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Objective: In the development of immunotherapies in gliomas, the tumor
microenvironment (TME) needs to be investigated. We aimed to construct a prognostic
microenvironment-related immune signature via ESTIMATE (PROMISE model) for glioma.

Methods: Stromal score (SS) and immune score (IS) were calculated via ESTIMATE for
each glioma sample in the cancer genome atlas (TCGA), and differentially expressed
genes (DEGs) were identified between high-score and low-score groups. Prognostic
DEGs were selected via univariate Cox regression analysis. Using the lower-grcade glioma
(LGG) data set in TCGA, we performed LASSO regression based on the prognostic DEGs
and constructed a PROMISE model for glioma. The model was validated with survival
analysis and the receiver operating characteristic (ROC) in TCGA glioma data sets (LGG,
glioblastoma multiforme [GBM] and LGG+GBM) and Chinese glioma genome atlas
(CGGA). A nomogram was developed to predict individual survival chances. Further,
we explored the underlying mechanisms using gene set enrichment analysis (GSEA) and
Cibersort analysis of tumor-infiltrating immune cells between risk groups as defined by the
PROMISE model.

Results:We obtained 220 upregulated DEGs and 42 downregulated DEGs in both high-
IS and high-SS groups. The Cox regression highlighted 155 prognostic DEGs, out of
which we selected 4 genes (CD86, ANXA1, C5AR1, and CD5) to construct a PROMISE
model. The model stratifies glioma patients in TCGA as well as in CGGA with distinct
survival outcome (P<0.05, Hazard ratio [HR]>1) and acceptable predictive accuracy
(AUCs>0.6). With the nomogram, an individualized survival chance could be predicted
intuitively with specific age, tumor grade, Isocitrate dehydrogenase (IDH) status, and the
PROMISE risk score. ROC showed significant discrimination with the area under curves
(AUCs) of 0.917 and 0.817 in TCGA and CGGA, respectively. GSEA between risk groups
in both data sets were significantly enriched in multiple immune-related pathways. The
Cibersort analysis highlighted four immune cells, i.e., CD 8 T cells, neutrophils, follicular
helper T (Tfh) cells, and Natural killer (NK) cells.
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Conclusions: The PROMISE model can further stratify both LGG and GBM patients with
distinct survival outcomes.These findings may help further our understanding of TME in
gliomas and shed light on immunotherapies.
Keywords: glioma, tumor microenvironment, immune signature, prognosis, biomarker
INTRODUCTION

Gliomas are the most prevalent type of intracranial malignant
neoplasms, accounting for 30% of tumors and 81% of
malignancy in the brain (1). According to the 2016 World
Health Organization (WHO) classification, malignant adult
diffused gliomas consist of lower-grade glioma (grade II and
III, LGG) and glioblastoma multiforme (grade IV, GBM) (2, 3).
Besides, most of LGG progresses to GBM, which yielded a 5-year
relative survival rate of 5% (4, 5). Standard treatments, including
surgery, radiotherapy, and chemotherapy, have failed to address
the poor survival outcomes of patients with glioma (6, 7). While
immunotherapies are actively under investigation in the
treatment of glioma, the tumor microenvironment (TME)
related to immune response needs to be studied (6, 8).

TME has been extensively reported to alter the gene
expression in tumor cells and subsequently prognosis of
patients (9–11). Standalone therapies targeting the TME or in
combination with traditional treatment have shown promise in
improving clinical outcomes (12, 13). Therefore, systematic
profiling of TME may shed light on prognostic stratification
and innovative immunotherapies (14). An immune-related
gene signature for GBM by Cheng W et al. indicated the
significance of immune milieus in the prognosis of GBM
patients; however, the signature was not evaluated with ROC
analysis or compared with established classifications (15).
Likewise, Deng X et al. (16) screened a total of 122 prognostic
immune-related genes in LGG, which was only validated using
Kaplan-Meier survival analysis without a specific cutoff value.
Further, the number of genes stymies practical clinical
implementation. Tian Y et al. (17) developed a stromal
classifier based on local macrophage infiltration via Cibersort,
but it was not validated in LGG and GBM independently. Plus,
the predictive performance of the classifier was inferior to
tumor grade, indicating the proposed classifier was not
clinically-relevant. However, no other prognostic signature
related to TME has been reported in glioma.

ESTIMATE, also known as “Estimation of Stromal and
Immune cells in Malignant Tumors using Expression data”, is
an algorithm for profiling TME. By analyzing specific gene
expression, the algorithm infers the infiltration of stromal and
immune cells and assesses tumor purity (18). Previous reports
have applied the ESTIMATE to build prognostic models
associated with TME in various malignancies, indicating the
feasibility of the algorithm in the prediction of survival outcome
(19–21). In the present study, we aimed to develop a Prognostic
Microenvironment-related Immune Signature via ESTIMATE
(PROMISE model) for glioma using expression profiles in The
Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome
2

Atlas (CGGA) database. The signature was validated in LGG and
GBM independently in both data sets, while the functional
implication was explored with Gene Set Enrichment Analysis
(GSEA) and immune cell analysis.
MATERIALS AND METHODS

Acquisition Data from TCGA and CGGA
Data Sets
From TCGA, The RNA-Seq data and clinical information of
LGG and GBM samples were collected. Molecular subtype and
treatment details were retrieved from Ceccarelli et al.’s work (22),
while survival status and demographic information were
accessed using the RTCGAclinical R package (version: 1.16.0).
RNA-Seq data was measured as Fragments Per Kilobase of
transcript per Million mapped reads (FPKM) and log2-based
transformation. Then, the sva package (23) was utilized for the
normalization of RNA expression profiles and to remove the
batch effects between TCGA-LGG samples and TCGA-GBM
samples. For external validation, normalized RNA-Seq data via
RNA-Seq by Expectation Maximization (RSEM) (24) and clinical
information were obtained from the CGGA data set. All data sets
were downloaded on June 1st, 2020.

Survival Analysis of Stromal Score (SS)
and Immune Score (IS)
Stromal Score (SS) and Immune Score (IS) were calculated by the
Estimation of Stromal and Immune cells in Malignant Tumors
using Expression data (ESTIMATE) algorithm (18) in R software
loaded with the estimate package. The scores represent the
stromal and immune components in TME respectively. Glioma
samples in TCGA were divided into high-score and low-score
groups with the median of SS and IS respectively. Samples with
positive values of survival time were used for survival analysis
between groups with survival and survminer packages (25).

DEGs Identification Based on SS and IS
The Linear Models for Microarray Data (LIMMA) package (26)
in R software was used to replace replicates of probes with their
average, while the Wilcoxon test was applied to extract DEGs
between groups as defined by medians of SS and IS respectively.
P < 0.05 and |log2FC| > 1 were set as the threshold for
DEGs. The heatmap of the 100 DEGs with the most
significant P values was plotted. Feature DEGs were
identified as unanimously upregulated or downregulated
DEGs in both the high-SS and high-IS groups. DEGs in
independent cohorts (TCGA-LGG/TCGA-GBM) were also
identified using the same methods.
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Functional Enrichment and Protein-Protein
Interaction (PPI) Network Analysis
The clusterProfiler package (27) was utilized to perform the Gene
Ontology (GO) terms and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis for feature
DEGs. Three categories were included in the GO enrichment
analysis, i.e., biological process (BP), cellular component (CC),
and molecular function (MF); whereas, KEGG revealed enriched
pathways related to these feature DEGs. Subsequently, the PPI
network was constructed via Search Tool for the Retrieval of
Interacting Genes (STRING) (28) to identify hub genes.
Visualization of the network was performed in Cytoscape 3.8.0
(29, 30).

Development and Validation of a PROMISE
Model in TCGA Data Sets
In the context of feature DEGs, univariate cox regression was
conducted to identify prognostic DEGs, which was subsequently
utilized in gene selection by the least absolute shrinkage and
selection operator (LASSO) regression analysis (31) in the
TCGA-LGG. And then we calculated the individualized risk
score with coefficient-weighted gene expressions and constructed
a PROMISE model with the following formula. Samples were
divided into high-score and low-score groups based on the
median risk score. Then the clinical relevance was validated
using survival analysis between groups with the threshold of p <
0.05. The PROMISE model was then validated in the TCGA-
GBM samples and the TCGA combined set with the same risk
score formula and cutoff value. The receiver operating
characteristic (ROC) analysis was performed, and we
calculated the area under the curve (AUC) to evaluate the
predictive accuracy (32) in the TCGA samples. Subsequently, a
risk plot was presented that includes a heatmap presenting
expression profiles of included genes, a distribution plot of risk
scores based on the model, and a dot plot showing the survival
status of patients in different risk groups.

Risk score = ∑ coefficient(i)� expression(i)

Validation of the PROMISE Model in CGGA
Data Sets
The PROMISE model was then validated using survival analysis
in CGGA-LGG, CGGA-GBM, and CGGA data sets respectively.
The Log-rank p-value was calculated while the Kaplan-Meier
graph was plotted. P-values less than 0.05 were considered
statistically significant. The prognostic performance was
validated in the CGGA with ROC analysis as well as a risk plot.

Development and Validation
of a Nomogram
Clinicopathological factors were collected from TCGA data set
and integrated with transcriptome profile derived from TCGA
data set. The univariate and multivariate Cox regressions were
conducted to determine whether the PROMISE model was
independent of clinicopathological factors as well as to identify
other independent prognostic factors. Based on independent
Frontiers in Oncology | www.frontiersin.org 3
prognostic factors, we formulated a nomogram to predict the
survival probability of individual patients using methods
reported in previous literature (33, 34). The ROC analysis for
nomogram-based prediction was performed in both TCGA and
CGGA data sets.

Gene Set Enrichment Analysis
We performed Gene Set Enrichment Analysis (GSEA) between
high-risk and low-risk groups as separated by the PROMISE
model via clusterProfiler and enrichplot packages. The gseKEGG
function was applied to identify the enriched pathways in KEGG.

TME Analysis via Cibersort
To characterize the immune TME in different risk groups as
defined by the PROMISE model, the Cibersort (35) method was
adopted in our study. Immune cells with significant differences
between risk groups were identified in TCGA data set and CGGA
data set, respectively. We highlighted cells that were unanimously
upregulated or downregulated in the high-risk groups in both
data sets. Subsequently, Spearman correlation analysis was
performed using the abundance of these cells and the PROMISE
risk score.
RESULTS

Preparation of Data Sets
The workflow of our study is shown in Figure 1. We obtained the
RNA-Seq data and clinical information of 529 LGG samples and
169 GBM samples from TCGA, out of which 604 cases were
recorded with positive values of survival time. Likewise,
normalized RNA-Seq data and clinical information for 443
LGG samples and 249 GBM samples were collected from the
CGGA. Among them, 657 cases had survival time>0. The
distribution of cases concerning the clinicopathological factors
was presented in Table 1.

ESTIMATE Scores Were Correlated With
the Survival of Glioma Patients
With the ESTIMATE algorithm, we calculated SS and IS for all
these TCGA samples. To explore the potential association of
survival rate in glioma patients with the stromal and immune
components in TME, we classified these samples into high-score
and low-score groups with the median scores. Survival analysis
revealed that the survival time of samples with high SS was
shorter than that of samples with low scores, yet no significant
difference was detected (Figure 2A, p=0.109). The survival
analysis presents the same trend between groups as separated
by the median of IS with a statistical difference (Figure
2B, p<0.001).

Identification of DEGs Based on SS and IS
According to the threshold, we identified DEGs based on SS or IS
scores respectively. The heatmap of the 100 DEGs with the most
significant P values was plotted in Figures 2C, D. In order to
identify keyDEGsondifferentTME,weobtained220unanimously
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upregulated DEGs and 42 unanimously downregulated DEGs in
both high-IS and high-SS groups (Figure 2E). The subsequent
analysiswas based on these featureDEGs,which can be accessed in
Supplementary File S1. In parallel, we also identified DEGs in
TCGA-LGGandTCGA-GBM, respectively (SupplementaryFiles
S2 and S3).

Enrichment Analyses of Feature DEGs and
PPI Network Construction
The GO analysis (Figure 3A) demonstrated that these feature
DEGs were significantly enriched the BP that includes regulation
of immune effector process, leukocyte migration, cell chemotaxis,
and so on. The CC analysis indicated that these feature DEGs
were present on the external side of the plasma membrane,
collagen-containing extracellular matrix, secretory granule
membrane, etc. The feature DEGs were enriched in MF, such
as G protein-coupled receptor binding, cytokine receptor
binding, and cytokine activity. Furthermore, the KEGG
analysis indicated that the genes were mainly involved in
Cytokine-cytokine receptor interaction, which was closely
related to the immune response (Figure 3B). Then we
Frontiers in Oncology | www.frontiersin.org 4
constructed a PPI network to further explore the interplay
among the feature DEGs and obtained 40 hub genes with the
most interactions (Figures 3C, D).

Development and Validation of a PROMISE
Model in TCGA Data Set
Out of the 262 feature DEGs, a total of 155 prognostic DEGs
were identified using univariate cox regression (Supplementary
File S4). Based on these prognostic DEGs, we selected a total of 4
specific DEGs (CD86, ANXA1, C5AR1, and CD5) in the TCGA-
LGG with Lasso regression (Figures 4A, B). After extracting the
coefficient values, we calculated the PROMISE risk scores with
coefficient-weighted expression levels of 4 hub genes with the
following formula:

Risk score = CD86*0:013936078 + ANXA1*0:004725055

+ C5AR1*0:004208545 + CD5*0:348764054

LGG samples were divided into high-risk and low-risk groups
based on the median risk score (0.20). Significant difference was
shown between groups with survival analysis (Figure 4D, HR = 4.3,
FIGURE 1 | Flowchart of the study process.
December 2020 | Volume 10 | Article 580263
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95% CI = 2.8 - 6.5, p < 0.001). Subsequently, we calculated
individualized risk scores in TCGA-GBM samples and divided
them into high-risk and low-risk groups with the same cutoff
value. A significant difference was also presented between groups
with survival analysis in TCGA-GBM (Figure 4C, HR = 1.8, 95%
CI = 0.97–3.4, p=0.028). Then we repeated the same validation
method in the TCGA combined set and yielded distinct separation
in survival outcomes with p<0.001(HR = 2.6, 95% CI = 1.8–3.5)
(Figure 4E). ROC curve analysis of the PROMISE model achieved
AUC of 0.685, 0.619, and 0.621 at 1-, 3-, and 5-year (Figure 4F).
Figure 4G shows the risk plot in TCGA glioma cohort, including
the distribution of risk score and accurate classification of survival
outcomes across different risk groups with red dots being dead and
blue ones being living cases. The expression levels of four hub genes
demonstrated a trend of upregulation of ANXA1 along with
downregulation of CD86, C5AR1, and CD5 in the high-risk
group as classified by the PROMISE model (Figure 4G).
Frontiers in Oncology | www.frontiersin.org 5
Validation of the PROMISE Model
in the CGGA
In order to determine if the PROMISE model was independent of
data sets, we validated the model in the CGGA cohort. Survival
analysis showed significant differences in CGGA-LGG, CGGA-
GBM, and CGGA combined set with p<0.001, p=0.015, and
p<0.001 respectively (Figures 5A, B, C). ROC curve analysis of
the PROMISE model in CGGA Glioma samples achieved AUCs
of 0.677, 0.737, and 0.769 at 1-, 3-, and 5-year (Figure 5D).
Likewise, the risk plot of CGGA encompassing the distribution
of the PROMISE risk score, survival status of cases as well as gene
expression of 4 hub genes was presented with a similar
expression pattern to TCGA data set (Figure 5E).

Development and Validation
of a Nomogram
Multivariate analysis revealed that the PROMISE model based
on 4 hub genes could be an independent prognostic marker after
clinical characteristics were adjusted. Likewise, age and tumor
grade were also independent prognostic factors (Figure 6A).
Based on the independent prognostic factors, we formulated a
nomogram to predict the survival probability of individual
samples (Figure 6B). Individualized survival chance could be
predicted intuitively with specific age, tumor grade, Isocitrate
dehydrogenase (IDH) mutation status, and the PROMISE risk
score. ROC curve analysis showed adequate discrimination with
an AUC of 0.917 and 0.817 in TCGA Glioma samples (Figure
6C) and CGGA Glioma samples (Figure 6D) respectively, which
outperformed all clinicopathological factors including
classifications of molecular subtype.

Gene Set Enrichment Analysis
To explore the underlying mechanism, we performed GSEA
between groups based on the PROMISE model to identify the
enriched KEGG pathway. Figure 7A shows the results of the
KEGG analysis in TCGAGlioma samples. Antigen processing and
presentation, cytokine-cytokine receptor interaction, NF-kappa B
signaling pathway, phagosome, T cell receptor signaling pathway,
and Th17 cell differentiation were significantly enriched. In CGGA
Glioma samples (Figure 7B), antigen processing and presentation,
cell adhesion molecules, cytokine-cytokine receptor interaction,
ECM- receptor interaction, cell differentiation of Th1, Th2, and
Th17 were significantly enriched.

TME Analysis via Cibersort
Distribution levels of 22 immune cells based on risk groups in
TCGA Glioma samples and TCGA Glioma samples were shown
in Figures 8A, C. Immune cells with significant differences
between risk groups were shown in Figures 8B, D respectively.
Cells that were unanimously upregulated or downregulated in
both data sets were identified. The specific immune cells were
marked in red. It is shown that T cells CD8 (p=0.002, p<0.001)
and Neutrophils (p<0.001, p<0.001) level were significantly
enriched in the high-score group while lower T cell follicular
helper (p=0.004, p=0.008) and natural killer (NK) cells resting
(p<0.001, p<0.001) were observed in high-risk groups in both
TABLE 1 | Clinicopathological factors of glioma patients included in the study.

Variables TCGA (n = 604) CGGA (n = 657)

Survival status
Alive 421 (70%) 263 (40%)
Death 183 (30%) 394 (60%)
Follow-up time
LGG(WHO II & III) 576 [334,1023.5] 1451 [656.5,2305]
GBM(WHO IV) 298 [154,454] 378 [221,768]
Sex
Female 260 (43%) 283 (43%)
Male 344 (57%) 374 (57%)
Age
>60 480 (79%) 588 (89.5%)
≤60 124 (21%) 68 (10.4%)
Not available 1 (0.1%)
Cancer type
Primary 585 (97%) 404 (61%)
Recurrent 19 (3%) 253 (39%)
Grade
WHO II 195 (32%) 172 (26%)
WHO III 206 (34%) 248 (38%)
WHO IV 157 (26%) 237 (36%)
Not available 46 (8%) 0
IDH.status
Mutant 384 (64%) 333 (51%)
Wild type 212 (35%) 276 (42%)
Not available 8 (1%) 48 (7%)
X1p.19q.codeletion
Code l 150 (25%) 137 (21%)
Non-code l 449 (74%) 454 (69%)
Not available 5 (0.01) 66 (10%)
MGMT.promoter.status
Methylated 429 (71%) 304 (46%)
Unmethylated 141 (23%) 218 (33%)
Not available 34 (6%) 135 (21%)
Radiotherapy
No 166 (27.5%) 131 (20%)
Yes 412 (68.2%) 501 (76%)
Not available 26 (4.3%) 25 (4%)
Chemotherapy
No 190 (31.5%) 156 (24%)
Yes 381 (63.1%) 480 (73%)
Not available 33 (5.4%) 21 (3%)
December 2020 | Volume 10 | Article 580263
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FIGURE 2 | Identification of intersected DEGs based on stromal score (SS) and immune score (IS). (A) Survival analysis between high-SS group and low-SS groups.
(B) Survival analysis between high-IS and low-IS groups. (C) Heatmap of the 100 DEGs with the most significant P values between the SS groups. (D) Heatmap of
the 100 DEGs with the most significant P values between the IS groups. (E) Venn plots of the feature DEGs identified as unanimously upregulated or downregulated
DEGs in both the high-SS and high-IS groups.
Frontiers in Oncology | www.frontiersin.org December 2020 | Volume 10 | Article 5802636

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


s. (C) PPI network analysis. (D) Potential hub genes and

Q
iu

et
al.

A
P
R
O
M
IS
E
M
odelfor

G
liom

a

Frontiers
in

O
ncology

|
w
w
w
.frontiersin.org

D
ecem

ber
2020

|
Volum

e
10

|
A
rticle

580263
7

A B

DC

FIGURE 3 | Functional Enrichment and PPI Network Analysis. (A) The top 30 significantly enriched GO terms. (B) The top most enriched KEGG pathway
their numbers of adjacent nodes.
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FIGURE 4 | Development of the PROMISE model for TCGA-LGG and validation in TCGA-GBM a
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(B) Survival analysis between high-risk and low-risk groups in CGGA-GBM.
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FIGURE 5 | Validation of the PROMISE model in CGGA. (A) Survival analysis between high-risk and low-risk groups in CGGA-LGG.
(C) Survival analysis between high-risk and low-risk groups in CGGA combined set. (D) ROC curve analysis of the PROMISE model
on the PROMISE model in CGGA combined set.
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FIGURE 6 | Development and validation of a Nomogram. (A) Univariate and multivariate Cox regression analys
independent prognostic factors. (C) ROC curve analysis of the all clinicopathological factors in TCGA data set.
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FIGURE 7 | Gene Set Enrichment Analysis (GSEA) analysis. (A) GSEA of KEGG pa
Glioma samples between risk groups based on the PROMISE model.
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FIGURE 8 | Distribution of immune cells between risk groups. (A) Proportions of immune cells based on risk groups in TCGA glioma samples. (B) Vio
groups in TCGA glioma samples. (C) Proportions of immune cells based on risk groups in CGGA Glioma samples. (D) Violin plot of the differentiation o
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TCGA and CGGA data sets. Spearman correlation analysis
indicated that these cells were correlated with the PROMISE
model in both data sets (Supplementary File S5).
DISCUSSIONS

Due to the biological diversity of glioma cells, multimodal
treatments remained unsatisfactory with surgical resection,
radiotherapy, and temozolomide (36). Stimulated by the progress
in immunotherapies on other tumor types, researchers have been
actively examining the effect of immunotherapies in gliomas (6).
While pursuing novel immune-related therapeutic approaches in
gliomas, the TME needs to be investigated. Biomarkers related to
the TME may help predict treatment response and prognosis in
patients with glioma.

In the present study, we selected 262 feature DEGs based on
TME scores as defined by the ESTIMATE algorithm. Out of the
262 DEGs, we identified 155 prognostic DEGs, whereby we
constructed a PROMISE model with 4 genes identified via
LASSO regression. The PROMISE model was observed to be
clinically relevant with distinct separation of survival rate
between risk groups in patients with LGG, GBM as well as
overall glioma in two independent cohorts (TCGA and CGGA).
With a multivariate regression, we demonstrated that the
PROMISE risk score could be an independent prognostic
index after clinicopathological factors were adjusted.
Subsequently, we selected independent prognostic factors
and developed a nomogram that could intuitively predict
individual survival probability. Further, the nomogram presents
effective discrimination with AUCs that outperformed all
clinicopathological factors in both data sets. Further, we explored
the underlying mechanisms using GSEA and analysis of 22 types of
tumor-infiltrating immune cells via Cibersort between risk groups
as defined by the PROMISE model.

The PROMISE model highlighted 4 TME-related genes, i.e.,
CD86, ANXA1, C5AR1, and CD5. Annexin-1 (ANXA1) is a
substrate for the epidermal growth factor receptor (EGFR)
involved in cellular proliferation, apoptosis, and inflammatory
response (37–39). Overexpression of ANXA1 was observed in
astrocytoma in the immunohistochemical analysis (40); whereas,
its prognostic value in glioma patients was reported in a previous
cross-validated model study (41). CD86 (B7-2), one of the
checkpoint proteins in antigen-presenting cells (APCs),
interacts with CD28 and cytotoxic T lymphocyte antigen‐4
(CTLA‐4) receptors on T cells, thereby limiting T-cell
activation and inducing immunoescape of cancers (42, 43).
The expression of CD86 was associated with poor prognosis in
myeloma (44) and leukemia (45). CA5R1 serves as the receptor
of CA5, which was associated with inhibition of antitumor T-cell
responses through the recruitment and/or activation of
immunosuppressive cells. Therefore, poor prognosis was
presented in cancer survivors with high expression of CA5R1
(46–49). CD5 was identified as a prognostic factor in large B-cell
lymphoma with increased expression correlated to inferior
survival (50). However, the expression of CD86, CA5R1, and
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CD5 seemed to be downregulated in the high-risk group, which
could be due to the uniqueness of TME in the brain. The role of
these genes in glioma patients is yet to be elucidated. Our study
demonstrated the prognostic significance of the four genes
associated with TME in glioma patients, indicating that these
genes could be candidate targets for enhancing the therapeutic
effects of immunotherapy.

To explore the potential mechanisms by which the PROMISE
model classifies glioma patients with distinct survival outcomes,
we performed GSEA to investigate the enriched pathways in the
high-risk group. Enhanced activities in extensive immune-
related pathways were revealed in both TCGA and CGGA data
sets, i.e., antigen processing and presentation, cytokine, and its
interaction with receptors, as well as Th17 cell differentiation. To
further investigate the role of TME associated with the PROMISE
model, we analyzed the estimations of 22 types of tumor-
infiltrating immune cells via Cibersort analysis. The results
demonstrated significant differences in immune cell abundance
between risk groups in both data sets, which highlighted four
immune cells in the high-risk group as defined by the PROMISE
model. Among them, CD 8 T cells and neutrophils were
upregulated, while the follicular helper T (Tfh) cells and
Natural killer (NK) cells were downregulated. A murine model
study showed that CD 8 T cells promoted immunoediting of
immunogenic tumor clones by negative selection in the
formation of gliomas, thereby facilitating tumor progression
(51). Additionally, activation of CD 8 T cells results in a
decreased expression of Interferon-g (IFN-g) and tumor
necrosis factor-a (TNF-a), leading to inhibition of the
antitumor response (52). By contrast, downregulated Tfh cells
in the high-risk groups indicated the tumor-suppressive effect of
Tfh cells. Although there have been no relevant studies on
gliomas, studies regarding lymphomas and breast cancers have
shown that Tfh cells can regulate B cell response, convert Treg-
mediated immune suppression, and inhibit tumor growth via
adaptive antitumor humoral responses (53, 54). NK cells can
trigger tumor cell killing by binding their surface NKG2D
receptors with upregulated ligands in glioma cells (55, 56). Our
findings are consistent with the effects, indicating that NK cells
kill glioma cells and improve prognosis. Neutrophils were
observed to promote the proliferation and migration of
glioblastoma-initiating cells (GICs), leading to tumor
progression (57). In summary, the disproportion of immune
cells in TME may have an important role in gliomas. Further
experiments are required to investigate the individual effects and
the cross-talk of these immune cells in TME.

Although numerous studies have examined gene signatures
related to TME in patients with glioma, their efforts could not be
translated to clinical practice due to vague cutoff values across
different data sets (15–17), lack of comparisons with established
classification (15, 16), inferior classification accuracy compared
to tumor grade (17), and a relatively large number of genes (16).
In contrast, our PROMISE model with four genes embedded
used an identical cutoff value across different data sets (LGG and
GBM in both TCGA and CGGA) and presented distinct survival
rates between risk groups. Further, the nomogram constructed
December 2020 | Volume 10 | Article 580263
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with clinicopathological factors yielded superior accuracy to
established classifications. To our best knowledge, the
PROMISE model in the present study has been the first
prognostic signature derived from systematic profiling of
immune microenvironment via ESTIMATE across different
grade of glioma. It has shown a distinct separation of survival
outcomes in glioma patients with adequate predictive
performance, which could be translated to clinical settings as a
prognostic biomarker. Therapeutics targeting genes embedded in
the PROMISE model might yield promising results in the
treatment of glioma. Although we validated the model in
independent cohorts in this bioinformatics report, a lack of
experimental validation is considered to be the major
limitation. The biological functions of the four genes require
further investigation in laboratory settings.
CONCLUSIONS

In the present study, we identified a PROMISE model that could
effectively classify glioma patients with distinct survival
outcomes, for which the altered TME might be responsible.
These findings may further our understanding of the TME and
shed light on the development of novel prognostic biomarkers
and therapeutic targets in gliomas.
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