
Frontiers in Oncology | www.frontiersin.org

Edited by:
Changqiang Wu,

North Sichuan Medical College,
China

Reviewed by:
Quan Guo,

Michigan State University,
United States

Xi Wang,
The Chinese University of

Hong Kong, China

*Correspondence:
Lunxu Liu

lunxu_liu@aliyun.com
Zhang Yi

zhangyi@scu.edu.cn

Specialty section:
This article was submitted to

Cancer Imaging and
Image-directed Interventions,

a section of the journal
Frontiers in Oncology

Received: 30 July 2020
Accepted: 04 December 2020
Published: 20 January 2021

Citation:
Wang J, Chen N, Guo J, Xu X, Liu L

and Yi Z (2021) SurvNet: A Novel Deep
Neural Network for Lung Cancer

Survival Analysis With Missing Values.
Front. Oncol. 10:588990.

doi: 10.3389/fonc.2020.588990

ORIGINAL RESEARCH
published: 20 January 2021

doi: 10.3389/fonc.2020.588990
SurvNet: A Novel Deep Neural
Network for Lung Cancer Survival
Analysis With Missing Values
Jianyong Wang1, Nan Chen2, Jixiang Guo1, Xiuyuan Xu1, Lunxu Liu2* and Zhang Yi1*

1 Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu, China, 2 Department of
Thoracic Surgery, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, China

Survival analysis is important for guiding further treatment and improving lung cancer
prognosis. It is a challenging task because of the poor distinguishability of features and the
missing values in practice. A novel multi-task based neural network, SurvNet, is proposed
in this paper. The proposed SurvNet model is trained in a multi-task learning framework to
jointly learn across three related tasks: input reconstruction, survival classification, and
Cox regression. It uses an input reconstruction mechanism cooperating with incomplete-
aware reconstruction loss for latent feature learning of incomplete data with missing
values. Besides, the SurvNet model introduces a context gating mechanism to bridge the
gap between survival classification and Cox regression. A new real-world dataset of 1,137
patients with IB-IIA stage non-small cell lung cancer is collected to evaluate the
performance of the SurvNet model. The proposed SurvNet achieves a higher
concordance index than the traditional Cox model and Cox-Net. The difference
between high-risk and low-risk groups obtained by SurvNet is more significant than
that of high-risk and low-risk groups obtained by the other models. Moreover, the SurvNet
outperforms the other models even though the input data is randomly cropped and it
achieves better generalization performance on the Surveillance, Epidemiology, and End
Results Program (SEER) dataset.

Keywords: survival analysis, prognosis prediction, deep neural networks, multi-task learning, missing value
INTRODUCTION

In clinical research, the development of effective survival analysis methods for censored data is
always required to evaluate the relationship between the risk factors and event of interest (1, 2). It
has been widely applied to modeling the prognosis of cancers to help to optimize and improve
cancer treatment (3–6).

Lung cancer is one of the most heterogeneous cancers and has distinct prognoses. A great deal of
work has been conducted on lung cancer prognostic prediction in recent decades, among which the
series of tumor node metastasis classification (TNM classification) for lung cancer is the most
famous one (4, 7, 8). It has been the guideline for clinical treatment. In the eighth edition of TNM
classification for lung cancer, the five-year survival rate of the IB-IIA stage ranged from 65 to 73%,
which is relatively high. However, in the practice, many IB-IIA stage patients present with a
recurrence and die within five years after treatment. Distinguishing the IB-IIA stage patients with a
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high risk of recurrence and death from low-risk patients is
worthwhile for guiding further treatment and may improve the
lung cancer prognosis. Additionally, the clinicopathologic
variable used in TNM classification is limited for personalized
prediction for different patients and it is limited to integrate new
variables into the existing prognosis models (9). There is a great
need for a new survival analysis method to establish fine-grained
prognoses for individual patients with IB-IIA stage lung cancer
for more accurate individual prediction by integrating an
expanding number of prognostic factors.

Cox (2, 10, 11) proportional hazards regression is one of the
most well-known survival analysis methods. It has been
implemented in many famous software toolboxes and been
widely used in many prognosis prediction tasks (8), such as
TNM classification for lung cancer (4, 7, 8). The Cox
proportional hazards model is semi-parametric and is subject
to a linear model (12). It makes an important assumption about
the hazard function, which is that covariances that affect the
hazard rate are independent. However, in practice, the
relationship between variables and the outcome is complex and
unknown and there may be interactions among variables (13).
Deep neural networks (DNNs) is apparent to be a promising
method to solve these problems.

The DNN is a class of biologically inspired computational
models towards artificial intelligence. It has been proven that
DNNs can approximate any non-linear function when provided
with sufficient neurons. Generally, a DNN can be a very complex
non-linear model and learn latent features from data directly
(14). It has achieved many impressive results in various
applications, such as image classification (15, 16), natural
language processing (17–20), and biomedical analysis (14, 21–
23) in addition to survival analysis (1, 2, 7, 11, 24–26).

Generally, most of DNN based methods for survival analysis
could be divided into two paradigms. The first is to formulate the
survival analysis as a classification problem to evaluate survival
probability at different fixed time points (9, 27, 28). In (27),
neural networks were used to improve the prediction accuracy of
the five-year survival of patients with breast cancer. Lundina
et al. demonstrated that a neural network model trained on some
prognostic factors can accurately predict specific 5-, 10-, and 15-
year breast cancer survival (9).

The other paradigm is to extend Cox regression with DNNs,
in which DNNs are used to extract the features of the patient and
trained using Cox-like cost function with the gradient-based
method. In (12), the authors proposed the Cox-Net model for
prognosis prediction on high-throughput omics data and
implemented it with the Theano math library in Python to
achieve an efficient computational time using GPUs. Huang
et al. modified the Cox-Net method to use multi-omics
survival analysis learning on breast cancer (26). Moreover,
(16), DNN was applied to cardiac motion analysis for human
survival prediction and outperformed the traditional Cox
models. However, Cox-Net inherited the limitation of Cox
models, which is that it was not designed to estimate the
probability of survival at a fixed time. Therefore, it is necessary
to study how to design a unified model that integrates the good
Frontiers in Oncology | www.frontiersin.org 2
properties of the aforementioned two paradigms to improve
the performance.

Moreover, the dataset used in survival analysis commonly
contains incomplete data with missing values in practice. In
many cases, most of the patients with missing values are
excluded (2, 29). Omitting patients with missing values limits
the number of patients to train the prognosis model and may
introduce substantial biases in the study, whereas using patients
with missing values may harm the performance. The learning of
the latent feature of incomplete data with missing values in
survival analysis by using DNNs should be evaluated further.

To address the aforementioned problems, in this study, we
propose a multi-task based neural network model, SurvNet, for
survival analysis of real-world datasets of patients with IB-IIA
stage lung cancer. The main contributions are as follows:

• An input reconstruction mechanism cooperating with
incomplete-aware reconstruction loss is proposed in the
SurvNet for latent feature learning of incomplete data with
missing values.

• A context gating mechanism is proposed in the SurvNet to
bridge the gap between survival classification and Cox
regression for prognosis prediction.

• The proposed SurvNetmodel is trained in amulti-task learning
framework to jointly learn across three related tasks: input
reconstruction, survival classification, and Cox regression.

• A new real-world dataset is collected to evaluate the
performance of the prognosis prediction models for IB-IIA
stage non-small lung cancer.

The proposed method is compared with the traditional Cox
model and Cox-Net in the experiments. The experiment results
demonstrate that the proposed SurvNet outperforms the other
models with a much higher concordance index (Cindex). The
difference between high and low risk groups obtained by SurvNet
is more significant than that of high and low risk groups obtained
by the other models. Furthermore, it achieves better performance
on incomplete data with missing values and better generalization
performance on Surveillance, Epidemiology, and End Results
Program (SEER) dataset.
MATERIALS AND METHODS

Datasets
In this study, we collected the data of 1,280 patients with IB-IIA
stage non-small cell lung cancer at West China Hospital, from
2005 to 2018. There are 1,137 patients remaining after the
exclusion of patients with unknown survival time. Of the 1,137
patients, 346 died and the others are missing follow-up or still
alive. The survival time of the patients is in the range of (1,215)
months. Figure 1 shows the Kaplan-Meier estimation of the
dataset. Clearly, the five-year survival probability of the patients
at the IB-IIA stage is relatively high. However, 42, 97, 160, 219,
and 263 patients died in 1-, 2-, 3-, 4-, and 5-year respectively.
Distinguishing the IB-IIA stage patients with a high risk of
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recurrence or death from low-risk patients is worthwhile for
guiding further treatment and improving the non-small lung
cancer prognosis.

In this study, nine clinicopathologic variables are taken into
account for prognosis prediction. The distribution of the
variables in the final patient series used in the study is shown
in Table 1. In practice, it is difficult to ensure all of the variables
were recorded for each patient. As illustrated in Table 1, there
are lots of missing values (denoted as “unknown”). Of 1,137
patients, 961 contains missing values (at least one of the
clinicopathologic variables is missing). It brings a great
challenge for prognosis prediction models.

Of nine clinicopathologic variables, age and tumor size are
continuous variables, whereas the others are encoded using
Frontiers in Oncology | www.frontiersin.org 3
discrete values, for example, –1 for females and 1 for males. The
missing values are filled with zeros. Thus, the clinicopathologic
variables of each patient are represented by a 9 dimension vector.
Formally, the proposed dataset can be formulated into a set of
triplets {(xi, si, ti) |i = 1, 2, …, n}, where n is the number of the
patients, xi ∈ R9 is a vector of 9 clinicopathologic variables that
describes the i-th patient, si is the patient’s end state, that is, 1 for
dead or 0 for alive, and ti is the patient’s survival time.

Problem Definition
In this study, the aim is to dichotomize the patients in the dataset
into high and low risk groups according to their prognosis index.
This can be formulated as:

dx =
1, if px > PI

0, if px <= PI

(
(1)

where PI is a constant and the prognosis index px is calculated by

px = F xð Þ (2)

where F is generally a complex non-linear function. Thus, the
core task of the prognosis prediction task is to determine a
suitable function F.

However, it is difficult to estimate the prognosis index
function F for fine-grained prognosis prediction of IB-IIA
stage lung cancer. There are three challenges:

• For most patients, the end event (death) has not yet
happened. It is known as censoring. In other words, we
could not get actual survival times for these patients.

• Most of the patients contain at least one missing value.
Omitting patients with missing values may bias the result,
whereas using patients with missing values may harm the
performance. It is a great obstacle for machine learning
methods (30, 31).

• The distinguishing feature is difficult to learn for patients with
IB-IIA stage lung cancer.

Multi-Task Based SurvNet for Prognosis
Prediction
To overcome the aforementioned difficulties, in this study, a novel
multi-task based neural network namely SurvNet is proposed for
the prognosis prediction of IB-IIA stage lung cancer. As Figure 2
illustrated, the proposed SurvNet consists of three modules: Cox
regression module, survival classification module, and input
reconstruction module. Cox regression module is the main
backbone of SurvNet and is used to represent the Function F for
prognosis prediction. Survival classification module and input
reconstruction module are auxiliary modules that aim to
improve the performance of SurvNet for fine-grained prognosis
prediction on incomplete data with missing values.

Input Reconstruction Module
The missing value is a common phenomenon in survival
analysis. The suitable method to deal with the missing values is
always desired to improve the performance of prognosis
prediction models. In the proposed SurvNet, we use zeros to
FIGURE 1 | The Kaplan-Meier estimation of the datasets presented in this study.
TABLE 1 | Distribution of clinicopathologic variables in our datasets of patients
with IB-IIA stage lung cancer. Missing values are denoted as “unknown”.

Clinicopathologic variables Value Num of patients

Age Range (18–86) 1,137
Tumor Size Range (0.3–5)

Unknown
778
359

Sex Female
Male

670
467

Tumor Location Left Upper
Left Lower
Right Upper
Right Middle
Right Lower

287
186
367
87
210

Differentiation Lower
Middle or High
Unknown

501
542
94

Cancer Type Adenocarcinoma
Squamous carcinoma

843
294

Lymp node management Dissection
Biopsy or No Management
Unknown

1,015
97
25

Pleura Immersion Yes
No
Unknown

656
87
394

Operation Lobectomy
Sub Lobectomy

53
1,084
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fill the missing values and then learn the latent feature of
incomplete data by input reconstruction.

Given an input x, it is first encoded into latent feature vector
a2 (the output of layer 2). Then a2 would be feed into input
reconstruction module to be decoded into x*, a reconstruction of
input x. Formally, it can be formulated as:

a2 = f wexð Þ
x∗ = wda2,

(
(3)

where we and wd are encoder and decoder weights, x and x* are
input and reconstruction respectively. f denotes the non-linear
activation function. Actually, the input layer, 2nd layer, and the
input reconstruction layer composes an autoencoder network
(See Figure 2).

Generally, mean square error (MSE) is used to make x*
approximate x as accurately as possible. However, it is not
suitable for input with missing values since we do not know
the true values at such locations and do not want to reconstruct a
new vector with missing values too. To address this problem, an
incomplete-aware cost function is proposed to learn the latent
feature of incomplete data with missing values.

Let the binary vector r denote the locations of missing values
in input x:

r jð Þ =
0, thej – th element of x is missing

1, otherwise

(
(4)
Frontiers in Oncology | www.frontiersin.org 4
The propsoed incomplete-aware cost function is formulated as:

Jre =
1
2no

n

i=1
jjri · x∗i − xið Þjj2 (5)

where i is the sample index and “·”denotes the elementwiseproduct.
Survival Classification Module
To fully xi, utilize the relationship among the input variables xi,
end state si and survival time ti, we introduce an auxiliary survival
classification module to the SurvNet. The output of this module
ac denotes the probability of the patient living over T years or
not. In other words, it learns a patient’s survival probability at
some fixed time point T. Formally, a4 could be calculated as:

ac = s wca4
� �

(6)

where wc and a4 are weight connection and output of layer 4, and
s(z) = 1/(1+ exp(–z)). In this study, layer 3 is a batch norm layer.
a4 could be calculated as:

a4 = tanh w3a3
� �

a3 =
a2−E a2½ �
Var x½ �+∈ ,

8<
: (7)

where w3 is weight connection and tanh(z) = (exp(–z) – exp(z))/
(exp(–z) + exp(z)). E and Var denote the expectation and
variance, respectively. ϵ is a small constant.

In this manuscript, the learning of survival classification
module could be formulated as a binary classification task,
which aims to minimize the following cost function:

Jc =o
n

i
di  di · log acð Þ + 1 − dið Þ · log 1 − acð Þð Þð Þ: (8)

where di is the survival state of the patient i, which is defined as

di =
1, if ti  >  T

0, if ti <  T and si == 1;

(
(9)

and di denotes whether a patient is a valid sample classification
task and it is defined as

di =
1, if ti < T and si == 0

0, otherwise:

(
(10)

It means that patients censored before T are ignored.

Cox Regression Module
This is the main backbone of the proposed SurvNet. As Figure 2
illustrated, it consists of several successive feedforward layers, such
as fully connected layer, batch normalization (32), and dropout
layer, and a new context gating submodule that does not exist in the
traditional Cox-Net (12).

Given an input x, the high-level representation aL could be
calculated layer by layer. Specifically, the activation ap is
computed as

ap = wpaL: (11)
FIGURE 2 | The architecture of the proposed SurvNet for prognosis
prediction. SurvNet consists of a main module, i.e., Cox regression, and two
auxiliary modules, i.e., survival classification and input reconstruction. x and x*
are input and reconstructed input, respectively. we, wd, wp, wc are trainable
weight parameters. l is the layer index. ap, and ac are activations of neurons.
px is the prognosis index. ‘.’ denotes a multiplication operation. Dotted circles
filled with oblique lines denote the missing values.
January 2021 | Volume 10 | Article 588990
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In the traditional Cox-Net (12). ap would be expressed as log
hazard ratio in Cox regression. However, in the proposed
SurvNet, the distribution of log hazard ratio ap is adjusted by
survival probability ac by using context gating mechanism:

px = ap · ac: (12)

Then, we take px as log hazard ratio in Cox regression and use
the following log partial likelihood for Cox regression:

Jcox = o
n

i : si=1
pxi − log o

j : tj≤ti

pxj

 ! !
; (13)

where i and j are sample indexes.
The context gating mechanism is inspired by the attention

mechanism where the input is adjusted by the attention
coefficient. It is notable that the proposed context gating
mechanism bridges the gap between Cox regression and
survival classification to improve the performance. On the one
hand, in the Cox regression, it is supposed that the larger the
survival time, the larger the prognosis index. It reveals that the
prognosis indexes of patients that are alive at some fixed time
point T should be larger than the patients that died at that time
point. On the other hand, the survival classification aims to
predict the survival state of a given patient at a fixed time point T.
As Equation (12) illustrates, the survival prediction a c serves as a
context coefficient that adjusts the hazard ratio a p automatically
thus to produce a better prognosis index that has good
distribution at time point T.

Multi-Task Learning
To train the proposed SurvNet, three learning tasks are
optimized synchronously. The final cost function could be
formulated as:

J = aJcox + bJC + g Jre, (14)

where a, b, and g are the coefficients that balance the Cox
regression, survival classification, and input reconstruction tasks.
By using gradient-based algorithms, the (local) minimal of cost
function J could be found iteratively.

EXPERIMENTS

Evaluation Metrics
To evaluate the performance of the proposed model, two metrics
were used. One is the Harrell’s concordance index (Cindex), which
is valued from 0 to 1. It is an extension of the area under the
receiver operating characteristic curve to censored time-to-event
data (16, 26).

Generally, it is defined as

Cindex =
Si,j si · I pi,  pj

� �
· I ti, tj
� �

Si,j, si · I ti, tj
� � (15)

Where i and j are sample indexes. s, t, and p are end state,
survival time and hazard ratio of a given sample, respectively.
I(z1, z2) is defined as:
Frontiers in Oncology | www.frontiersin.org 5
I z1, z2ð Þ =
1, if z1 < z2

0, otherwise:

(
(16)

The other metric is the survival analysis with the log-rank test.
Kaplan-Meier survival curves are generated by dichotomizing all
patients in the testing dataset into low-risk and high-risk groups
via the median hazard ratio. The corresponding log-rank p-value
indicates the ability of the model to differentiate two risk groups.
The lower the p-values, the better the model performance.

Running Configuration
Datasets
To train the prognosis models, the presented dataset was
randomly split into train set (682 patients), validation set (227
patients), and test set (228 patients). Furthermore, we also
obtained a SEER dataset (9,534 patients) by selecting the IB-
IIA stage lung cancer patients from SEER to test the
generalization performance of the models.

Models
The proposed SurvNet was compared with the traditional Cox
proportional hazards model and neural network extended Cox
model (Cox-Net). For a fair comparison, the Cox-Net shared the
same architecture with the Cox regression module in SurvNet
except for the context gating module. The network settings is
presented in Table 2. Besides, we set T = 36 for SurvNet and the
coefficients a, b, and g were set to 0.2, 1, 3, respectively. The
RMSProp (33) with default learning parameters in Pytorch was
used as the optimizer and the weight decay was set to 0.00001. All
of the networks run 100 epochs with batch size 64. For each run,
the weight parameters that achieved the best Cindex on the
validation dataset were used to evaluate the performance of the
model on the test dataset.

Performance on Our Dataset
To eliminate the influence of initial values of neural networks, we
run Cox-Net, SurvNet, and SurvNet-ae (SurvNet without
survival classification module) five times. For each running, the
model with the highest Cindex on the validation dataset is selected
to evaluate the performance on the test dataset. The boxplot of
the Cindex is presented in Figure 3. It demonstrates that the
proposed SurvNet with and without survival classification
module outperformed the Cox-Net significantly by the using
input reconstruction module to learning the latent feature of
incomplete data with missing values. And the proposed survival
classification module further improves the network ’s
performance. Besides, the best Cindex of traditional Cox model,
Cox-Net, and the proposed SurvNet are 0.5612, 0.5627, 0.6367,
TABLE 2 | Network settings for Cox-Net and SurvNet.

Layer Neurons

1 9 (input)
2 64 (tanh)
3 Batch normalization
4 32 (tanh)
January 2021 | Volume
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respectively. The proposed SurvNet outperforms the other
models significantly.

Furthermore, by interpreting the outputs of the models as the
log hazard ratio, two groups (high risk and low risk) are obtained
by using Eq. (1) where PI was set to the median of log hazard
ratios. The Kaplan-Meier estimation of the Cox model, Cox-Net
and the proposed SurvNet on the test dataset are presented in
Figure 4. The log-rank p-values (the lower the better) of the three
methods are 0.293, 0.072, 0.002. It is obvious that the difference
between high and low risk groups obtained by neural network
based models is more significant than that of high and low risk
groups obtained by the Cox model. Moreover, the difference
between high and low risk groups obtained by SurvNet is most
significant. It demonstrates that the proposed SurvNet achieves
the best performance.

In addition, the distribution of survival times of patients in
each group is presented in Figure 5. The proposed SurvNet
achieves the largest median survival time for low risk group and
the lowest median survival time for high risk group. It
demonstrates that the proposed method improves the
performance of fine-grained prognosis prediction for IB-IIA
stage non-small cell lung cancer.

Robustness on Missing Values
To further evaluate the robustness of prognosis models on
incomplete data with missing values, we randomly zeroed the
values of the input vector in the test dataset with drop probability
dp and then evaluated the performance of the trained models.
For each drop probability dp, we run each model 100 times.

The boxplot of Cindex is illustrated in Figure 6. As drop
probability gets large, the performance of the three models gets
worse. Notably, the proposed SurvNet performed more stable
and the Cindex of the SurvNet is always larger than that of the Cox
model and Cox-Net significantly.

Generalization Performance on SEER
Dataset
The generalization performance is an important measurement of
prognosis models. SEER dataset has been widely used in the
Frontiers in Oncology | www.frontiersin.org 6
literature. In this study, we focused on the IB-IIA stage non-small
lung cancer and obtained a dataset of 9,534 patients.

We evaluated the models, which have been trained using our
dataset, on the obtained SEER dataset. The Cindex of Cox model,
Cox-Net, and SurvNet are 0.5955, 0.5617, and 0.6003,
FIGURE 3 | The boxplot of the Cindex on the validation dataset and test dataset.
“SurvNet-ae” denotes the SurvNet without survival classification module.
FIGURE 4 | Performance of the Cox model, Cox-Net, and the proposed
SurvNet on our test dataset. The Kaplan-Meier estimation (with 95%
confidence intervals) of high risk and low risk groups are shown and the log-
rank test was performed to compare survival curves between two groups.
January 2021 | Volume 10 | Article 588990
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respectively. Besides, as the Kaplan-Meier estimation presented
in Figure 7 shows, the difference between high and low risk
groups obtained SurvNet is more significant than that of high
and low risk groups obtained by other two models. The proposed
SurvNet achieves better generalization performance than the Cox
model and Cox-Net.
CONCLUSION

Prognosis prediction for IB-IIA stage lung cancer is important for
improving the accuracy of the management of lung cancer. In this
study, a new real-world dataset is collected and a novel multi-task
based neural network, SurvNet, is proposed to further improve the
prognosis prediction for IB-IIA stage lung cancer. In the proposed
SurvNet, the input reconstruction module overcomes the problems
by missing values and the proposed context gating mechanism
Frontiers in Oncology | www.frontiersin.org 7
FIGURE 5 | The distribution of survival time of high-risk group and low risk
group obtained by three models.
FIGURE 6 | The boxplot of the Cindex on the test dataset with different
drop probabilities.
FIGURE 7 | The generalization performance of Cox model, Cox-Net, and the
proposed SurvNet on SEER dataset. For each model, the Kaplan-Meier
estimation (with 95% confidence intervals) of high risk and low risk groups are
shown and the log-rank test was performed to compare survival curves
between two groups.
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could bridge the gap between Cox regression and survival
classification. By training in a multi-task framework, the
proposed SurvNet outperforms the traditional Cox model and
Cox-Net significantly. It achieved higher Cindexs and lower
p-values on the proposed dataset and better generalization
performance on the SEER dataset. It is apparent to be a
promising method for survival analysis tasks. A limitation of the
proposed SurvNet may lie on the survival classification module
which just considers survivals on some fixed time point rather than
a set of non-overlap time intervals. Future work will be focused on
how to integrate survival classification module that classifies the
survivals into a set of time intervals with the Cox regression module
to further improve the performance on prognosis prediction.
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