outcomes in patients with CRC and oral squamous cell
carcinoma. It has been suggested that HMGCS2 may act as
a helpful prognostic marker and essential target for potential
therapeutic strategies against advanced cancer (146). Also, it has
been described that HMGCS2 works as a tumor suppressor and
has a prognostic impact in prostate cancer, capable of predicting
the risk of biochemical recurrence (147). However, in TCGA
population, both isoforms are favorable makers of renal cancer.
Besides, HMGCS2 determines good prognosis in ovarian and
liver cancer (Table 1).

HMGCR is the rate-limiting enzyme of the mevalonate
pathway (Figure 2). HMG-CoA reductase expression in CRC
and breast cancer correlates with favorable clinicopathological
characteristics and an improved clinical outcome (148–150).
Besides, HMCGR expression is a predictor of response to
tamoxifen in breast cancer (190) and also may predict patient
response to radiotherapy in ductal carcinoma in situ (191). In
TCGA subset, HMGCR also is a good prognosis marker of renal
tumors (Table 1). Statins, lipid-lowering compounds commonly
used in cardiovascular disease, are competitive inhibitors of
HMGCR. The value of HMGCR as a predictor of response to
neoadjuvant or adjuvant statin treatment in cancer was also
studied (192).

Once that cholesterol is synthesized, there are several
cholesterol transporter proteins that play key roles in cholesterol
and phospholipids homeostasis. The ATP-binding cassette
transporter ABCA1 is a transmembrane protein responsible
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for the reverse cholesterol transport from the inner cell to
circulatory system. ABCA1 is significantly overexpressed in
patients of all stages of CRC, and its overexpression gives
proliferative advantages together with caveolin-1–dependent
increased migratory and invasive capacities (151). Individuals
with upregulation of ABCA1 expression have an improved
risk of CRC recurrence and OS independently of tumor
stage (8). ABCA1 also forms part of the metabolic-signature
ColoLipidGene able to precisely stratify stage II CRC with 5-
fold higher risk of relapse (7). Moreover, the presence of tumoral
genetic variants located in ABCA1 coding region seems to be
associated with CRC risk of death (8). In other tumor types,
ABCA1 expression was related to positive lymph nodes, but not
significantly associated with tumor recurrence or breast cancer–
specific survival (193).

Together with ABCA1, ATP-binding cassette G1 (ABCG1)
also initiates and propagates cellular cholesterol efflux. Several
genetic variants in ABCG1 have been associated with survival of
NSCLC patients (194). Moreover, ABCG1 expression seems to be
a favorable prognostic marker of renal cancer in data from TCGA
(Table 1).

Other members of the family are the ATP-binding cassettes
G4, G5, and G8. High ABCG4 expression has been associated
with poor prognosis in NSCLC patients treated with cisplatin-
based chemotherapy (152). ABCG5 positivity in tumor buds have
been proposed as an indicator of poor prognosis in node-negative
CRC patients (153), whereas in TCGA tumors, ABCG5 seems to
have a favorable effect in liver prognosis (Table 1).

While cellular cholesterol efflux is mainly performed via
ABCA1, cholesterol uptake is principally executed via the LDLR.
The prognostic value of LDLR expression was analyzed in CRC
where authors found that the absence of LDLR predicts a shorter
survival (154). In the same line, lower LDLR expression was an
independent prognostic factor associated with longer survival in
patients with small cell lung cancer (195). By contrast, TCGA
data suggest that LDLR could be a bad prognostic marker of
pancreatic, renal, and urothelial cancers (Table 1).

Lipid-Related Transcription Factor
Alterations as Biomarkers of Cancer
Prognosis and Survival
Five are the main transcription factors that regulate the
expression of mediators of lipid metabolism: SREBP1, SREBP2,
PPARγ, NR1H3, and NR1H2. Sterol regulatory element-binding
protein 1 (SREBP1) is a known transcription factor of lipogenic
genes, which plays important roles in regulating de novo
lipogenesis. SREBP1 is overexpressed and strongly associated
with worse clinical outcomes in breast cancer (155). Moreover,
SREBP1 also seems to have an essential role in pancreatic
cancer, regulating tumorigenesis and being associated with bad
prognosis (196). However, data from TCGA propose SREBP1
as a favorable prognostic marker in pancreatic and endometrial
cancers (Table 1).

The combined expression of sterol regulatory element-
binding protein 2 (SREBP2) together with HMGCR, NR1H3, and
NR1H2 genes was associated with poor CRC clinical outcome

TABLE 2 | Preclinical and clinical studies with main drugs evaluated to target the

altered lipid metabolism in cancer.

Target Drug Type of cancer Preclinical/clinical trial

FASN Cerulenin Breast Cancer (48)

Ovarian Cancer (201)

C75 Renal Cancer (59)

Breast Cancer (53)

Lung Cancer (43)

Orlistat Melanoma (57,

202)

Prostate Cancer (86)

Fasnall Breast Cancer (87)

C93 NSCLC (42, 43)

C247 Breast Cancer (44)

TV3166 CRC (45)

TVB-2640 NSCLC NCT03808558 (56)

TNBC NCT03179904 (56)

HG Astrocytoma NCT03032484 (203)

Ovarian, Breast

Cancer

NCT02223247 (204)

Triclosan Breast (58, 60)

ACLY SB-204990 NSCLC, Prostate,

Ovarian

(51)

NSCLC (61)

ACC1/2 ND-630 (GS-0976) NASH (71)

TOFA HNSCC (205)

Ovarian (33)

ND-654 HCC (34)

GS-0976 NASH (36)

NCT02856555 (35)

ND-646 NSCL (206)

SCD1 CVT-12 HCC (207)

SSI-4 HCC (208)

Betulinic acid CRC (209)

GBC (210)

MF-438 NSCLC (211)

A939572 NSCLC (212)

ccRCC (213)

Prostate (213)

CPT1A Etomoxir Leukemia (214)

Ranolazine Prostate Cancer (215)

Glioblastoma (216)

Etomoxir,

Ranolazine,

Perhexiline

Prostate Cancer (217)

Perhexiline CLL (218)

Breast Cancer (219,

220)

SREBP Betulin HCC (221)

Melanoma (222)

Fatostatin Prostate (223,

224)

Glioma (225)

HCC (226)

(Continued)
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TABLE 2 | Continued

Target Drug Type of cancer Preclinical/clinical trial

LXR T0901317/GW3965 BPDCN (227)

LXR623 and

GW3965

Colon/Glioblastoma (228)

GW3965 Glioma (229)

ACAT1 Avasimive Prostate/Colon

Cancer

(230)

GBM (231)

CML (232)

CD36 FA6.152 Oral Cancer (80)

Prostate Cancer (233)

HMGCR Fluvastatin Prostate NCT01992042 (234)

NCT00608595

Simvastatin CRC NCT00994903 (235)

NSCLC NCT00452244 (236)

MAGL URB602 Colon (237)

PTGS2 Celecoxib Lung Cancer (238)

Ovarian Cancer

(HFD)

(239)

NSCLC NCT00046839 (+)

PDAC NCT01111591 (240)

Prostate cancer NCT00073970 (+)

Early CRC NCT00608595 (+)

PPARG VSP-17 Breast Cancer (241)

FABP4 BMS309403 HCC (242)

Prostate Cancer (243)

FABP5 SBFI26 CRPC (244)

(+) Unpublished results.

independent of lymph node metastasis, distant metastasis,
and advanced stage (156). Besides, expression of SREBP-2
was elevated in advanced pathologic grade and metastatic
prostate cancer and significantly associated with poor clinical
outcomes (157).

The PPARγ is a nuclear receptor that controls expression
of mediators of lipid metabolism but also the inflammatory
response. Additionally, it has been demonstrated that PPAR b/d
and a isotypes also have important roles in FAO, FA storage, and
cholesterogenesis (197).

Decreased expression of PPARγ has been observed in many
tumor types. In this sense, reduced PPARγ expression within
the tumor is associated with poor prognosis in lung cancer
patients (158, 159). In the same line, tumor expression of
PPARγ is independently associated with increased survival of
CRC patients (160). Also in patients with breast and prostate
cancer, PPARγ is a marker of better prognosis and is associated
with better survival (161–163). Importantly, one study reports
that cytoplasmic PPARγ expression appeared as an independent
marker of poor prognosis in primary breast cancers (198). TCGA
analysis proposed PPARγ as a favorable prognostic marker for
renal and urothelial cancers (Table 1).

Finally, several studies have also evaluated the association
between PPARγ genetic variants and the risk of CRC (199).

In patients with stages II/III CRC, polymorphism rs1801282 in
PPARγ was significantly associated with tumor recurrence (200).

NR1H3 and NR1H2 encode for liver X receptor (LXR) α

and LXR β, respectively. They are intimately related nuclear
receptors that react to elevated levels of intracellular cholesterol
by enhancing transcription of genes that control cholesterol
efflux and FA biosynthesis. NR1H3 expression was significantly
correlated to better survival in completely resected stages II
and III NSCLC patients (164). Moreover, one study reports that
NR1H3 andNR1H2 belong to a transcription signature associated
with poor CRC clinical outcome independent of lymph node
metastasis, distant metastasis, and advanced stage (156). This
result is validated in TCGA dataset (Table 1) where NR1H2 was
also associated with CRC poor prognosis.

TARGETING THE ALTERED LIPID
METABOLISM IN CANCER

Because of the essential role of FAs for cancer cell proliferation
and progression, drugs to target lipogenic enzymes and/or
transcription factors regulating the intracellular lipid
homeostasis are considering as promising therapeutic strategies
against cancer.

Different drugs have been already evaluated to target (i)
lipogenic enzymes (FASN, ACLY, ACC); (ii) the exogenous
lipid uptake (LXR, CD36, FABP4/5); (iii) inflammatory
signaling pathways (PTGS2); (iv) regulation of intracellular lipid
homeostasis (PPARγ, CPT1a, lipin2, HSL, MAGAT, DAGAT. . . );
and/or (v) saturated vs. unsaturated FAs. Their efficacy has been
demonstrated in numerous models of cancer, including in vitro
preclinical and clinical studies.

In Table 2, we summarize main drugs evaluated in preclinical
and clinical studies. Nevertheless, although the results of
these studies are encouraging, side effects due to the many
different regulatory mechanisms of lipid metabolism are still a
big challenge.

Recently, there is growing interest on complementary
approaches by means of dietary interventions for cancer
treatment. The success of such interventions requires a deep
knowledge of the metabolic requirements of tumors, considering
the nutritional status of the individuals—obesity, metabolic
syndrome and/or insulin resistance, among others—and the
genetic susceptibilities to metabolic alterations. Moreover, the
knowledge of the molecular targets and mechanism of action
of dietary ingredients will be crucial to apply these approaches
with the conventional chemotherapy in order to improve the
responses to the clinical treatments and the well-being of patients.

Precision nutrition should be considered at three levels:
(1) nutritional guidelines based on age, gender, and other
sociocultural factors; (2) individualized recommendations after
refined phenotyping; and a (3) genetic-nutrition based on genetic
variants with high penetrance and on the response to nutritional
interventions (6).

The improvement of the “omics” sciences, including
transcriptomics, proteomics, metabolomics, lipidomics,
and metagenomics, provides a more complete scenario for
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TABLE 3 | Preclinical and clinical studies with bioactive compounds from natural sources to target the altered lipid metabolism and/or associated risk factors (mainly

obesity and T2DM) in cancer.

Family Bioactive compounds Molecular targets, metabolic effects Preclinical/clinical trials References

Polyphenols

Flavonoids Gallic acid and its derivatives

EGCG, gallate, ethyl gallate,

gallocatechin gallate, methyl

gallate, propyl gallate,

theaflavin-3-gallate

↑AMPK, FAO, thermogenesis (258)

↓antiobesity (259)

↓Cholesterol, LDL NCT02147041 (260)

↓lipogenesis, ↓PPARG, LXR, ↑AMPK (261, 262)

↑AMPK, SIRT, PGC1a, FAO, UCP1, CYp7a1 (263)

↓dyslipidemia (264)

↓dyslipidemia NCT02627898 (265)

↑FAO, ↓antiobesity NCT02381145 (266)

↓HOMAIR, T2DM Human study (267)

Citrus flavonoids

Nobilettin ↓HSL, ACC, ↑AMPK, CPT1a, ACOX1, FAO (268)

Naringenin ↑PPARα, CPT-1, UCP-2, FAO, ↓SREBP1c,

3HMGCR, hepatic steatosis

(269–272)

Tangeretin ↑PPARα, FAO (273)

Hesperetin ↑PPARα, PPARγ, AMPK, FAO, ↓lipogenesis (274)

Baicalin ↓SREBP-1c, FASN, ACC (275)

Hispidulin ↑PPARα, CPT1α ↑Acat1, Acad1, HMGCS2 (276, 277)

Mangiferin ↓inflammation, T2DM, steatosis, ACC, DGAT2,

↑ FAO(CPT1a)

Dihydromyricetin ↓hepatic steatosis ChiCTRTRC12002377 (278)

Berberin ↓hepatic steatosis, TG and cholesterol levels NCT00633282 (279)

Luteolin ↑FAO, ↓lipogenesis, cholesterogenesis,

HMGCS1

NCT00633282 (280)

Quercetin ↓ CYP2E1, inflammation, obesity, T2DM (281, 282)

Stilbenos Resveratrol ↓ steatosis, adipogenesis, SREBP1c, lipin1,

ACC, ↑AMPK, SIRT1, FAO

(283–285)

Curcuminoids Curcumin ↓steatosis, adipogenesis, SREBP1c, FASN,

SCD1, GPAT-1, ↑1AMPK, FAO

(286, 287)

Phenolic acids Ellagic acid ↓steatosis, Insulin resistance (288)

Terpenoids

Carnosol ↓hyperglycemia, inflammation, lipogenesis,

anticancer

(289, 290)

Betulinic acid ↓SCD, steatosis, lipogenesis (209)

Ursolic acid ↑AMPK, FAO, ↓lipogenesis (291)

Ginsenoside ↑AMPK, perilipin, FAO (292–294)

Licopene ↓inflammation ISRCTN99660610 (295)

personalized nutritional interventions (13, 245). The main
challenge is to define tumor heterogeneities, which can be
originated by genomic, epigenomic, transcriptomic, and
immune variability. This will lead to patients’ stratification for
personalized treatments in the clinics (246).

Nutrigenetics aims to study the effect of genetic variants
on the dietary response and the risk of several diseases. For
example, SNPs in the CD36 gene associate with dyslipidemia
when high amounts of fats are consumed (247). In addition,
dietary ingredients affect cancer risk and progression affecting

gene expression. Nutrigenomics considers the effect of diet-
derived ingredients on gene expression and, consequently, on the
proteome and metabolome.

Dietary ingredients and nutrients from natural sources,
such as epigallocatechin-3-gallate, curcumin, sulforaphane, and
genistein, have been shown to have anticancer properties
regulating the expression of genes related to cancer.
Polyphenols contribute to the prevention of obesity through the
modulation of genes implicated in adipogenesis, lipolysis, and
FAO (248–251).
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Importantly, in the frame of precision nutrition, dietary
interventions might also provide systemic responses affecting
the antitumoral response of the immune system, as well as
the reduction of low-grade chronic inflammation, dyslipidemia,
insulin resistance, and/or obesity.

The direct association of diet with obesity and dysbiosis
requires further research to understand the impact of diet on
cancer prognosis. High intake of saturated FAs increases the
expression of genes related to inflammation, insulin resistance,
and/or hepatic steatosis. In contrast, Mediterranean diet
downregulates the expression of genes related to oxidative stress,
inflammation, and/or insulin signaling (252, 253). Importantly,
high levels of triglycerides and LDLs have been associated with
CRC prognosis and distant metastasis. Cholesterol in high-fat
diets associates with colorectal tumorigenesis (254). Ceramide
sphingolipids have been shown to be antitumoral in combination
with tamoxifen (255). Phosphatidylcholine is increased in CRC
cells. Increased intake of MUFAs is associated with reduce
inflammation in CRC cancer (256). Energy-restricted diets
supplemented with EPA and α-lipoic acid increase the expression
of FAO genes, diminishing the expression of genes related to de
novo lipogenesis and inflammation (257) (Table 3).

Importantly, the efficacy of fasting cycles or cycles of
fasting mimicking diets in dampening tumor development has
already been established (296), and the implementation of
other dietary approaches for cancer therapy is likely to take a
similar approach.

CONCLUDING REMARKS

Metabolic alterations of tumors have been well-recognized as one
of the hallmarks of cancer. At present, several investigations have
demonstrated the consequences of lipid metabolism deregulation
in cancer not only sustain tumor growth but also promote cell
migration, invasion, and angiogenesis. In this review, we have
discussed about the main lipid metabolism alterations found

in cancer by describing their mechanism of action and their
oncologic implications. Importantly, we emphasize the crucial
role of the aberrant lipid metabolism not only affecting the
primary tumors but also shaping the tumor microenvironment
to promote malignancy and dissemination. Moreover, we have
explored the available public data bases containing mRNA data
(TCGA) and protein expression data (The Human Protein
Atlas) to obtain a global view of the putative implications of
lipid metabolism–related genes in cancer prognosis of the most
frequent types of cancer according to the WHO: lung, CRC,
breast, and prostate cancers.

We also highlight the relevance of “omics” technologies,
including genomic and transcriptomic data, considering the
phenotypic metabolic status (mainly obesity) to define lipid
metabolic scores to be integrated into the clinical advice. Thus,
the use of this knowledge will allow a better stratification of
patients, which will be translated into improvements on the
OS and well-being of the patients. In the frame of precision
medicine, new clinical trials integrating classical chemotherapies
with precision nutrition–based strategies—bioactive products
and diet derived nutrients—will provide an unquestionable line
of research in cancer treatment.
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