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Metabolic reprogramming is associated with re/activation and antagonism of androgen
receptor (AR) signaling that drives prostate cancer (PCa) progression to castration
resistance, respectively. In particular, AR signaling influences the fates of citrate that
uniquely characterizes normal and malignant prostatic metabolism (i.e., mitochondrial
export and extracellular secretion in normal prostate, mitochondrial retention and
oxidation to support oxidative phenotype of primary PCa, and extra-mitochondrial
interconversion into acetyl-CoA for fatty acid synthesis and epigenetics in the advanced
PCa). The emergence of castration-resistant PCa (CRPC) involves reactivation of AR
signaling, which is then further targeted by androgen synthesis inhibitors (abiraterone) and
AR-ligand inhibitors (enzalutamide, apalutamide, and daroglutamide). However, based on
AR dependency, two distinct metabolic and cellular adaptations contribute to
development of resistance to these agents and progression to aggressive and lethal
disease, with the tumor ultimately becoming highly glycolytic and with imaging by a tracer
of tumor energetics, 18F-fluorodoxyglucose (18F-FDG). Another major resistance
mechanism involves a lineage alteration into AR-indifferent carcinoma such a
neuroendocrine which is diagnostically characterized by robust 18F-FDG uptake and
loss of AR signaling. PCa is also characterized by metabolic alterations such as fatty acid
and polyamine metabolism depending on AR signaling. In some cases, AR targeting
induces rather than suppresses these alterations in cellular metabolism and energetics,
which can be explored as therapeutic targets in lethal CRPC.

Keywords: androgen receptor, castration-resistant prostate cancer, metabolic reprogramming 18F-FDG,
neuroendocrine, aerobic glycolysis, fatty acid metabolism, mitochondria
INTRODUCTION

Normal cells gain distinctive capabilities to overcome the restrictions in the tissue of origin to initiate
primary tumor formation (1–3). The phenotypic traits in the original environment often determine
the molecular processes that drive the progression to advanced and metastatic tumors (4, 5). This is
true for reprogramming of cellular and energy metabolism during cancer progression (6–8).
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“The Warburg effect (aerobic glycolysis)” observed by Otto
Warburg nearly a century ago is the phenomenon that cancer
cells preferentially convert most glucose to lactate even in the
presence of oxygen by which mitochondrial oxidative
phosphorylation can proceed to generate ATP more efficiently
(9, 10). His original hypothesis also emphasized that dysfunction
of mitochondria is the initiating factor for cancer formation (11,
12). While not maximizing ATP production/glucose, aerobic
glycolysis permits cancer cells to efficiently convert glucose into
the biomass (e.g., nucleotides, amino acids, and lipids) for cell
growth and proliferation (13, 14). As opposed toWarburg’s notion,
most-if not all-cancer cells rely on functional mitochondria for
their survival (13, 15).

Prostate cancer (PCa) is unique from a metabolic perspective.
Ironically, the normal prostatic epithelial cell is one of the best
cell types that fit to the original Warburg’s theory: mitochondria
must be dysfunctional to get higher rate of glycolysis. Instead,
primary PCa does not exhibit the Warburg effect. Contrary to
other cancer cells, malignant transformation involves the
conversion from energy-inefficient (“glycolytic”) secretory
epithelial cells to energy-efficient (“oxidative”) PCa cells
(16–20) (Figure 1).

Androgen receptor (AR) plays pivotal roles in both normal
and malignant prostate cells. Indeed, AR transcriptional program
supports PCa viability during the course from primary tumor
formation to progression to metastasis. AR has the capabilities of
Frontiers in Oncology | www.frontiersin.org 2
regulating virtually all aspects of cellular metabolism (glucose,
lipid, amino acid, nucleotides, etc.) (20–24). Conversely, pre-
receptor control of “androgen” metabolism, which is dictated by
tissue localization and abundance of steroidogenic enzymes and
metabolism, ultimately determines activity of the holoreceptor
for the transcriptional output (25, 26). Nevertheless, PCa exhibits
specified metabolic and energetic phenotypes depending on the
stage of disease progression (18, 19, 23). For example, while AR
signaling persists, the transition from oxidative to glycolytic
metabolism occurs during the progression to advanced PCa
(27–29). Lipogenesis is continuously maintained by AR during
the development of PCa (30–32). AR antagonism is highly
effective in counteracting AR signaling thus altering associated
metabolic programs, but tumors evolve by acquiring androgen-
independent AR activation in adenocarcinoma or bypassing AR
requirement through transdifferentiation to more aggressive
and lethal AR-indifferent carcinomas (33). This cellular
transformation results in drastic metabolic adaptation to
promote aerobic glycolysis (29, 34, 35).

Understanding of the relationship between these distinctive
metabolic features and AR signaling in PCa will lead to
identification of metabolic vulnerabilities that offer the opportunity
for diagnosis and therapy. In this review, we will characterize
metabolic phenotypes of PCa in relation to AR signaling and
review the current knowledge of metabolism-based imaging tools
and therapeutic interventions to target cancer metabolism.
A B C

FIGURE 1 | Metabolic reprogramming is involved in malignant transformation of prostatic cells. (A) Normal prostate epithelial cells express zinc transporter ZIP1
facilitating intracellular accumulation of zinc ion, which contributes to inhibition of m-aconitase (ACO2) at mitochondria. This inhibition results in truncation of
tricarboxylic acid cycle (TCA) cycle and release of citrate to the extracellular space. Citrate production is supported by increasing the substrate pools for citrate
synthase, acetyl-CoA (Ac-CoA) and oxaloacetic acid (OAA) at the mitochondria. OAA is supplied as the result of action of mitochondrial aspartate aminotransferase
(GOT2) on L-aspartate. The level of mitochondrial acetyl-CoA is associated with increased expression of pyruvate dehydrogenase E1 component subunit alpha
(PDHE1a) of pyruvate dehydrogenase complex (PDH). From bioenergetic point of view, normal prostatic cell is supported by aerobic glycolysis. (B) Marked decrease
in zinc levels due to depletion of ZIP1 represents an essential early event in the development of PCa malignancy, which relieves m-aconitase to establish a complete
TCA cycle. These metabolic alterations are functionally related to low citrate level and the general low avidity of 18F-FDG in primary PCa. Fatty acids (FA) are
incorporated through CD36, followed by CPT1-mediated entry into mitochondria to serve as the substrate for fatty acid oxidation (FAO). L-Glutamine also serves as
the precursor of TCA cycle intermediates after conversion into L-glutamate. ATP-citrate lyase (ACLY) cleaves citrate to produce acetyl-CoA to serve as the substrate
for fatty acid synthase (FASN). (C) Further malignant transformation promotes glycolysis (through increased expression of glycolytic enzymes). While lipogenic trait is
enhanced, multiple combinations of/all energy source pathways are theoretically available at this stage. Therefore, it is important to determine which metabolic
pathway dominates for survival of given tumors for the future metabolism-based precision therapy.
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ANDROGEN ACTION IN PROSTATE
FUNCTION AND METABOLISM: ZINC,
TRUNCATED TRICARBOXYLIC ACID
CYCLE CYCLE, CITRATE METABOLISM

Androgens are hormones required for development and
maintenance of the male reproductive system. The functions of
prostatic cells in both normal and malignant condition have been
characterized by the relationship to the status and availability of
androgen and its cognate receptor AR. Upon binding to
androgen, AR which is otherwise sequestered in the cytoplasm
translocates to nucleus and acts as sequence-specific dimerized
transcription factors (36).

The unique metabolic processes in the prostate are well
adapted to fulfill the major function as a secretory tissue to
generate prostatic fluid comprised of high concentration of
citrate along with zinc, lipids, and kallikrein enzymes including
prostate-specific antigen (PSA) (37, 38) (Figure 1). Typically,
citrate is either retained and oxidized in the mitochondria to
generate energy as an essential intermediate in the citric acid
cycle, or is exported into the cytoplasm where it is cleaved by
ATP citrate lyase (ACLY) to generate acetyl-CoA, which is used
for fatty acid (FA) synthesis (39).

The normal human prostate retains the capability of
accumulating the highest levels of zinc in any soft tissue of the
human body through expression of specific zinc transporters
(ZIP1–4 for uptake and ZnT1–10 for release) (40). High levels of
mitochondrial zinc inhibit mitochondrial aconitase, resulting in
truncation of tricarboxylic acid cycle (TCA) cycle at the first step
of citrate oxidation (17, 41). Androgen signaling enhances citrate
production by increasing the substrate pools for citrate synthase,
acetyl-CoA and oxaloacetic acid (OAA) at the mitochondria. The
level of mitochondrial acetyl-CoA is associated with increased
expression of pyruvate dehydrogenase E1 component subunit
alpha (PDHE1a) (42). Aspartate uptake is through the excitatory
amino acid transporter SLC1A1/EAAC1 (43). Followed by
transamination processes to generate OAA at the mitochondria
(44). Mammalian cells typically produce ~38 ATP/glucose
through the combined actions of glycolysis and TCA cycle
oxidation on glucose. On the other hand, the normal prostatic
epithelia can generate only ~14 ATP/glucose due to truncation in
TCA cycle resulting in the loss of ~24 ATP/glucose (19).

Marked decrease in zinc levels due to depletion of ZIP1
represents an essential early event in the development of PCa
malignancy (45), which relieves mitochondrial aconitase to
establish a complete TCA cycle (18, 19). These metabolic
alterations are functionally related to low citrate level and the
general low avidity of 18F-FDG in primary PCa (46, 47).
AR DRIVES PCA BY REGULATING
CENTRAL METABOLISM

Multi-omics studies (transcriptome, proteomics, cistrome, and
metabolome) define the AR as a master regulator that
orchestrates cellular metabolism to fuel proliferation and growth
Frontiers in Oncology | www.frontiersin.org 3
of PCa cells (20–22, 48, 49). Specifically, AR transcriptionally
regulates multiple pathways of energy and biomass supply,
including glycolysis, mitochondrial respiration, metabolism of FA
(synthesis, ß-oxidation, and uptake), nucleotides, amino acids, and
polyamines. Thus, drastic metabolic alterations are expected to
inevitably follow AR inhibition and re/activation during the
progression to lethal CRPC along with AR antagonism therapy.

Glucose Metabolism
AR determines bioenergetic traits through regulation of
components in glycolytic pathway (GLUT1, HK1, HK2, and
PFK2/PFKFB) and pyruvate flux into mitochondria (PDH,
MPC2) (21, 42, 50). AR signaling increases expression of
glucose-6-phosphate dehydrogenase (G6PD) which directs
glucose-6-phosphate from glycolysis to the pentose phosphate
pathway (PPP) for generation of NADPH and nucleotide
precursors (51). The conversion from pyruvate to lactate is
catalyzed by LDH proteins including AR-target LDHA (52, 53).
Hyperpolarized 13C magnetic resonance spectroscopic imaging
(MRSI) demonstrates that in vivo conversion [1-13C] lactate into
[1-13C] pyruvate occurred more efficiently in PDX models of AR-
driven CRPC than those of AR-negative PCa (54).
Monocarboxylate transporter MCT4 is upregulated in CRPC and
contributes to completion of successful aerobic glycolysis through
secretion of lactate. Indeed, MCT4-targeting antisense
oligonucleotides (ASO) provide significant tumor suppressive
activity in cellular and xenograft models of CRPC (55). Overall,
AR is capable of promoting both glycolysis and pyruvate oxidation,
indicating AR’s predominant roles in both glycolytic and oxidative
PCa tumors.

FA Metabolism
AR regulates FA metabolism by controlling expression of more
than 20 enzymes involved in many aspects of lipid metabolism,
including uptake, trafficking, synthesis, and degradation (32, 49).

AR and the master regulator of lipid homeostasis sterol
regulatory-element binding protein (SREBP) regulate each
other in a positive feedback system (32, 49, 56, 57). SREBP’s
transcriptional targets include ELOV6 and SCD1 (58) while fatty
acid synthase (FASN) and ACC (acetyl-CoA carboxylase) are co-
targeted by both SREBP and AR (49, 59). Thus, AR activation
accelerates FA synthesis, particularly as the form of mono-
unsaturated and saturated FA (31, 32). Conversely, AR
inhibition leads to marked reduction of de novo lipogenesis
and permits incorporation of dietary FA enriched in
polyunsaturated FA which are prone to lipid peroxidation
when subjected to oxidizers such as arsenic trioxide (60, 61).

In addition to citrate oxidation, fatty acid oxidation (FAO) is the
dominant energy producing pathway through decomposition of
de novo or exogenous FA (62–65). Both FA synthesis and FAO have
been recently shown to play key roles in cancer cell growth and
proliferation (49, 63). This is an apparently contradictory situation
where catabolism and anabolism of the same group of metabolites
co-exist in the same cells. Also, FA synthesis and FAO have
traditionally been considered incompatible due to the inhibitory
effects of malonyl-CoA (the product of ACC1 which serves as the
substrate for FASN) on carnitine palmitoyltransferase 1 (CPT1) in
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the carnitine shuttle (the rate limiting step for the transport of FA
into the mitochondria) (66). Nevertheless, pharmacological or
genetic inhibition of FASN resulted in decreased FAO as well as
oxygen consumption, suggesting the existence of simultaneous FA
synthesis and oxidation in the cells (67). Moreover, combined
inhibition of FASN and FAO produced additive therapeutic
effects in PCa, demonstrating that two pathways coexisting and
feeding each other in some situations (65, 68). More excitingly,
CPT1A-mediated FAO is reportedly to linked to epigenetics by
supplying acetyl-CoA for histone acetylation (69).

On the other hand, there is growing body of evidence that PCa
utilizes exogenous FA derived from diet or adipocytes (70–72).
Blockade of this incorporation by CD36 inhibition is
antitumorigenic (71). These reports emphasize that pharmacological
intervention in FA metabolism has therapeutic benefit.

Amino Acids
AR regulates amino acid catabolism through expression of amino
acid transporters (LAT1, LAT3, ASCT1, ASCT2) (43, 73–76).
LATs and ASCTs are for bulky and small neutral amino acids,
respectively. In particular, ASCT2 prefers the conditionally
essential amino acid glutamine as the substrate. Glutamine
undergoes glutaminolysis to generate TCA cycle intermediates
via glutamate production as an alternative energy source,
providing pharmacological glutamine starvation as a therapeutic
strategy (74, 77–80).

One Carbon Metabolism Network
AR regulates one-carbonmetabolism network consisting of the two
folate cycle pathways (DHFR, GNMT, SARDH), and methionine
cycle (MAT, AHCY) which interact with trans-sulfuration pathway
(CBS, CTH) and polyamine synthesis (ODC1, AMD1) (81–83).
The methionine cycle contributes to the formation of S-adenosyl-
methionine (SAM), the universal methyl donor for protein and
DNA methyltransferase reactions(84). Thus, this metabolism may
contribute to AR-driven malignant progression by promoting
DNA synthesis and changing DNA and histone methylation
status (81). As discussed below, availability of SAM determines
neuroendocrine PCa (NEPC) status which is AR independent (85).

Addiction to Altered Metabolism
Dependence of AR on reprogrammed metabolic characteristics
occurs in FA and ornithine metabolism. AR signaling is blunted
when genetic or pharmacological inhibition of the rate-limiting
enzymes in the pathways, such as ODC1, FASN, and CPT1 (67,
68, 82).
METABOLIC PLASTICITY IN RELATION
TO ANTI-AR THERAPY AND THE
RESISTANCE MECHANISMS

Since 1950s, inhibition of AR activity has remained a mainstay in
the treatment of advanced PCa (86–89). Although most patients
with PCa initially respond to AR inhibition, they eventually
develop castration-resistant PCa (CRPC) (36, 90, 91). The
Frontiers in Oncology | www.frontiersin.org 4
emergence of CRPC usually involves reactivation of AR
signaling(92–97), which is then further targeted by as
androgen synthesis inhibitors (abiraterone) and AR-ligand
inhibitors (enzalutamide, apalutamide, and daroglutamide) (98,
99). Nevertheless, resistance to these agents and progression to
lethal disease are essentially universal by developing adaptive
resistance to these target therapies through two distinct groups of
mechanisms based on AR dependency (100) (Figures 2, 3).
Continued AR activation occurs by multiple mechanisms
including increased AR expression in close association with
enhanced intracrine or paracrine androgen synthesis (Figure 2,
Group 1), AR gene mutations enabling promiscuous ligand
interaction, and expression of constitutively active AR variants
(AR-Vs)(Group 2) (100–103). AR antagonism can also promote
lineage crisis and cellular plasticity to bypass AR blockade and
generate neuroendocrine PCa (NEPC)(Group 1, 2!Group 3,
Group 4!Group 3) (33, 104–106). Transformation into
treatment-induced NEPC (t-NEPC) requires lineage plasticity
in adeno-PCa to bypass AR blockade along with three major
events: (i) The loss of AR expression. (ii) Alternative splicing of
REST transcript by SRRM4 leading to the loss of REST activity
that represses neuroendocrine gene expression. (iii) Activation of
NE transcription factors e.g. ASCL1 and BRN2 that determine
the commitment to a NE lineage (105–108). Among many other
factors, EZH2 stands out to regulate NEPC-specific gene
expression through epigenetic machinery (105). Importantly,
N-MYC forms a transcription repressor complex with EZH2 to
repress AR transcription program (109). It is noteworthy that
AKT1-mediated phosphorylation drives a non-epigenetic mode
of EZH2 action as AR coactivator to support androgen-
independent AR activation during CRPC development and
progression. Another emerging cell type is double negative PCa
(DNPC)(Group 1, 2!Group 4), which is negative for both AR
and neuroendocrine markers and may represent an intermediate
phenotype between AR expressing adenocarcinoma and the
neuroendocrine phenotype (110).

Alteration in Pre-Receptor Control of
Dihydroxytestosterone Metabolism
5a-Reduction of testosterone (T) in prostate results in the
formation of the more potent ligand dihydroxytestosterone
(DHT) to activate AR. Thus, ADT is the frontline treatment
and directed toward disruption of T-DHT-AR axis by suppression
of gonadal T by medical or surgical castration (26). Resistance to
gonadal T depletion namely CRPC is associated with AR activity
which is achieved by a gain-of-function in AR itself and/or
sufficient intratumoral amounts of T and DHT to activate AR
(25, 26, 101). Metastatic prostate tumor cells synthesize their own
androgens through de novo steroidogenesis, which involves
upregulation of enzymes required for stepwise synthesis from
cholesterol to T and DHT (93, 111). Another strategy requires
adrenal synthesis and supply of dehydroepiandrosterone (DHEA)
and its sulfate (DHEA-S) which are converted to D4-
androstenedione (AD) by 3b-hydroxysteroid dehydrogenase/
isomerase (HSD3B1) in PCa (25, 26). AD is converted to DHT
through canonical (AD!T!DHT) or alternative (“backdoor”)
October 2020 | Volume 10 | Article 580617
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pathway involving the intermediate androstenedione to form
DHT. Importantly, a gain-of-function mutation in HSD3B1
(N367T) leads to stabilization of the enzyme which confers two
distinct survival benefits to PCa (112, 113). This variant supports
CRPC status to bypass depletion of gonadal testosterone by
facilitating the synthesis of AD thus flux to DHT from adrenal
DHEA and DHEA-S (112). The resistance to anti-AR therapy is
acquired by this variant which more efficiently converts the
Frontiers in Oncology | www.frontiersin.org 5
androgen synthesis inhibitor abiraterone into the precursor of
potent AR agonist (113).

AR Dependent Mechanisms: Full-Length
AR (AR-FL) and AR-V7 Specific Signaling?
As discussed above, AR is the master regulator of cellular
metabolism. The questions remain as to whether AR-Vs are
simply a constitutively active substitute for liganded-AR-FL to
FIGURE 2 | Androgen receptor (AR) status defines four distinct groups of prostate cancer (PCa). Four distinct groups of PCa display the resistance mechanism to
anti-AR therapy. AR signaling supports survival and growth of PCa and suppresses transdifferentiation into neuroendocrine. (1, 2). Loss of AR signaling derepresses
expression of NE gene signatures required for NE phenotypes (3). Double-negative PCa bypasses AR requirement without NE phenotype (4).
A B

FIGURE 3 | Immunohistochemical images for the expression of androgen receptor (AR), prostate-specific antigen (PSA), and neuroendocrine PCa (NEPC) markers.
(A) Expression of full-length AR (AR-FL) and PSA in castration-sensitive (CS) PCa and AR-FL and AR-V7 in CRPC. Note uniform nuclear staining of AR-V7. CS and
CRPC correspond to group (1) and (2) in Figure 2, respectively. (B) Expression of specific markers for each CRPC type. CRPC adenocarcinoma are positive for AR
and its transcriptional target PSA but negative for NEPC markers chromogranin A (CHGA) and synaptophysin (SYP). NEPC is positive for NEPC markers and
negative for AR and PSA. DNPC is negative for AR, PSA, and NEPC markers (image courtesy of Dr. Colm Morrissey at University of Washington). Representative
images for the data in Figure 2 (2: Adeno-CRPC, 3: NEPC, 4: DNPC). Scale bar=20 µm.
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control cellular metabolism. Do AR-V7 and AR-FL differentially
contribute to a selective adaptation during metabolic rewiring
that occurs in CRPC progression? To answer this question,
androgen-treated LNCaP and LNCaP engineered to co-express
AR-V7 were used to extract AR-FL and AR-V7 signaling,
respectively (114). AR-V7 specific metabolic signatures include
reduced citrate level as a result of enhanced utilization rather
than a failure to synthesize citrate. AR-V7 enhanced glycolytic
flux more effectively than AR-FL with enhanced conversion of
glutamine to citrate via reductive carboxylation (114). These
findings suggest that AR-V alters flux of a subset of metabolites
to provide growth advantage. As of yet, no such data has been
generated to address the functional contribution of endogenous
AR-Vs to bioenergetic phenotypes.

AR Indifferent CRPC: Drastic Metabolic
Changes Are Associated With Cellular
Lineage Alterations
MYC family proteins regulate virtually all genes involved in
glycolysis not only by controlling their express levels but shifting
alternative splicing toward glycolytic isoform PKM2 over PKM1
(115, 116). Moreover, MYC, increases mitochondrial export of
acetyl groups as the form of citrate and the resulting acetyl-CoA
contributes to histone acetylation by histone acetyltransferase
GCN5 (117). Indeed, there exists the interplay between the
epigenetic landscape and metabolism (118). For example,
pyruvate generated from glycolysis is the main substrate for
acetyl-CoA, a central metabolite coordinating the activity of the
histone acetyltransferase (HAT) enzymes. Increased expression
of the histone lysine demethylase KDM8 is observed in the
context of treatment-induced NEPC and transactivated
expression of EZH2 (119). Mechanistically, the KDM8-mediated
PKM2 nuclear translocation results in the transcriptional activation
of glycolytic program, including GLUT1, HK2, PKM2, LDHA, etc.)
and downregulation of genes for pyruvate dehydrogenase complex
(PDHA1 and PDHB1) to reduce the direction of pyruvate to
mitochondria. As a proof of concept, inhibition of glycolysis lead
to growth inhibition (119). Phosphoglycerate dehydrogenase
(PHGDH) is the first enzyme branching from glycolysis in the
serine biosynthesis which involved in one-carbon metabolism to
supply S-adenosyl methionine (SAM) (120). SAM in turn serves as
the substrate for DNA and protein methyltransferases. Cancer
metabolism is linked to epigenetics in this scenario. Upregulation
of PHGDH is common in NEPC thus facilitating methylation-
related epigenetic modifiers such as EZH2 (105).
POSITRON EMISSION TOMOGRAPHY–
BASED METABOLIC PHENOTYPING

In vivo metabolic phenotyping involves the steps for profiling
and characterizing energetic phenotypes of tumors, which has a
great diagnostic value for PCa patients. In this regard, 18F-FDG,
18F- or 11C-labeled acetate, and 18F- or 11C-labeled choline
represent the three most studied positron emission tomography
(PET) radiotracers in the PCa field (121, 122). Biochemical
Frontiers in Oncology | www.frontiersin.org 6
characteristics of tumors correlate well with uptake of each
radiotracer (Figure 4). Acetate uptake is increased concomitantly
with elevated FASN activity (123, 124). Upregulation of choline
kinase (CK), which is associated with malignancy, promotes
phosphorylation of choline to be incorporated in cellular
membrane as the form of phosphatidylcholine (125, 126). While
both acetate and choline uptake serve as a basis of powerful PET
imaging, it has been well accepted that PCa displays less avidity to
18F-FDG (46, 47). However, largely depending on the disease phase,
84% of mCRPC patients have at least one 18F-FDG positive
metastasis. Moreover, 85% of 18F-FDG positive metastasis
displayed positivity for another tracer 18F-fluorodihydrotestosterone
(18F-FDHT) used as indicator of AR(-FL) expression (29). On the
other hand, prostate specific membrane antigen (PSMA) is
“imageable” AR-target gene product (127). Thus, 68Ga-PSMA-PET
imaging reflects relative changes in treatment-dependent AR activity
thus providing high diagnostic values (128). The expression levels of
glucose uptake–associated genes, including GLUTs and hexokinases
to provide a genomic rationalization for the previously reported
18F-FDG avidity of PSMA-suppressed PC tumors such as NEPC and
DNPC (35, 129). Non-invasive imaging tools have not been available
for oxidative phosphorylation in tumors. Oxidative tumors can be
monitored by the agent 4-[18F]fluorobenzyl triphenylphosphonium
(18FBnTP) whose uptake is driven by mitochondrial membrane
potential (DYm) (130). Thus, combined use of these diagnostic
tools will be powerful to characterize bioenergetic phenotypes of
PCa tumors and determine treatment options.
TUMOR METABOLISM IN CRPC
IS OBSERVED ACROSS VARIOUS
CANCER TYPES?

As discussed above, PCa develops adaptive resistance to AR-
targeting therapy through two distinct groups of mechanism
based on AR dependency. In addition to alterations in AR
structure of function, AR-dependent mechanism involves
aberrant pre-receptor metabolism of steroids which is arguably
unique to CRPC. AR-independent paths include transdifferentiation
into NEPC and DNPC. Nevertheless, advanced CRPC, NEPC, and
DNPC are ultimately addicted to aerobic glycolysis which is
associated with high avidity of FDG in PET scan (29, 35).
Ironically, Warburg effects occur in virtually all types of cancers
andmay represent the final form of tumormetabolism (13, 23, 131).
Consistently, systems biology approach was used to analyze the
expression of metabolic genes across 20 different cancer types and
their impact on clinical outcome, which demonstrates that
downregulation of mitochondrial genes is associated with the
worst clinical outcome across all cancer types (132).
Interdependence of AR and FASN drives AR-dependent CRPC
progression (67), but overexpression of FASN is the rule rather than
the exception in many types of cancers (133). Cancer cells appear to
undergo a tissue-specific metabolic rewiring, which converges
toward a common metabolic landscape. One may ask “What
metabolic programs differentiate one cancer type from the
others?”. A recent report from the Vander Heiden group
October 2020 | Volume 10 | Article 580617
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specifically addressed this issue by testing whether tissue-of-origin
dictates cancer dependence on specific metabolic pathways (134).
Mouse models of pancreatic ductal adenocarcinoma (PDAC) and
non-small cell lung carcinoma (NSCLC) have the same genetic
background with Kras mutation and TP53 deletion, While PDAC
tumors have decreased branched-chain amino acids (BCAA)
uptake, NSCLC tumors incorporate free BCAAs into tissue
protein and use BCAAs as a nitrogen source while PDAC tumors
have decreased BCAA uptake. Expression pattern of BCAA
metabolizing enzymes in original tissues reflect these metabolic
differences in tumors, arguing both tumor genetics and tissue
context define cancer dependence on specific metabolic pathways
(134). While TP53 and RB1 are commonly tumor suppressive in
many cancer types (135), their combined inactivation promotes cell
plasticity in PCa to undergo NEPC differentiation (136, 137). In this
scenario, PCa-specific metabolic status might permit this
lineage transition.
THERAPEUTIC INTERVENTIONS

Two biological events are emerging as hallmarks of cancer:
reprogramming of energy metabolism and evading immune
destruction (1). The latter is an active area of research as cancer
immunotherapy. Metastatic PCa with CDK12 inactivating
Frontiers in Oncology | www.frontiersin.org 7
mutations (3-7% incidence) has durable responses to PD-1
blockade by checkpoint inhibitors (138, 139). As for targeted
therapy in cancer metabolism, gain of function mutations in
isocitrate dehydrogenases (IDH1 and IDH2) result in the
production of the “oncometabolite” 2-hydroxyglutarate (140,
141). Targeting mutant IDH is attractive but limited in PCa:
IDH mutations account for only 1-2% of PCa incidence, which is
much lower than other tumors, e.g. glioma (~50%) (142, 143). For
PCa, dysregulated FA metabolism, which is mechanistically linked
to aberrant AR and/or SREBP signaling (49, 144), has multiple
candidate factors for pharmacological inhibition, including SREBP
(fatostatin) (145), acetyl-CoA carboxylase (ND-646, GS-0976)
(146, 147), and SCD1 (Merck Frosst Cpd 3) (148). IPI-9119 (67)
and TVB-2640 (80) are selective FASN inhibitors for potential
clinical use. Treatment with IPI-9119 led to disruption of the
interdependence between AR and FASN and extensive reduction
in AR signaling (67). Energy disruptors aim to reduce intracellular
ATP level by inhibiting glycolysis or disturbing mitochondrial
mechanisms leading to oxidative phosphorylation (33, 149).
Several options are available for pharmacological inhibition of
glucose metabolism: glucose uptake (phloretin) (150) and glycolytic
enzymes (3-bromopyruvate and Koningic acid for GAPDH) (151,
152). Complex I (NADH–quinone oxidoreductase) is the largest
respiratory complex of the mitochondrial oxidative phosphorylation
system (153). Complex I inhibition has been shown to be a potential
FIGURE 4 | Molecular basis of actions of positron emission tomography (PET) radiotracers in prostate cancer (PCa). Acetate is converted to acetyl-CoA (Ac-CoA)
which serves as a substrate for FASN to produce fatty acids (FA). After enzymatic modification by choline kinase (CK), 11C-choline is incorporated into cell membrane
as the form of phosphatidylcholine. After incorporation into cell, 18F-FDG undergoes phosphorylation by hexokinase (HK) and accumulates as the form of 18F-FDG-6-
P. Mitochondrial membrane potential (DYm) drives accumulation of 4-[18F]fluorobenzyl triphenylphosphonium (18F-FBnTP) at mitochondria. 18F signal is indicative of
respiration-competent functional mitochondria. Binding of ligand dihydrotestosterone (DHT) activates full-length AR as a transcriptional factor to upregulate target
genes such as PSMA. Accordingly, the presence of full-length AR can be monitored by 18F-FDHT. It is noteworthy that constitutively active AR variant fails to bind to
18F-FDHT. Accordingly, 18F-FDHT negativity does not necessarily mean tumors are negative for any form of AR. 68Ga-labeled antagonistic ligand for PSMA can be
used to monitor tumors with active AR signaling.
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clinical repressor of prostate growth based on early correlative and
retrospective studies in men with PCa who had received metformin
for treatment of their associated diabetes mellitus (154, 155). Thus,
mitochondrial energy metabolism emerges as cancer therapy target
(156). In addition to direct inhibition on oxidative phosphorylation
(BAY87-2243 and IACS-010759 for complex I) (157, 158), the
strategies can be developed to prevent entry of the precursors of
TCA cycle intermediates into mitochondria. Glutamine utilization
can be prevented by inhibiting glutamine uptake and metabolism
(CB839 for glutaminase and V9302 for ASCT2) (159–161). CPT1
inhibition prevents the entry of FA into mitochondria and thus
downstream FAO (65). On the other hand, MSDC-0160 inhibits
pyruvate entry into mitochondria by mitochondrial pyruvate
carrier (144).

Therapeutic targets in cancer metabolism in many cases exist
even in the normal cells, which adds potential toxicity and non-
specificity to drugs targeting metabolic pathways (162). It is
necessary to define their specific action in the context of tumor
initiation and progression. The successful application of metabolic
inhibitors will lie in accurate metabolic phenotyping and
stratification of tumors to predict which respond to the given drugs.
DISCUSSION

We have described how PCa is unique from other cancers from
the metabolic point of view. In addition, AR signaling persists in
normal and malignant prostatic cells except for when AR
antagonism triggers the transition to highly glycolytic AR-
indifferent carcinoma. AR determines virtually all aspects of
cellular metabolism while a selected phenotype is dominant
depending on the stage of disease progression. Accordingly, the
question remains as to what directs AR toward specified
metabolic preference. The underlying mechanisms may include
the presence of AR-Vs, differential actions of AR co-regulators,
epigenetics, and tumor microenvironment. Understanding and
targeting the selective AR-metabolome axis may provide the
unique therapeutic opportunity for AR-driven CRPC which is
resistant to current anti-AR therapy.

Except for targeting mutant IDHs, metabolic inhibitors are
potentially active regardless of tumor genetic subtype and thus
Frontiers in Oncology | www.frontiersin.org 8
beneficial to the large majority of men with CRPC who are not
currently candidates for precision medicine (e.g., DNA repair
defects for PARP inhibitors or CDK12 loss for immunotherapy)
(138, 163). Nevertheless, appropriate tumor imaging at spatial
resolution (e.g., use of PET radiotracers) may facilitate select
effective metabolic therapy by determining what bioenergetic
phenotype dominates in tumors (glycolytic, lipogenic, or
oxidative) (121, 122). For instance, FASN inhibition may be
selected when 11C acetate uptake suggests tumors are lipogenic.
High avidity to 18F-FDG is supported by expression of glycolytic
gene signature in NEPC, providing a rationale to target glucose
metabolism for therapy. Tumor plasticity adds another layer of
complexity to PCa as it develops and spreads. Altered metabolic
pathways may be dispensable or indispensable depending on the
stage of tumor progression. This is true for de novo FA synthesis
whose pharmacological inhibition is detrimental in some cases
(antitumorigenic regardless of availability of exogenous lipids)
but tolerable in others (e.g., rescued by lipids derived from diet
and adipose tissues) (67, 70).

To develop effective metabolism-based target therapy (164), it
is crucial to identify metabolic pathways that define the stage of
tumor progression depending on AR and cellular lineage status.
The success of future therapies may be enhanced by the
combination of the prescribed metabolic inhibitors such as
metformin and statins (155, 165).
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