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In theranostics (i.e., therapy and diagnostics) radiopharmaceuticals are used for both
therapeutic and diagnostic purposes by targeting one specific tumor receptor. Biologically
relevant compounds, e.g., receptor ligands or drugs, are labeled with radionuclides to
form radiopharmaceuticals. The possible applications are multifold: visualization of
biological processes or tumor biology in vivo, diagnosis and tumor staging, therapy
planning, and treatment of specific tumors. Theranostics research is multidisciplinary and
allows for the rapid translation of potential tumor targets from preclinical research to “first-
in-man” clinical studies. In the last decade, the use of theranostics has seen an
unprecedented value for adult cancer patients. Several radiopharmaceuticals are
routinely used in clinical practice (e.g., [68Ga/177Lu]DOTATATE), and dozens are under
(pre)clinical development. In contrast to these successes in adult oncology, theranostics
have scarcely been developed to diagnose and treat pediatric cancers. To date, [123/131I]
meta-iodobenzylguanidine ([123/131I]mIBG) is the only available and approved theranostic
in pediatric oncology. mIBG targets the norepinephrine transporter, expressed by
neuroblastoma tumors. For most pediatric tumors, including neuroblastoma, there is a
clear need for novel and improved radiopharmaceuticals for imaging and therapy. The
strategy of theranostics for pediatric oncology can be divided in (1) the improvement of
existing theranostics, (2) the translation of theranostics developed in adult oncology for
pediatric purposes, and (3) the development of novel theranostics for pediatric tumor-
specific targets. Here, we describe the recent advances in theranostics development in
pediatric oncology and shed a light on how this methodology can affect diagnosis and
provide additional treatment options for these patients.
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INTRODUCTION

Theranostics in nuclear medicine includes the use and
application of two identical or very closely related
radiopharmaceuticals for therapy and diagnosis. In oncology,
tumor-specific substrates, receptor ligands, or drugs can serve as
lead for theranostic development when labeled with specific
radionuclides for imaging or therapy (Figure 1A). As the
molecular structure of both the diagnostic and therapeutic
radiopharmaceuticals are identical, diagnostic images can
become predictive for therapeutic response because the
biological characteristics and binding potential of both are
similar, irrespective of the radionuclide (2–4).

For diagnosis, positron emission tomography (PET) is a
nuclear imaging technique that enables the visualization and
quantification of molecules equipped with positron emitting
radionuclides. The most used radionuclide for imaging is
Fluorine-18 (18F) in the form of [18F]FDG. [18F]FDG PET
visualizes increased carbohydrate uptake in tissue, e.g., tumor
tissue, and is important for diagnosis, staging and treatment
monitoring. For PET tracer development, any molecule that
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displays tumor-specific targeting can be used, including small
molecules, peptides or biologicals. Radionuclides used for PET
tracer development are, among others, Carbon-11 (11C) and
Fluorine-18 (18F) facilitating small molecule labeling, Gallium-68
(68Ga) for peptide radiolabeling, and Copper-64 (64Cu) or
Zirconium-89 (89Zr) for the labeling of monoclonal antibodies
(mAbs) and other biologicals. PET imaging enables studying the
distribution and kinetics of labeled molecules and the
biochemical and physiological processes. Molecular imaging by
means of PET can, thus, facilitate and guide cancer treatment in
many ways (5, 6). Currently, PET is the most sensitive technique
for nuclear imaging; it requires nanomolar amounts of the
radiopharmaceutical for imaging. These nanomolar amounts
will not induce pharmacological effects, hold minimal risks for
toxicity, and are described as the micro-dosing concept. Micro-
dosing allows for fast translation of novel PET tracers into
clinical trials in small “first-in-man” or phase 0 studies, when
produced under good manufacturing practice (GMP). Single
photon emission computed tomography (SPECT) is an
alternative nuclear imaging technique and enables the
visualization of g-emitting radionuclides and was the basis for
A

B C

FIGURE 1 | (A) Theranostics concept explained. A tumor-specific ligand can be used for both imaging and therapy, dependent on the nuclide of choice. PET
images before/after therapy in a prostate cancer patient diagnosed and treated with [68Ga/177Lu]PSMA. PET image adapted from SNMMI image of the year 2018 by
Hofman et al.; (B) left, [123I]mIBG SPECT image of a neuroblastoma patient with lesions indicated with black arrows; right, [18F]mFBG PET image of the same patient
showing greater contrast and additional lesions that were not observed with [123I]mIBG. Image adapted from Pandit-Taskar et al. (1); (C) left, [123I]mIBG SPECT
image of a neuroblastoma patient with only vague tumor uptake; right, [68Ga]DOTATOC PET image of the same patient showing SSTR-2A expression, greater
contrast and additional lesions. Patient is treated with [177Lu]DOTATATE with an additional survival of 24 months (unpublished data, UMC Utrecht).
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early theranostics development, where, among others, the
different radionuclides of iodine were used for imaging (e.g.,
Iodine-123 (123I) and Iodine-131 (131I)).

Therapeutic radiopharmaceuticals for treatment of cancer are
predominantly labeled with b-emitting radionuclides. The
radionuclide 131I, Lutetium-177 (177Lu) and Yttrium-90 (90Y)
are frequently used for this purpose. The emitted b-particles
travel 1–12 mm through tissue upon decay while losing energy
and causing cytotoxic damage to the cell to induce apoptosis.
Alternatively and more recently, a-emitting radionuclides, e.g.,
Astatine-211 (211At) or Actinium-225 (225Ac) were explored for
therapy (7–9). The high energy deposition and a limited range of
the a-particles in tissue (0.005–0.11 mm) result in very strong
cytotoxic and therapeutic effects. Nowadays, a-emitting
radionuclides become more widely available, research toward
the development of therapeutic radiopharmaceuticals with these
radionuclides is emerging, and first-in-man studies are expected
in the near future.

Successful theranostics have been developed for somatostatin
receptor positive neuroendocrine tumors with [68Ga/177Lu]
DOTATATE and prostate-specific membrane antigen (PSMA)
positive prostate cancer patients as prime examples (10–13).
Currently, for childhood cancers and more specifically
norepinephrine transporter (NET) positive neuroblastoma
tumors, [123/131I]meta-iodobenzylguanidine ([123/131I]mIBG) is
the only available theranostic to date (14–16). Despite the proven
value of theranostics in adult oncology, its potential was
minimally explored for childhood cancer and is still at its
infant stage. However, many opportunities and applications
present themselves. In this review, we discuss different
strategies for theranostics development for childhood cancer
and divided these into (1) the existing theranostics and
improvement thereof, (2) theranostics developed for adult
oncology and translation thereof for childhood cancer, and (3)
the development of novel theranostics for specific pediatric
tumor targets. By describing the recent advances in
theranostics research we discuss how it can affect diagnosis
and therapy for childhood cancer in the future.
CURRENT THERANOSTICS IN PEDIATRIC
ONCOLOGY

[123/131I]mIBG is the only theranostic currently available for
routine clinical use to image and treat neuroblastoma tumors
that express the norepinephrine transporter (NET). mIBG is a
structural analog of the neurotransmitter norepinephrine and is
actively transported into the tumor by NET. Inside the cell,
mIBG is stored in the cytoplasm, mitochondria, and in vesicular
monoamine transporter (VMAT)-coated and neurosecretory
vesicles (17–21). [123I]mIBG SPECT imaging is currently the
standard of care to diagnose primary tumors and distant
metastases in neuroblastoma and for staging and disease
response evaluation after treatment. In total, approximately
95% of neuroblastoma tumors are [123I]MIBG avid. The
remaining 5% of tumors are either well-differentiated
Frontiers in Oncology | www.frontiersin.org 3
ganglioblastoma or very undifferentiated neuroblastoma with
little or no NET transporter expression. Although [123I]mIBG
SPECT has a high specificity and sensitivity, it also has
disadvantages being poor image resolution, long scanning
times, and iodine-driven thyroid toxicity. Accompanied by
imaging, [131I]mIBG initially showed therapeutic effectiveness
in bulky tumors (22). Subsequently, it was shown that [131I]
mIBG was feasible and effective in the first treatment of high-risk
neuroblastoma patients (23). However, two systematic reviews
failed to show a survival advantage for [131I]mIBG treated
patients (24, 25). In two studies [131I]mIBG was combined
with busulfan and melphalan followed by autologous stem cell
rescue. For both, acceptable toxicity in highly pretreated patients
and encouraging responses were observed. This has led to the
implementation of this combination for ultra-high-risk patients
who failed to respond adequately during induction treatment
for high-risk neuroblastoma. The current European SIOPEN
VERITAS study explores the role of [131I]mIBG in combination
with topotecan and stem cell rescue followed by another high-
dose consolidation with Buslfan and Melphalan and a second
stem cell rescue. The aim is to increase the survival of these ultra-
high-risk patients. In conclusion, [131I]mIBG treatment is still
under investigation and its definitive role has not been
determined. In addition to the discussion on therapeutic
response, patients receiving [131I]mIBG also suffer from iodine
uptake in the thyroid and increased risk for long-term thyroid
dysfunction or secundary thyroid cancer. Last, after [131I]mIBG
administration, patients need to live in isolation for 5–7 days and
strict precepts for 2–3 weeks. Despite the value of [123/131I]mIBG
as a theranostic, both imaging and therapy have serious
disadvantages and limitations that steer the research toward
novel approaches.

An 18F-labeled analog of [123I]mIBG, [18F]meta-
fluorobenzylguanidine ([18F]mFBG]) has long been proposed
as a possible PET alternative for the imaging of NET-positive
neuroblastoma tumors (26). The radionuclide 18F is a cyclotron
produced b+-emitter with a short range in vivo, resulting in a
high image quality. Furthermore, PET-CT (or PET-MRI) images
can be analyzed quantitatively for tracer distribution. 18F-labeled
radiopharmaceuticals are, therefore, ideal for high-resolution
diagnosis, faster acquisition, and low radiation burden. Until
recently, however, the production of [18F]mFBG has been
challenging. It requires a nucleophilic aromatic substitution of
an electron-rich molecule (27, 28). Recent advances and novel
radiofluorination reactions now give access to the production
and clinical translation of [18F]mFBG (1, 29).

Pandit-Taskar et al. reported the first clinical results with
[18F]mFBG, described a biodistribution and dosimetry study
in neuroblastoma patients, and compared the results with
[123I]mIBG. In all five neuroblastoma patients, [18F]mFBG
scored better than [123I]mIBG with respect to lesion counts,
improved image quality, and the absence of any thyroid uptake
(Figure 1B). These encouraging results gave rise to additional
and more extensive clinical testing of [18F]mFBG as an
alternative to [123I]mIBG as the current gold standard (Table
1) (30, 31).
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In addition to improved imaging, research is now focused on
the development of an improved alternative for [131I]mIBG
therapy. 131I is a b–-emitter with a t1/2 of 8.04 days.
Furthermore, when [131I]mIBG is metabolized and 131I is
released, it will accumulate in the thyroid. Therefore, the
thyroid is blocked as a preventive action by administration of
excess iodine to avoid undesired effects. As an alternative for 131I,
211At has been explored. 211At is an a-emitter with a t1/2 of 7.2 h
and a range of 0.005–0.11 mm in tissue. These physical
properties cause very strong cytotoxic and therapeutic effects.
Furthermore, 211At does not accumulate in the thyroid and
potentially will not cause any undesired damage (32, 33), As
211At has benefits over 131I, [211At]meta-astatobenzylguanidine
([211At]mABG) was reported as an alternative for [131I]mIBG for
the treatment of NET positive tumors. To date, [211At]mABG
has only been evaluated in preclinical models on PC12
xenografted mice (Table 1). [211At]mABG showed a dose-
dependent tumor regression and increased survival compared
to the control animals. It should, however, be noted that a high
dose of [211At]mABG caused the death of the animals. Therefore,
the toxicity profile and maximum tolerated dose of [211At]
mABG needs to be assessed and compared to [131I]mIBG. An
important additional note is the availability of 211At to produce
[211At]mABG, which may become a practical concern. 211At can
only be produced by high-energy cyclotrons, of which a few are
installed worldwide, and thereby the access is limited (34).
FROM ADULT ONCOLOGY TO PEDIATRIC
ONCOLOGY

Theranostics available in routine clinical care are a rich source of
potential theranostic candidates in pediatric oncology.
Frontiers in Oncology | www.frontiersin.org 4
The somatostatin receptor (SSTR) family is one of the first
discovered and most successful targets identified for which
theranostics were developed. To date, 5 subtypes of SSTR (i.e.,
SSTR-1, 2A, 3, 4, and 5) are characterized. In particular, SSTR-2A is
important with high expression levels for neuroendocrine tumors. It
is involved in secretion, proliferation, and the induction of apoptosis
(35). For pediatric cancers, SSTR-2A expression was reported
for neuroblastoma tumors by Alexander et al. as well as for
neuro-oncological malignancies (e.g., glioblastomas and
medulloblastomas) (36–38). Analogs of somatostatin, the natural
ligand of SSTR-2A, have successfully been developed to inhibit
neuroendocrine tumor growth. Radiolabeling of these compounds
led to the development of [68Ga]DOTATATE as a PET tracer and
received FDA approval in 2016 (Table 1). In 2018, [177Lu]
DOTATATE (Lutathera, AAA/Novartis) was approved as a
therapeutic agent to treat SSTR-2A positive tumors. As
DOTATATE is an SSTR-2A agonist, it stimulates the receptors,
potentially causing undesired tumor growth. To circumvent these
agonistic effects, the theranostics pair [68Ga]OPS202/[177Lu]OPS201
(Ipsen) was developed as an SSTR-2A antagonist and is currently in
Phase I/II trials (Table 1) (10, 11, 39, 40). Because SSTR-2A
expression was also validated for neuroblastomas and neuro-
oncological malignancies and with several theranostics available, a
straightforward translation to pediatric oncology is feasible. Small-
scale experimental pilot studies were reported for these pediatric
cancers with [68Ga]DOTATATE, and results are encouraging (41).
This warrants further clinical studies on imaging and treating SSTR-
2A positive pediatric cancers with these theranostics in the near
future (Figure 1C) (42).

Another theranostic candidate target that was extensively
explored in adult oncology is the C-X-C chemokine receptor 4
(CXCR4). The expression levels of CXCR4 and its natural ligand,
CXCL12, are correlated to tumor development and metastasis
TABLE 1 | Theranostics under preclinical development and in clinical trials for pediatric cancers.

Molecular Target Pediatric Cancer Theranostic Development Phase Pediatric Clinical Trial Number Refs

Norepinephrine Neuroblastoma [123/131I]mIBG, Routine Care Multiple Trials (14–16, 22–25, 78),

Transporter [18F]mFBG, Phase I/II NCT02348749 (29, 30)

[211At]mABG Preclinical (34)
Somatostatin Neuroblastoma [68Ga]DOTATATE, Phase I/II NCT04040088 (39–42),

Receptor 2A [177Lu]DOTATATE, Phase I/II

[68Ga]OPS202, Phase I/II

[177Lu]OPS201, Phase I/II

C-X-C Chemokine Neuroblastoma [68Ga]Pentixafor, Early Phase I (48, 50),

Receptor 4 Rhabdomyosarcoma [177Lu]Pentixather Early Phase I

Glioblastoma

ALL &AML

Fibroblast Glioblastoma [68Ga]FAPI, Phase I/II (56, 57),

Activation Protein [177Lu]FAPI Preclinical

Ganglioside D2 Neuroblastoma [89Zr]Dinutuximab, Preclinical (68–70)

Osteosarcoma [68Ga]WHWRLPS Preclinical

Glioblastoma

B7-H3 (CD276) Pontine Glioma [124/131I]8H9 Phase I/II NCT03275402/ (75, 76),

Neuroblastoma (omburtamab) NCT01502917/

NCT04022213
November 2020
 | Volume 10 | Article 57828
6

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Poot et al. Theranostics for Childhood Cancer
and were validated for breast cancer, prostate cancer, lung cancer,
colorectal cancer, and primary brain tumors (43). By
immunohistochemical staining, CXCR4 expression was also
demonstrated for neuroblastomas, rhabdomyosarcomas,
glioblastomas, and hematological malignancies (44–47). To date,
several CXCR4-targeting drugs are under (pre)clinical
development, e.g., Ulocuplumab, PRX177561, AMD3100, and
Plerixafor, which demonstrates that CXCR4 targeting is clinically
feasible and relevant. For theranostic development, the PET tracer
and cyclic-pentapeptide [68Ga]Pentixafor (Scintomics) is currently
the most advanced and under investigation in multiple Phase I
clinical trials (Table 1) (48). Labelingofpentixaforwith 177Luor 90Y
to obtain the therapeutic counterpart of the diagnostic led to a
stronglydecreased affinity for the target receptor.This affinity could
be restored after small molecular adaptations to the pentixafor
scaffold and resulted in the successful development of [177Lu]
Pentixather (Table 1) (43, 49, 50). [68Ga]Pentixafor and [177Lu]
Pentixather are candidates for clinical trials in pediatric patients as
well as CXCR4 is reported for these tumors.

A target that recently received much attention is the fibroblast
activation protein a (FAP) (51). FAP is a serine protease that is
selectively expressed in the stromal fibroblasts of the tumor,
which is often observed for breast cancer, colon cancer, and
pancreatic cancers (52). FAP expression is observed in
glioblastomas and can be a valuable theranostic target for
pediatric cancers. FAP-specific inhibitors (FAPI) have been
developed based on quinoline scaffolds. For diagnostic
purposes, promising results were obtain after radiolabeling
with 68Ga (53, 54). In particular, [68Ga]FAPI-04, -21, and -46
resulted in high-contrast images, and as a proof-of-concept, 28
different tumor types were visualized with [68Ga]FAPI-04 (55,
56). All FAPI compounds allow radiolabeling with 177Lu too to
obtain the corresponding therapeutic radiopharmaceutical.
Preclinical studies with [177Lu]FAPI-21 and -46 in tumor-
bearing mice gave promising results (Table 1) (57). As FAP is
also expressed by glioblastomas, these theranostics have potential
for the diagnosis and treatment of pediatric cancers.

Monoclonal antibodies (mAbs) and mAb-fragments had
unprecedented impact on the treatment of cancer patients.
However, clinical benefit is usually only achieved in a percentage
of the patient population. The application of 89Zr-labeled mAbs as
ImmunoPET tracers has become increasingly important to
visualize these compounds in vivo and assess the distribution,
kinetics, and the biochemical and physiological behaviour (4, 58).
Nowadays, more than 75 clinical trials are ongoing with 89Zr-
labeled mAbs and the radiolabeling can be achieved via generic
methods (59, 60). Despite the clinical impact of ImmunoPET with
[89Zr]mAbs for adult oncology and other indications, ImmunoPET
with available [89Zr]mAbs has barely been explored for pediatric
cancers. The only reported application of ImmunoPET was [89Zr]
bevacizumab in diffuse intrinsic pontine glioma to study vascular
endothelial growth factor (VEGF) excretion and the potential to
treat these patientswithbevacizumab (61).Though ImmunoPET in
pediatric cancer patients is not common, it should be anticipated
that this methodology can also have an impact for these patients in
the future.
Frontiers in Oncology | www.frontiersin.org 5
SPECIFIC THERANOSTIC TARGETS IN
PEDIATRIC ONCOLOGY

Pediatric cancers have a distinct biological profile with unique
molecular targets that are not expressed in adult cancers. These
targets embody unique opportunities for the diagnosis and
treatment of pediatric cancers, but due to small patient
populations, it remains a challenge to identify them and
develop theranostics against these targets.

A target of interest for theranostic development is ganglioside
D2 (GD2). GD2 is a glycosphingolipid and selective cellularmarker
that is expressed by neuroblastomas, osteosarcomas, and
glioblastomas (62, 63). Though its exact function is still not fully
understood, it is assumed that it plays a crucial role in cell adhesion,
migration, and tumormetastasis.Dinutuximab (Unituxin®, United
Therapeutics) is FDA approved, and Dinutuximab beta (Qarziba®,
EUSAPharma) isEMAapproved for the treatmentofGD2-positive
neuroblastoma tumors (64, 65). Despite increased survival rates
from 46% to 66%, for high-risk neuroblastoma patients, 30% of the
patients will relapse independent of the GD2 expression levels
(Table 1) (66). Several radiopharmaceuticals have been developed
to image GD2-positive tumors. 64Cu-labeled hu14.18K322A
showed clear accumulation and retention in preclinical
osteosarcoma models, and [89Zr]dinutuximab was mentioned as
a PET tracer in meeting abstracts (67–69). In addition to
radiolabeled mAbs, Müller et al. reported on the development of
[68Ga]DOTA- WHWRLPS heptapeptide and demonstrated its
accumulation in neuroblastoma xenografted mice (70). Though
encouraging, clinical translation of these radiopharmaceuticals has
yet to be achieved.

More recently, B7-H3 (CD276) has become a validated pediatric
cancer target for immunotherapy in pontine gliomas and
neuroblastomas (71, 72). To date, two mAbs were developed,
Enoblituzumab (MacroGenics) and Omburtamab (Y-mAbs), to
treat B7-H3 positive tumors (73, 74) Based on these
immunotherapeutics, attempts at the development of theranostics
are reported. Especially with 8H9 (i.e., Omburtamab) multiple
clinical trials are ongoing. The theranostics pair [124/131I]8H9 is
investigated for B7-H3 positive pontine glioma tumors and a
modest survival benefit was reported (Table 1) (75, 76). As
specific brain tumors (e.g., gliomas) express B7-H3, it is
important that passage and delivery of the radiopharmaceutical
across the blood–brain barrier is achieved. As such, radiolabeled
[124/131I]Omburtamab is ideal to investigate drug targeting in these
patients. As B7-H3 is acknowledged as a pan-tumor target,
theranostics targeting B7-H3 might become of general importance
for childhood cancer.
CONSIDERATIONS AND REQUIREMENTS
FOR NUCLEAR MEDICINE IN CHILDHOOD
CANCER

The application of theranostics for the diagnosis and treatment
of childhood cancers is in its infancy. With the availability of
November 2020 | Volume 10 | Article 578286
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radiopharmaceuticals and theranostics for the various adult
cancers, there is a lot of potential to translate and directly
apply these for childhood cancers. Clinically available SPECT/
PET tracers and therapeutic radiopharmaceuticals can directly
be applied for pediatric cancers when the target is present and
validated for the respective tumor type. Examples include SSTR-
2A, CXCR4, and FAP-positive tumors. As childhood cancers
have unique target expression profiles, with GD2 and B7-H3 as
examples, novel theranostics can be developed for these yet
unexplored targets. Unique target-finding programs are in
place to unveil novel childhood cancer-specific biological
features for which theranostics can be developed. A critical
note and challenge is that target expression of cancers in
general cannot always be directly correlated to positive imaging
and treatment results. Preclinical research programs are,
therefore, required to validate target expression and the
potential of the target against which to developed theranostics.

A successfully developed theranostic that shows potential in
preclinical studies warrants clinical translation. To achieve that,
the theranostic needs to be produced under GMP to guarantee
product quality and patient safety (77). Clinical translation of
developed theranostics is relatively straightforward as procedures
and GMP production facilities are widely available.
Frontiers in Oncology | www.frontiersin.org 6
CONCLUSION

Theranostics have unprecedented value to diagnose and treat
cancers. Many novel theranostics are under development and
expected to enter clinical trials and care in the near future. For
the diagnosis and treatment of childhood cancers, theranostics
research is still in its infancy, but following the path of adult
oncology, its value is promising. They are expected to become
additional and valuable tools to diagnose and treat
childhood cancers.
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60. HeskampS,RaavéR,BoermanO,RijpkemaM,GoncalvesV,Denat F. 89Zr-Immuno-
Positron Emission Tomography in Oncology: State-of-the-Art 89Zr Radiochemistry.
Bioconjug Chem (2017) 28:2211–23. doi: 10.1021/acs.bioconjchem.7b00325

61. 89Zr, Zirconium-89 (2020). Available at: www.clinicaltrials.gov (Accessed
June 8, 2020).

62. Jansen MH, Veldhuijzen van Zanten SEM, Van Vuurden DG, Huisman MC,
Vugts DJ, Hoekstra O, et al. Molecular Drug Imaging: 89Zr-Bevacizumab PET
in Children with Diffuse Intrinsic Pontine Glioma. J Nucl Med (2017) 58:711–
6. doi: 10.2967/jnumed.116.180216

63. Sait S, Modak S. Anti-GD2 immunotherapy for neuroblastoma. Expert Rev
Anticanc (2017) 17:889–904. doi: 10.1080/14737140.2017.1364995

64. Hung J-T, Yu A. Chapter-4: GD2-targeted immunotherapy of neuroblastoma.
In: Neuroblastoma, Molecular Mechanisms and Therapeutic Interventions.
Cambridge, United States: Academic Press (2019). p. 63–78. doi: 10.1016/
B978-0-12-812005-7.00004-7

65. Hoy S. Dinutuximab, a review in high-risk neuroblastoma. Target Oncol
(2016) 11:247–53. doi: 10.1007/s11523-016-0420-2

66. Yu AL, Gilman AL, OzkaynakMF, LondonWB, Kreissman SG, Chen HX, et al.
Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for
neuroblastoma.NEngl JMed (2010) 363:1324–34. doi: 10.1056/NEJMoa0911123

67. Terzic T, Cordeau M, Herblot S, Teira P, Cournoyer S, Beaunoyer M, et al.
Expression of Disialoganglioside (GD2) in Neuroblastic Tumors: A
Prognostic Value for Patients Treated With Anti-GD2 Immunotherapy. Ped
Dev Path (2018) 21:355–62. doi: 10.1177/1093526617723972

68. Butch ER, Mead PE, Diaz VA, Tillman H, Stewart E, Mishra JK, et al. Positron
Emission Tomography Detects In Vivo Expression of Disialoganglioside GD2
in Mouse Models of Primary and Metastatic Osteosarcoma. Cancer Res (2019)
79:3112–24. doi: 10.1158/0008-5472.CAN-18-3340

69. Butch E, Mishra J, Diaz VA, Vavere A, Snyder S. Selective detection of GD2-
positive pediatric solid tumors using 89Zr-Dinutuximab PET to facilitate anti-
GD2 immunotherapy. J Nucl Med (2018) 59:suppl 1–170.
Frontiers in Oncology | www.frontiersin.org 8
70. Müller J, Reichel R, Vogt S, Sauerwein W, Brandau W, Eggert A, et al.
Identification and Tumour-Binding Properties of a Peptide with High Affinity
to the Disialoganglioside GD2. PloS One (2016) 11:e0163648. doi: 10.1371/
journal.pone.0163648

71. Castellanos JR, Purvis IJ, Labak CM, Guda MR, Tsung AJ, Velpula KK, et al.
B7-H3 role in the immune landscape of cancer. Am J Clin Exp Immunol
(2017) 6:66–75.

72. Flem-Karlsen K, Fodstad O, Tan M, Nunes-Xavier CE. B7-H3 in Cancer –
Beyond Immune Regulation. Trends Cancer (2018) 4:401–4. doi: 10.1016/
j.trecan.2018.03.010

73. Powderly J, Cote G, Flaherty K, Szmulewitz RZ, Ribas A, Weber J, et al.
Interim results of an ongoing Phase I, dose escalation study of MGA271 (Fc-
optimized humanized anti-B7-H3 monoclonal antibody) in patients with
refractory B7-H3-expressing neoplasms or neoplasms whose vasculature
expresses B7-H3. J Immunother Cancer (2015) 3:Suppl 2-O8. doi: 10.1186/
2051-1426-3-S2-O8

74. Modak S, Kramer K, Gultekin SH, Guo HF, Cheung N-KV. Monoclonal
Antibody 8H9 Targets a Novel Cell Surface Antigen Expressed by a Wide
Spectrum of Human Solid Tumors. Cancer Res (2001) 61:4048–54.

75. Kramer K, Kushner BH, Modak S, Pandit-Taskar N, Smith-Jones P,
Zanzonico P, et al. Compartmental intrathecal radioimmunotherapy: results
for treatment for metastatic CNS neuroblastoma. J Neurooncol (2010) 97:409–
18. doi: 10.1007/s11060-009-0038-7

76. Luther N, Zhou Z, Zanzonico P, Cheung NK, Humm J, Edgar MA, et al. The
potential of theragnostic ¹²3I-8H9 convection-enhanced delivery in diffuse
intrinsic pontine glioma. Neuro Oncol (2014) 6:800–6. doi: 10.1093/neuonc/
not298

77. European Pharmacopoea 10th edition (2020). Available at: https://www.edqm.
eu/en/european-pharmacopoeia-ph-eur-10th-edition (Accessed June 8,
2020).

78. Weiss B, Vora A,Huberty J, Hawkins RA,Matthay KK. Secondarymyelodysplastic
syndrome and leukemia following 131I-metaiodobenzylguanidine therapy for
relapsed neuroblastoma. J Pediatr Hematol Oncol (2003) 7:543–7. doi: 10.1097/
00043426-200307000-00009

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Poot, Lam and van Noesel. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication in
this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.
November 2020 | Volume 10 | Article 578286

https://doi.org/10.2967/jnumed.118.215913
https://doi.org/10.2967/jnumed.118.215913
https://doi.org/10.2967/jnumed.119.227967
https://doi.org/10.2967/jnumed.118.224469
https://doi.org/10.2967/jnumed.118.224469
https://doi.org/10.3389/fphar.2016.00131
https://doi.org/10.1021/acs.bioconjchem.7b00325
http://www.clinicaltrials.gov
https://doi.org/10.2967/jnumed.116.180216
https://doi.org/10.1080/14737140.2017.1364995
https://doi.org/10.1016/B978-0-12-812005-7.00004-7
https://doi.org/10.1016/B978-0-12-812005-7.00004-7
https://doi.org/10.1007/s11523-016-0420-2
https://doi.org/10.1056/NEJMoa0911123
https://doi.org/10.1177/1093526617723972
https://doi.org/10.1158/0008-5472.CAN-18-3340
https://doi.org/10.1371/journal.pone.0163648
https://doi.org/10.1371/journal.pone.0163648
https://doi.org/10.1016/j.trecan.2018.03.010
https://doi.org/10.1016/j.trecan.2018.03.010
https://doi.org/10.1186/2051-1426-3-S2-O8
https://doi.org/10.1186/2051-1426-3-S2-O8
https://doi.org/10.1007/s11060-009-0038-7
https://doi.org/10.1093/neuonc/not298
https://doi.org/10.1093/neuonc/not298
https://www.edqm.eu/en/european-pharmacopoeia-ph-eur-10th-edition
https://www.edqm.eu/en/european-pharmacopoeia-ph-eur-10th-edition
https://doi.org/10.1097/00043426-200307000-00009
https://doi.org/10.1097/00043426-200307000-00009
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	The Current Status and Future Potential of Theranostics to Diagnose and Treat Childhood Cancer
	Introduction
	Current Theranostics in Pediatric Oncology
	From Adult Oncology to Pediatric Oncology
	Specific Theranostic Targets in Pediatric Oncology
	Considerations and Requirements for Nuclear Medicine in Childhood Cancer
	Conclusion
	Author Contributions
	Funding 
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


