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Background: Metabolic reprogramming is the core characteristic of tumors during the

development of tumors, and cancer cells can rely on metabolic changes to support their

rapid growth. Nevertheless, an overall analysis of metabolic markers in acute myeloid

leukemia (AML) is absent and urgently needed.

Methods: Within this work, genetic expression, mutation data and clinical data of

AML were queried from Genotype-Tissue Expression (GTEx) database, The Cancer

Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database. The

tumor samples of TCGA were randomly divided into a training group (64 samples) and

an internal validation group (64 samples) at one time, and the tumor samples of GEO

served as two external validation groups (99 samples, 374 samples). According to the

expression levels of survival-associated metabolic genes, we divided all TCGA tumor

samples into high, medium and low metabolism groups, and evaluated the immune cell

activity in the tumor microenvironment of the three metabolism groups by single-sample

gene set enrichment analysis (ssGSEA) algorithm. Finally, we examined the mutations

and prognostic effects of each model gene.

Results: Four metabolism-related genes were screened and applied to construct a

prognostic model for AML, giving excellent results. As for the area under the curve

(AUC) value of receiver operating characteristic (ROC) curve, the training group was up to

0.902 (1-year), 0.81 (3-year), and 0.877 (5-year); and the internal and external validation

groups also met the expected standards, showing high potency in predicting patient

outcome. Univariate and multivariate prognostic analyses indicated that the riskScore

obtained from our prognostic model was an independent prognostic factor. ssGSEA

analysis revealed the high metabolism group had higher immune activity. Single and

multiple gene survival analysis validated that each model gene had significant effects

on the overall survival of AML patients.

Conclusions: In our study, a high-efficiency prognostic prediction model was built and

validated for AML patients. The results showed that metabolism-related genes could

become potential prognostic biomarkers for AML.
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INTRODUCTION

AML is a malignant disease of myeloid hematopoietic
stem/progenitor cells, which is mainly characterized by
primitive and immature myeloid cell dysplasia in the bone
marrow and peripheral blood. Its clinical manifestations are
anemia, hemorrhage, infection and fever, organ infiltration and
metabolic abnormality, etc. In most cases, the condition is urgent
and severe, and the prognosis is poor, which may endanger
life if not treated in time (1). Chemotherapy, targeted drugs
and hematopoietic stem cell transplantation are still the main
approaches for AML treatment. Among them, even the most
ideal treatment methods such as intensive chemotherapy and
allogeneic hematopoietic stem cell (HSC) transplantation, the
cure rate is relatively low (2). Therefore, it is urgent to explore
new and accurate biomarkers to evaluate the diagnosis and
prognosis of AML patients.

More and more evidences show that the metabolic pattern
of cell carcinogenesis has changed significantly, which
involves many aspects such as glycolysis, TCA cycle, oxidative
phosphorylation, amino acid metabolism, fatty acid metabolism
and nucleic acid metabolism (3). This phenomenon is known
as the metabolic reprogramming of tumor cells (4). Metabolic
reprogramming is one of the important hallmarks of tumors. The
rapidly proliferating tumor cells take high rate glycolysis as the
primary energy supply method to promote the adaptation to the
stress environment such as hypoxia and increase the malignant
potential of tumors (5). Thus, metabolic reprogramming can be
further used to diagnose, monitor and treat cancer. In recent
years, new metabolic inhibitors have been developed for the
clinical treatment of cancer (6–9).

Metabolic reprogramming also has a significant impact on the
progression, treatment and prognosis of AML (10, 11). More
precisely, there are abnormalities in the metabolic processes
of AML such as glycolysis, amino acid metabolism, fatty acid
metabolism, epigenetic modification and autophagy pathway
(12). In addition, metabolic abnormalities may promote the
immune escape of AML, resulting in immunotherapy limitations
(13). A series of novel drugs targeting the metabolic processes of
AML have been developed and studied in preclinical and clinical
trials (14–16).

The popular idea is that metabolism regulates the strength of
the immune system (17). An important study found that arginine
metabolism in AML inhibited T cell proliferation, becoming a
potential therapeutic target (18). However, a proteomic analysis
showed that lipid metabolism increased the melanoma sensitivity
to T-cell-mediated killing by promoting antigen presentation
(19). Similarly, in melanoma and breast tumors, the treatment
targeting pyruvate metabolic reprogramming increased the

Abbreviations: AML, Acute myeloid leukemia; GTEx, Genotype-Tissue

Expression; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus;

GSEA, Gene set enrichment analysis; ssGSEA, single-sample gene set enrichment

analysis; AUC, Area under the curve; ROC, Receiver operating characteristic; HSC,

Hematopoietic stem cell; TME, Tumor microenvironment; UCSC, University of

California Santa Cruz; LASSO, Least absolute shrinkage and selection operator;

GO, Gene ontology; KEGG, Kyoto encyclopedia of genes and genomes; GEPIA,

Gene Expression Profiling Interactive Analysis.

immune cells infiltration by reducing the lactic acid production
and neutralizing the tumor acidity, and finally played a significant
role in inhibiting tumor growth (20). Relevant metabolic
reprogramming agents, such as leptin, which provides metabolic
support for tumor immunity, are also being developed (21).
Thus, for tumor microenvironment (TME), different metabolic
pathways have different effects on immune cell adaptability and
effector function. Overall, the association between the metabolic
state of AML and immune response may be the basis for
improving the immunotherapy response in the future, with broad
exploration space and application prospects.

We used a variety of bioinformatics analysis methods to
explore metabolism-related prognostic factors in AML. COX
regression analysis helped us screen out significant prognostic
markers for further study. The metabolic prognostic model
constructed by the training group showed excellent predictive
performance after the double validation and the model gene
survival analysis. These results provide a basic direction for
further exploration of the molecular mechanism and diagnostic
markers of AML.

METHODS

Data Acquisition and Differential Analysis
GTEx database contains healthy human samples of 42 tissue
types, covering almost all the transcriptional genes (22). TCGA
database stores a large amount of genomic data and clinical

TABLE 1 | Clinical characteristics of AML patients in the TCGA database.

Characteristics Total %

All 171 100.00

Age (y) ≥60 73 42.69

<60 98 57.31

Gender Male 92 53.80

Female 79 46.20

FAB category M0 14 8.19

M1 36 21.05

M2 38 22.22

M3 18 10.53

M4 40 23.39

M5 18 10.53

M6 3 1.75

M7 3 1.75

Not classified 1 0.58

Cytogenetic risk category Favorable 35 20.47

Intermediate 100 58.48

Poor 33 19.30

Unknow 3 1.75

Immunophenotype CD33+ 124 82.1

CD34+ 99 65.6

CD117+ 134 88.7

Mutation DNMT3A 18 12.6

FLT3 45 30.6

NPM1 33 22.0

RAS 8 5.3

IDH1 26 17.2
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data, which provides a basis for the exploration of meaningful
genomic changes and biological mechanisms affecting tumor
initiation, development, differentiation and metastasis (23).
In order to unify standards, we downloaded the GTEx gene
expression dataset (GTEX_RSEM_gene_fpkm), the GTEx
sample information file (GTEX_phenotype), the TCGA-LAML
gene expression dataset (TCGA-LAML.htseq_fpkm) and the
TCGA-LAML sample information file (TCGA-LAML.survival)
from the University of California Santa Cruz (UCSC) genome
database (24). We also retrieved AML probe matrix files
(GSE71014_series_matrix, GSE37642_series_matrix) and
platform files (GPL10558-50081, GPL96-57554) from the GEO

database (25). Metabolism-related genes were obtained from the
Gene Set Enrichment Analysis (GSEA) website (26). In addition,
the AML mutation data (TCGA.LAML.varscan.e595f93d-41ac-
435e-8c90-06df7e9d6742.DR-10.0.somatic) was also downloaded
from TCGA website. All AML samples from the TCGA and
GEO databases were bone marrow samples from patients with
initial diagnosis.

All AML gene expression data from TCGA and GEO
databases had been processed by log2(x+1) and genes with
expression values close to 0 were deleted to exclude the influence
of extreme values or outliers. Then, we extracted the gene
expression data of normal blood samples (337 samples) from

FIGURE 1 | Volcano plot and heatmap of differential metabolic genes. (A) Volcano plot. Black dots, green dots and red dots represent undifferentiated genes,

down-regulated genes in the tumor group and up-regulated genes in the tumor group, respectively. (B) Heatmap. The blue type represents the normal samples

and the red type represents the tumor samples. Green color, black color and red color in the main body correspond to low expression, medium expression and

high expression.
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the GTEx gene expression dataset, and the gene expression data
of AML samples (151 samples) from the TCGA-LAML gene
expression dataset. These two gene expression data were merged,
using the limma package (27) for standardized processing, and
the expression of metabolic genes (945 genes) was extracted
simultaneously to facilitate subsequent analysis. We intersected
the metabolic genes of GEO and TCGA, correcting the batch
effect with the sva package (28). We used the Wilcox test
to analyze the difference between the normal group and
the tumor group, screening differential metabolic genes (275
genes) according to FDR <0.05 and | logFC | >0.5, and
drawing differential heatmap (pheatmap R package) and volcano
plot finally.

Construction of Prognostic Model and
Survival Analysis
After combining the expression of differential metabolic genes
with survival time, we divided TCGA samples (128 samples)

randomly at one time into a training group (64 samples) and an
internal validation group (64 samples), with the GEO samples
as two external validation groups (99 samples, 374 samples).
For the training group, univariate COX analysis (P < 0.01)
found survival-associated metabolic genes (12 genes), and the
least absolute shrinkage and selection operator (LASSO) (29)
removed the high correlation genes to prevent the over-fitting
of the model by using the R package glmnet (8 genes). Finally,
stepwise multivariate Cox regression analysis was performed to

TABLE 2 | Multivariate COX regression analysis results of model genes.

Id Coef HR HR.95L HR.95H P value

PLA2G4A 0.588468436 1.801227607 1.30398577 2.488079983 0.000356501

HMOX2 1.333908151 3.795849187 1.692436314 8.513449476 0.001209189

AK1 3.500312611 33.12580585 4.336098654 253.0659703 0.000740836

SMPD3 1.162351687 3.197443829 1.529613372 6.683811234 0.00200342

FIGURE 2 | Construction of the prognostic model based on LASSO algorithm. (A,B) Figure (B) shows the Log Lambda value corresponding to the minimum

cross-validation error point. And the metabolic genes with non-zero coefficient corresponding to the same Log Lambda value were selected in the (A) for subsequent

model construction. (C) The forest map visually shows HR values and 95% confidence intervals for all model genes. HR <1 indicates that this gene is a low-risk gene;

otherwise, it is a high-risk gene. P < 0.05 indicates that this gene is an independent prognostic factor.
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construct the optimal prognostic model (4 genes). Meanwhile,
in the SPSS 26 version software, we used Schoenfeld residuals to
carry out the PH assumption test on model genes, and also drew
a plot of the Schoenfeld Residuals against the transformed time
for each model gene to ensure the assumptions of proportional
hazards is met.

The patient riskScores of the training and validation groups
were calculated according to the constructed prognostic model
formula. With the median riskScore of the training group as the
threshold, we divided the patients in the training and validation
groups into a high-risk group and low-risk group, plotting the
survival curve (survival R package), ROC curve (survivalROC R
package) and risk curve of the training and validation groups,
respectively. Finally, univariate and multivariate prognostic
analyses were performed for the training group (P < 0.05) to
judge whether the riskScore obtained from the model could be
an independent prognostic factor.

ssGSEA Analysis and Mutation Data
Visualization
We conducted ssGSEA analysis using GSVA package (30) to
obtain the immune activity of 29 immune-related genesets in
TCGA-AML samples, and the correction results were between
0 and 1. According to the expression of survival-associated
metabolic genes (P < 0.05), hclust function was applied to
cluster TCGA-AML samples, generating high, medium and low
metabolism groups. Based on the correlation analysis using

ESTIMATE algorithm between metabolism groups and tumor
microenvironment, the heat map (pheatmap R package) and
violin plots (ggpubr R package) of tumor microenvironment
were drawn. The survival curves of the three metabolism groups
were plotted after survival analysis. We performed the GSEA
enrichment analysis using the org.Hs.eg.db R package between
the high and low metabolism groups, drawing the top 5 Gene
Ontology (GO) terms and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways, respectively, that were enriched
most significantly in the high metabolism group (P < 0.05).

Themaftools package (31) helped to visualize the TCGA-AML
mutation data, drawing waterfall plots of the high, medium and
low metabolism groups, respectively.

Mutation Status and Multiple Validations of
Model Genes
We entered the cBioportal website (32) and selected the study
(Acute Myeloid Leukemia TCGA PanCancer data) to download
the mutation status of model genes.

To validate the expression differences of model genes, the
differences of model genes were analyzed between the high-
risk group (69 samples) and the low-risk group (59 samples) of
TCGA-AML, with the boxplots of each model gene plotted using
the ggpubr package.

In order to validate the prognostic effect of model genes, Gene
Expression Profiling Interactive Analysis (GEPIA) website (33)
was used to conduct a single gene survival analysis for eachmodel

FIGURE 3 | (A–D) The plots of the Schoenfeld Residuals against the transformed time for model genes. According to the variation trend of the smooth curve and

statistical analysis, it can be determined that there is no correlation between the partial residuals of four model genes and time rank (P > 0.05), suggesting that all

model genes meet the assumptions of proportional hazards and suitable for Cox regression analysis.
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gene firstly, in which Cutoff-High was 70% and Cutoff-Low
was 30%; Next, we applied the PROGgeneV2 online tool (34)
and selected the TCGA–AML dataset to conduct multiple gene
survival analysis for all model genes.

Statistical Analyses
All statistical analyses were conducted by using R software
(version 3.6.3) unless otherwise stated. Univariate and
multivariate Cox regression analyses were conducted to
investigate the prognostic value of AML-related metabolic

signature. All statistical results with a P < 0.05 were
considered significant.

RESULTS

Metabolic Genes Differentially Expressed Between

Normal and Tumor Samples
As described in the methods section, we downloaded AML
clinical information (Table 1, Supplementary File 1) and

FIGURE 4 | Survival curves and ROC curves for the training, internal validation and external validation groups. For the survival curves, survival rates decrease over

time in both the high and low risk groups. P < 0.05 indicates survival differences between the high and low risk groups. For ROC curves, AUC > 0.9 suggests that

the accuracy of the model is very high; The AUC value is between 0.7 and 0.9, indicating that the model has a certain accuracy. The AUC value is between 0.5 and

0.7, showing the accuracy of the model is general. (A) Training group. (B) Internal validation group. (C) External validation group GSE71014. (D) External validation

group GSE37642.
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FIGURE 5 | Risk score curves, survival status figures and risk heatmaps for the training, internal validation and external validation groups. The upper part of each

subfigure represents the risk score curve (low risk patients are represented by green dots, high risk patients by red dots, and dash lines correspond to the median

riskScore of training group). The middle section represents the distribution of survival status and survival time of patients ranked by riskScore (more green dots on

the left for low-risk patients, and more red dots on the right for high-risk patients. From left to right, with the increase of the riskScore, more and more patients died,

indicating that the riskScore is related to survival). The bottom heatmap displays the expressing pattern of the metabolic genes (the color transition from green to red

indicates that the expressing level of the corresponding metabolic gene increases from low to high). (A) Training group. (B) Internal validation group. (C) External

validation group GSE71014. (D) External validation group GSE37642.
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corrected AML gene expression data from the public platforms,
and analyzed the differences between normal and tumor samples
by Wilcox test, screening 275 differentially expressed metabolic
genes by FDR <0.05 and | logFC | >0.5 (Supplementary File 2)
and drawing differential heatmap and volcano plot finally. The
volcano plot shows the differences distribution in the expression
levels of metabolic genes between normal and tumor samples
on the whole (Figure 1A). The heatmap depicts expression
changes of each metabolic gene between normal and tumor
samples (Figure 1B).

The Constructed Prognostic Model and Survival

Analysis
The training group (Supplementary File 3), the TCGA internal
validation group (Supplementary File 4) and the GEO external
validation groups (Supplementary Files 5, 6) were generated
from one-time random grouping. After univariate COX analysis
(P < 0.01) for the training group (Supplementary File 7),
we put the 12 survival-related metabolic genes obtained
into the LASSO algorithm (Figures 2A,B). After the stepwise
multivariate Cox regression analysis, four metabolic genes
realized the prognostic model construction finally. The final
model formula is that each patient’s riskScore= 0.588∗PLA2G4A
+ 1.334∗HMOX2 + 3.500∗AK1 + 1.162∗SMPD3 (Figure 2C,
Table 2). All model genes are high-risk genes and independent
prognostic factors, and alsomeet the assumptions of proportional
hazards (Figure 3).

After calculating all patients’ riskScores, we divided the
patients in the training and validation groups into the high
and low risk groups (Supplementary Files 8–11) for subsequent
survival analysis. For the training group, the internal validation
group and the external validation groups, the survival curves
between the high and low risk groups have significant differences,
and the survival rate of the low risk group is significantly
higher than that of the high risk group. According to the AUC
values of ROC curves, the accuracy of the prognostic model
constructed by us is very high (Figure 4). Similarly, the risk
curves make a good distinction between the high and low
risk groups on the whole. For the upper risk score curves,
the patient’s riskScore increases from left to right. The middle
survival status figures present the survival time decline and the
mortality enhancement as the patients’ riskScores increase. In the
bottom risk heatmaps, each model gene expression increases as
the patient’s riskScore increases, indicating that all model genes
are high-risk (Figure 5). Finally, univariate and multivariate
prognostic analyses (P < 0.05) prove that the riskScore obtained
from the model is an independent prognostic factor (Figure 6).

ssGSEA Analysis and Mutation Data Visualization
TCGA-AML samples were clustered to produce high,
medium and low metabolism groups (Figure 7A,
Supplementary File 12). The survival analysis reveals that
there are significant differences among the three metabolism
groups, and the lower the metabolic activity is, the longer
the survival time is (Figure 7B). By analyzing the correlation
between metabolism groups and tumor microenvironment,
we plotted the heatmap (Figure 8A) and the violin plots

FIGURE 6 | Univariate and multivariate prognostic analyses of clinical

parameters and riskScore in TCGA-AML. (A) Univariate prognostic analyses.

For a clinical parameter or riskScore, if the P < 0.05, it is related to survival; if

HR >1, it is a high-risk factor. (B) Multivariate prognostic analyses. For the

results of univariate and multivariate independent prognostic analysis, if the

riskScore P-value of both is < 0.05, it indicates that riskScore is independent

of other clinical parameters and can be used as an independent prognostic

factor in clinical practice.

(Figures 8B–E) of the tumor microenvironment. In summary,
metabolic activity is positively correlated with StromalScore,
ImmuneScore, and ESTIMATEScore, and negatively correlated
with TumorPurity. GSEA enrichment analysis was carried out
between high and low metabolism groups, obtaining the top
5 GO terms (Figure 9A) and KEGG pathways (Figure 9B)
with most significant enrichment in high metabolism group
(P < 0.05). These GO terms and KEGG pathways are primarily
associated with immunity and metabolism.

By visualizing the TCGA-AML mutation data, the waterfall
plots of the high, medium and low metabolism groups generated
(Figures 10A–C). It can be seen that there is no significant
correlation between metabolic activity and total mutation
frequency. The mutation frequency of NPM1 and DNMT3A
are the highest among the three metabolism groups. Among
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FIGURE 7 | Clustering results of TCGA-AML samples. (A) Clustering heatmap. In the main body of the figure, red color represents the high expression of metabolic

genes, and blue color represents the low expression of metabolic genes. Cluster1 is mainly red, that is, the metabolic genes are highly expressed, so it is a high

metabolism group. Cluster2 has both red and blue colors, so it is a medium metabolism group. Cluster3 is mainly blue, that is, the metabolic genes are low

expressed, so it is a low metabolism group. (B) Survival curve. P < 0.05 indicates that there is a difference in survival among the three groups.

them, NPM1 mutation is mainly frameshift insert mutation, and
DNMT3A mutation is mostly missense mutation.

Mutation Status and Multiple Validations of Model

Genes
The general picture of genetic alteration (Figure 11A) and the
domain mutation diagrams (Figures 11B–E) of the model genes
were downloaded from the cBioportal website. The mutation
frequencies of these model genes are very low, and the mutations
hardly affect the functional change of the structural domains.

In order to validate the expression differences of model genes
between the high-risk group and the low-risk group, boxplots
of model genes were drawn (Figure 12). All model genes are
significantly highly expressed in the high-risk group, which to
some extent supports the previous conclusion that all model
genes are high-risk genes.

Single-gene survival analysis again validates that each model
gene is a high-risk gene and has a significant impact on the
prognosis of AML patients (Figures 13A–D). Furthermore, the
multiple gene survival analysis combining all model genes
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FIGURE 8 | Heatmap and violin plot of tumor microenvironment. (A) Heatmap. The x-coordinate represents the sample names, and the y-coordinate represents the

immune genesets. The upper part is the tumor microenvironment score, in which StromalScore is the stromal cell score (The color is lighter from left to right, the lower

the score, the lower the stromal cell content. That is, with the decrease of metabolic activity, the content of stromal cells decreases), and ImmuneScore is the immune

cell score (The color is lighter from left to right, the lower the score, the lower the immune cell content. That is, with the decrease of metabolic activity, the content of

immune cells decreases), and ESTIMATEScore is the combined score of stromal cells and immune cells (The color is lighter from left to right, the lower the score, the

lower the total content of stromal cells and immune cells. That is, with the decrease of metabolic activity, the total content of stromal cells and immune cells

decreases). The higher ESTIMATEScore is, the lower TumorPurity is (The color is darker from left to right, the higher the score, the higher the tumor purity. That is, with

the decrease of metabolic activity, the tumor purity increases). (B–E) Violin plot. With the increase of metabolic activity, the change trend of various tumor

microenvironmental parameters can be seen. P < 0.001, *** P < 0.01, ** P < 0.05, * P >0.05, ns.

successfully validates the accuracy and effectiveness of the
prognostic model we constructed (Figure 13E).

DISCUSSION

The exploration of metabolic prognostic effects has broadened
our horizon and our understanding of traditional transcriptome
molecular biomarkers. In this study, we adopted a variety of
bioinformatics methods to mine prognosis-related metabolic
genes by integrating the metabolic characteristics and clinical
information of AML patients, and constructed an accurate and
efficient metabolic prognosis model with internal and external
validations. Furthermore, the association between metabolism

and immunity in AML was also explored, as well as the mutation
situation. Finally, multiple validations of the model genes further
improved the rigor of our study.

Current diagnosis and treatment of AML rely on
histopathological diagnosis and clear classification. With
the application of second-generation sequencing and other
technologies, AML has more and more molecular targets, which
has led to the rapid development of targeted drugs, such as some
small molecular targeted drugs, immune-targeted drugs and
all kinds of cutting-edge new drugs in clinical research, so the
choice of treatment has become more diversified. Therefore,
potential biomarkers can be mined and used to predict patient
outcomes and develop new treatment strategies.
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FIGURE 9 | GO and KEGG enrichment results. (A) GO enrichment result. At the bottom, the genes are ranked by their logFC values (the closer to the left, the

higher the logFC value; the closer to the right, the smaller the logFC value). In the middle section, each color represents the gene on the corresponding GO term. In

the upper section, the highest score of each GO term is the GO enrichment score. These GO terms are the top 5 GO terms with the most significant enrichment in the

high metabolism group. (B) KEGG enrichment result. At the bottom, the genes are ranked by their logFC values (the closer to the left, the higher the logFC value; the

closer to the right, the smaller the logFC value). In the middle section, each color represents the gene on the corresponding KEGG pathway. In the upper section, the

highest score of each KEGG pathway is the KEGG enrichment score. These KEGG pathways are the top 5 KEGG pathways with the most significant enrichment in

the high metabolism group.
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FIGURE 10 | Waterfall plots, visualizing the top 30 mutation genes. The ordinate is the gene name, and the abscissa is the sample name. If the gene is not mutated in

the sample, it is shown in gray. If the gene mutates in the sample, it is shown in other colors (different colors represent different mutation types). On the right, the

number of samples in which the gene is mutated is counted. At the top, the number of mutations in the sample is counted. (A) High metabolism group. (B) Medium

metabolism group. (C) Low metabolism group.

FIGURE 11 | Mutations in model genes. (A) The general picture of genetic alteration (mutation and copy number variation). One rectangle represents a sample. The

gray rectangle represents no alteration in the sample, and the other colors represent alterations in the sample (different colors represent different alteration types). On

the left, the alteration frequency of each gene in all samples is counted. (B–E) Mutation patterns in gene domains. The x-coordinate represents the number of amino

acid bases, and the y-coordinate represents the number of mutant samples. Different colors represent different domains.

The next-generation sequencing technology developed in
recent years employs the whole genome sequencing method,
which brings great advantages to multi-group data mining.
Prior to this, some studies performed metabolic analysis for
some types of cancer and constructed prognostic signatures
for cancer prognosis monitoring, including clear cell renal cell
carcinoma (35), endometrial adenocarcinoma (36) and glioma
(37). This computational bioinformatics analysis can open
different perspectives on the clinical application and potential
pathological mechanisms of metabolic biomarkers at the macro
level. A number of previous studies have proposed transcriptome
signatures associated with the prognosis of AML through
bioinformatics analysis (38–40). Our study further explored
metabolic biomarkers as prognostic predictors and broadened
our understanding of the transcriptome clinical significance.

Multiple validations can basically determine that the
metabolic model genes we have found are high-risk genes and

independent prognostic factors. A recent paper shows that
bioinformatic analysis identifies that PLA2G4A has physical
interactions with several oncogenic proteins (such as RUVBL2,
CAP1, STAT3, and MYCBP) in AML, resulting in multiple
effects on the malignant phenotype of AML cells (41). Also,
another recent paper reports that AK1 is an independent adverse
prognostic factor for AML patients receiving chemotherapy, and
patients with high AK1 expression may be recommended for
early Allo-HSCT (42). Current studies on the roles of HMOX2
and SMPD3 in AML are largely blank, but they play important
roles in other cancers (43, 44), so more preliminary single-gene
bioinformatics analyses are needed. Based on previous studies in
AML, PLA2G4A and AK1 may be new oncogenes that are more
worthy of molecular functional experiments to explore further.

ssGSEA analysis reveals that overall metabolic activity is
positively correlated with immune activity in AML. There are
two undeniable trends. Firstly, cancer cells tend to have more
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FIGURE 12 | (A–D) Boxplots for the difference validation of model genes. The abscissa is the grouping type, and the ordinate is the expression quantity of the model

genes. All model genes are highly expressed in the high-risk group (P < 0.001), suggesting that all model genes are high-risk genes. ***, P < 0.001.

vigorous metabolism in order to absorb more energy and
proliferate malignantly. Secondly, specific antigens of cancer cells
can be recognized by the immune system, and the activated
immune cells can further play a killing role on the tumor. Based
on the survival differences between the three metabolism groups,
these two common senses may provide a crude explanation
for the high metabolic activity associated with high immune
activity in AML. However, the mysteries of the human body are
alwaysmore complex and wonderful than we think. The crosstalk
between different metabolic pathways will seriously affect the
tumor microenvironment and eventually impair the immune
cells’ adaptability and effector function, restricting the success of
immunotherapy (17). In tumors, metabolism and immunity do
not have a strictly one-way cause-and-effect relationship; More
precisely, they always cause and affect each other. In recent
years, the most popular studies have always been related to
the relationship between metabolic reprogramming and immune
escape in tumors (45, 46), including glycolysis with general
significance (47). Metabolic reprogramming associated with
AML cells, including competition with substrates, large release of
bioactive metabolites and overall microenvironmental metabolic
remodeling conducive to the survival of immunoregulatory
cell subgroups, has become an important mechanism of
immune escape in AML and severely hinders the efficacy of

immunotherapy (13). Nevertheless, these studies of metabolic
changes at the micro level do not contradict our findings, as our
conclusion is for the overall metabolic activity of AML at the
macro level.

Similarly, GSEA enrichment results in the high metabolism
group are mainly related to immunity and metabolism, which
is also a supporting basis for the previous ssGSEA analysis
results, in which immunity includes antigen processing and
presentation, B cell receptor signaling pathway, intestinal
immune network for IgA production and lipopeptide binding,
presenting pervasive immune response processes; metabolism
includes calcium ion export, integrator complex and medium–
chain fatty acid metabolic process, also involving a wide
range of metabolic processes. As the research object is the
overall metabolic activity, GSEA enrichment results are not
limited to a single type of biological process. Previous studies
have shown that B-cell receptor signal transduction strictly
regulates the growth and proliferation of B-cells, and activated
B-cells respond to changes in energy and biosynthetic demands
and conduct metabolic reprogramming to adapt to metabolic
pressure in tumors (48). Another focus of AML research is
the intestinal flora. Intestinal flora can keep people healthy
by participating in the metabolic process and regulating the
immune system, and the reconstruction of healthy intestinal
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FIGURE 13 | Survival validation of model genes. (A–D) Single-gene survival analysis, from the GEPIA website. (E) Multiple gene survival analysis, from the

PROGgeneV2 online tool.

microflora by adjusting the diet can improve the progression
and prognosis of AML (49). Calcium signal transduction plays
a key role in several biological processes, such as cell growth,
differentiation, metabolism and death, and abnormal calcium
signaling and loss of calcium homeostasis can lead to tumor
proliferation, angiogenesis and other vital processes of cancer
progression (50).

The results of mutation analysis indicate that the mutation
frequencies of other genes, especially our model genes, are
not high except for the well-known two genes, NPM1 and
DNMT3A. Perhaps from the side, our model genes do not
depend on structural and functional changes, that is, qualitative
changes, to affect the prognosis of AML; they play high-risk
roles in the prognosis of AML by the quantitative change. This
point can be inferred from our previous discussion on model
genes (41–44).

We believe that the data of public platforms we use are
appropriately standardized, and multiple validations enhance the
rigor of our research. In addition, our conclusion needs to be
further validated by wet experiments to be more convincing.

CONCLUSIONS

In conclusion, we adopted a variety of bioinformatics methods
to establish an accurate and efficient prognostic model for AML
patients, and carried out multiple validations. In addition, the
relationship between metabolism and immunity and mutations
in AML were explored. These findings provide fundamental
insights into the molecular mechanisms and diagnostic markers
of AML and contribute to the development of new genomic
models for clinical cancer management.
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