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Background: The differential diagnosis of glioblastomas (GBM) from solitary brain
metastases (SBM) is essential because the surgical strategy varies according to the
histopathological diagnosis. Intraoperative ultrasound elastography (IOUS-E) is a relatively
novel technique implemented in the surgical management of brain tumors that provides
additional information about the elasticity of tissues. This study compares the
discriminative capacity of intraoperative ultrasound B-mode and strain elastography to
differentiate GBM from SBM.

Methods: We performed a retrospective analysis of patients who underwent craniotomy
between March 2018 to June 2020 with glioblastoma (GBM) and solitary brain
metastases (SBM) diagnoses. Cases with an intraoperative ultrasound study were
included. Images were acquired before dural opening, first in B-mode, and then using
the strain elastography module. After image pre-processing, an analysis based on deep
learning was conducted using the open-source software Orange. We have trained an
existing neural network to classify tumors into GBM and SBM via the transfer learning
method using Inception V3. Then, logistic regression (LR) with LASSO (least absolute
shrinkage and selection operator) regularization, support vector machine (SVM), random
forest (RF), neural network (NN), and k-nearest neighbor (kNN) were used as classification
algorithms. After the models’ training, ten-fold stratified cross-validation was performed.
The models were evaluated using the area under the curve (AUC), classification accuracy,
and precision.

Results: A total of 36 patients were included in the analysis, 26 GBM and 10 SBM.
Models were built using a total of 812 ultrasound images, 435 of B-mode, 265 (60.92%)
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corresponded to GBM and 170 (39.8%) to metastases. In addition, 377 elastograms, 232
(61.54%) GBM and 145 (38.46%) metastases were analyzed. For B-mode, AUC and
accuracy values of the classification algorithms ranged from 0.790 to 0.943 and from 72
to 89%, respectively. For elastography, AUC and accuracy values ranged from 0.847 to
0.985 and from 79% to 95%, respectively.

Conclusion: Automated processing of ultrasound images through deep learning can
generate high-precision classification algorithms that differentiate glioblastomas from
metastases using intraoperative ultrasound. The best performance regarding AUC was
achieved by the elastography-based model supporting the additional diagnostic value that
this technique provides.
Keywords: brain tumor, elastography, intraoperative ultrasound, deep learning, convolutional neural network
INTRODUCTION

Glioblastomas (GBM) represent approximately 40% to 50% of all
malignant brain tumors (1). Brain metastases range from 9 to
17% in patients diagnosed with cancer; they may appear as single
lesions and be the first manifestation of malignancy in 30%–50%
of cases (2–4). The proper distinction of these tumors is essential
because they have different treatments and prognosis.

The differential diagnosis of GBM and solitary brain
metastases (SBM) can be difficult due to the similarity in
conventional neuroimaging tests; both can present like single
lesions, contrast-enhancing, with a cystic necrotic appearance
and extensive involvement of perilesional white matter.
Distinguishing them is particularly complicated when there is
no evidence of a previous neoplasm. In these cases, more specific
techniques such as PET (Positron Emission Tomography),
specialized magnetic resonance imaging (MRI) sequences such
as spectroscopy, diffusion/perfusion, and other forms of
quantitative analysis can be used to clarify the origin of these
lesions (5–18); however, in many centers, these techniques are
not available, their acquisition and interpretation can sometimes
be challenging and have a non-negligible margin of error.

Intraoperative diagnosis using frozen samples enables
discriminating glia l tumors from SBM obtaining a
histopathological diagnosis after starting the tumor resection.
Thus, it would be helpful to establish a surgical planning in the
earliest stage of surgery. In the case of GBM, in our center, as in
many others, the policy adopted is to try to carry out a supratotal
resection whenever possible, taking into account the relationship
with functional areas. In lobectomies, for example, resection
includes non-enhancing tumor regions. This technique has been
shown to improve the overall survival of these patients (19–25).

On the other hand, in metastases, resection is limited
exclusively to the contrast-enhancing tumor component,
because it is recognized that peritumoral MRI signal alterations
are exclusively produced by vasogenic edema (26); therefore,
there is still insufficient evidence to support supramarginal
resections in these patients (27). Besides, in some cases, partial
resections of brain metastases near functional areas might be
indicated as a previous step to adjuvant therapies.
2

Intraoperative ultrasound is a low-cost, portable, fast
technique that provides dynamic information in a real-time
fashion. It has been widely used in brain tumor resection (28,
29); the simplicity of its application makes it a valuable
intraoperative imaging option. Elastography is a relatively new
technique in brain tumor pathology. Several publications
highlight the importance of this technique because it provides
better image contrast compared to B-mode and especially
because it allows the characterization of elasticity patterns of
the tumor and peritumoral regions, through which it is possible
to differentiate between several histological types (30–37).

One of the disadvantages of medical imaging techniques is, of
course, their interpretation. Regarding ultrasound, this technique
presents challenges such as operator dependency, noise and
artifacts. Deep learning is a branch of machine learning that has
emerged to improve classification tasks using visual computer
systems. The basic idea is that medical images have much more
information than the human eye can process and distinguish. Deep
learning involves the computation of hierarchical features or
representations of a sample, in which high-level abstract features
are defined by combining themwithother low-level features (38).A
deep learning approach based on convolutional neural networks
(CNN) is getting attention in the medical image field. Artificial
neural networks use a multi-step process that automatically learns
features from an image and then extracts them to perform a
classification task using an algorithm. CNN’s are designed to
automatically and adaptively learn features from data through
backpropagation using multi-block reconstruction called
convolution layers, pooling layers, and fully connected layers (39).
Transfer learning is a technique that allows the use of a pre-trained
CNN model. It has been previously used in oncological
classification tasks with high accuracy. Several studies have
demonstrated the ability of transfer learning to work with small
datasets using minimal image pre-processing (40–44).

The objective of our work is to use intraoperative ultrasound
images and a CNN-based deep learning model in order to
differentiate GBM from SBM. We seek to assess the
intraoperative ultrasound accuracy on this task while
comparing B-mode against an emerging technique such
as elastography.
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MATERIAL AND METHODS

Patient Selection
A retrospective analysis of patients diagnosed with supratentorial
tumors who underwent surgery by craniotomy between March
2018 and June 2020 was performed. Those cases with
histopathological diagnosis of glioblastomas and metastases
that had an intraoperative ultrasound study were included.
Approval was obtained from the ethics committee of our
center as well as patient’s informed consent in all cases.
Clinical, radiological and histopathological variables
were collected.

Acquisition and Pre-Processing of
Ultrasound Images
For the intraoperative ultrasound study, we used the Hitachi
Noblus with a C42 convex probe, 8-10 MHz frequency range,
20 mm scan width radius and 80° scan angle of field of view. The
images were acquired after the craniotomy and before the dural
opening. The probe is placed perpendicular to the dura; manual
compressions were performed maintaining a constant rhythm
and intensity. More details of the elastogram acquisition
technique are described in a previous publication by our group
(34). The ultrasound machine generates a real-time color map
called elastogram simultaneously with B-mode. Figure 1. The
color scale represents the tissue’s elasticity/consistency, with
tones ranging from red (soft) to blue (hard). Elastograms and
B-mode images attempted to cover the highest possible tumor
volume and peritumoral areas with evident echogenicity
changes. Several slices in different planes were acquired. The
images were stored in DICOM format for offline processing.
Frontiers in Oncology | www.frontiersin.org 3
The open-source software ImageJ version 1.50i (National
Institutes of Health, Maryland, United States) was used to pre-
process the ultrasound images. The first step was to convert
DICOM files to 8-bit TIFF format. For the B-mode images, the
tumor and peritumoral area were cropped, removing possible
small peripheral artifacts and dark areas. Images with significant
artifacts or with unrecognizable areas on elastography were
excluded. In the case of elastograms, the area of the elastogram
was cut out by removing the periphery that corresponded to
zones in B-mode. A rescaling was then performed at 299 x 299
pixels; the intensities were normalized, despeckling, and
smoothing by Gaussian blur filter was carried out; thus, we
obtained images with similar intensities and standardized size for
the analysis. Figure 2.

Analysis Using Deep CNN via Transfer
Learning
For the generation of an image classification system, the open-
source software Orange version 3.26 (University of Ljubljana,
Slovenia) was used. The software has a user-friendly interface
based on a work panel and the use of widgets. Supplementary
Figure 1. After importing the images into the workspace, the first
step consisted in the process called embedding. Using
preprocessed ultrasound images, we have trained an existing
neural network to classify tumors into GBM and SBM. Thus, we
have used a transfer learning method applying Inception V3, one
of the most popular image recognition models that have been
previously adapted to the analysis of medical images with
excellent results (45–47). Inception V3 is a 48-layer convoluted
neural network trained in 1.2 million images from the ImageNet
repository (48); each image in the ImageNet Large Scale Visual
FIGURE 1 | Example of intraoperative ultrasound images. 65-year-old man with a right frontal glioblastoma. (A) Elastogram showing the difference in consistency
between the tumor and the peritumoral region (green - red) from the rest of the healthy parenchyma (blue). In the right-lower part of the image, a graphic
representation of the external compression waves is observed. (B) Simultaneous image in B-mode.
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Recognition Challenge repository belongs to one of the 1000
defined classes. Inception architecture is schematically
summarized in Figure 3. Embedding process relies on the
penultimate of these deep networks, where transfer learning is
achieved by encoding images with characteristics of this layer, so
each image is embedded in a 2048-element vector, followed by
classic machine learning algorithms.

Hierarchical Clustering
In the first phase of machine learning, and without previously
establishing categories or classes, the distances of the vector
representations of all the images were calculated using the cosine
as a distance metric. From the distance matrix, a hierarchical
classification was made into groups called clusters. The software
automatically detects related elements in search of patterns. To
determine the elements included in each cluster, an analysis of
the GBM and SBM categories’ distribution within each subgroup
was performed, both in B-mode and elastography. These groups
Frontiers in Oncology | www.frontiersin.org 4
are represented graphically through the development of
a dendrogram.

Classifiers and Model Validation
In order to develop a prediction model, the following
classification algorithms were used: logistic regression (LR)
applying LASSO (least absolute shrinkage and selection
operator) regularization, Neural Network (NN), Random
Forest (RF), Support Vector Machine (SVM), and k-Nearest
Neighbor. Model validation was performed using a ten-fold
stratified cross-validation. Most of the sample was used in the
construction or learning process of the model, leaving a portion
of the sample for the validation of its predictions, the
stratification maintains the proportion of both categories,
namely GBM and SBM, this step is repeated several times
guaranteeing that the cases were distributed randomly as part
of the training and test group. For this reason, cross-validation
has proved to be superior to the simple split random sampling.
A

B

FIGURE 2 | Intraoperative ultrasound images pre-processing. Left: original images of (A) elastogram and (B) B-mode. Right: Final image available for automatic
analysis.
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The models were evaluated using the AUC (area under the
curve)/ROC (receiver operating characteristics), classification
accuracy (CA) and precision scores. Furthermore, confusion
matrices were developed to determine the correct and
misclassified cases for each algorithm.

Comparison of the Automatic Model
Versus Experienced Human Observers
After establishing the best classification algorithm, a training set
made up of 70% of the sample was randomly selected, a predictive
model was built and then was validated in the test-data set, 30%
remaining of the sample, keeping the proportion of each of the
classes. Using the same test-data set, two expert observers analyzed
the images, classifying them as GBM and SBM according to their
judgment. One of them is a senior neuroradiologist with ten years
of experience, and the second observer is a neurosurgeon with
thirty years of experience and knowledge about intraoperative
ultrasound images. Both observers were blinded to the definitive
histopathological diagnosis. Their results were compared with the
automatic algorithm.
RESULTS

Thirty-six patients were included during the study period.
Twenty-six cases corresponded to GBM and 10 to metastases.
The histological diagnoses, radiological and demographic
characteristics, are summarized in Table 1. Illustrative cases
and their appearance on MRI and intraoperative ultrasound
images are shown in Figure 4.

Models were built using a total of 812 ultrasound images, 435
of B-mode, 265 (60.92%) corresponded to GBM and 170 (39.8%)
to metastases. In addition, 377 elastograms, 232 (61.54%) GBM
and 145 (38.46%) metastases were analyzed. Figure 5. The
average of B-mode images was twelve images per patient, while
for elastography, an average of eleven images was analyzed for
each case. The difference in the number of images between the
two modalities is because several images were discarded due to
their low quality or to the presence of noise/artifacts.

By hierarchical clustering, two main groups of images were
identified. For B-mode, the first cluster included 65% of GBM
Frontiers in Oncology | www.frontiersin.org 5
images and the second cluster 46.45% metastasis. For
elastography, the first cluster contained 80.3% GBM and the
second cluster 82.3% metastases. The dendrogram of Figure 6
graphically demonstrated the distribution and results of
the classification.

The performance of the classification algorithms was
represented graphically using the ROC (Receiver Operating
Characteristics) curves. Figure 7. For B-mode, the classification
algorithms’ AUC and accuracy values ranged from 0.790 to 0.943
and from 72 to 89%, respectively. Table 2. Elastography-based
model demonstrated the best performance since AUC and
accuracy values ranged from 0.847 to 0.985 and 79 to 95%.
Table 3 and Supplementary Figure 2.

After the random selection of cases, the human observers’
results versus the automatic selection algorithm are summarized
in Table 4. The accuracy achieved by the experienced observers
was up to 61% in the case of B-mode and 68% for elastography.
For the CNN-based automatic system, the accuracy was 88% in
B-mode and 93% in elastography.
TABLE 1 | Patient characteristics.

Variable n

Age
Sex
Female
Male

64.58 ± 8.76
10 (27.8%)
26 (72.2%)

Preoperative KPS 77.78 ± 9.88
Histopathology
Glioblastoma

Metastases
Lung
Breast
Ovarian
Colorectal
Prostate

26 (72.2%)
10 (27.8%)
6 (60%)
1 (10%)
1 (10%)
1 (10%)
1 (10%)

Tumor location
Frontal
Parietal
Temporal
Occipital

16 (44.4%)
8 (22.2%)
8 (22.2%)
4 (11.1%)

Initial volume (cm3) 25.31 ± 24.27
February 2021 | Volume 10 |
Values are expressed as the mean ± standard deviation or as the frequency (%).
KPS, Karnofsky Performance Score.
FIGURE 3 | Schematic representation of Inception v3 architecture (adapted from GoogLeNet) and the workflow used in the transfer learning process via
convolutional neural network and classification algorithms.
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DISCUSSION

In the present study, we have developed a highly accurate
classification system that allows GBM to be differentiated
from SBM using automatic intraoperative ultrasound image
processing through convolutional neural networks. Furthermore,
elastography showed slightly better performance for the
classification of these tumors compared to the B-mode.

Among the strengths of our work, we can mention that
it is the first time that intraoperative ultrasound B-mode
Frontiers in Oncology | www.frontiersin.org 6
and elastography are applied to discriminate glioblastomas
from metastases. Besides, our study follows a cutting-edge
methodology, in which deep learning techniques are applied
in the analysis of ultrasound images, the combination of these
two technologies in brain tumor pathology has no previous
references in the literature.

We are aware of our limitations, it is worth mentioning that
the sample size from which we started is relatively small. This
aspect can cause an overfitting problem and the creation of an
over-optimistic predictive model. Our strategy to overcome this
FIGURE 4 | Illustrative cases of the use of intraoperative ultrasound. (A) Axial T1 weighted post-contrast (T1WC) image of a 50-year-old man with a right temporal
glioblastoma. (B) Elastogram (left) and B-mode (right). It is a soft tumor with small cystic regions and a peritumoral region of low stiffness compared to the healthy
parenchyma. (C) Axial T1WC image of a 70-year-old woman with a left occipital glioblastoma. (D) The elastogram shows a cystic/necrotic lesion with a nodular
component of intermediate consistency and a relatively soft peritumoral region. (E) Coronal T1WC image of a 45-year-old man with a right parietal lung metastasis.
(F) The elastography image shows a solid/cystic lesion with a soft nodular component and a stiffer peritumoral region. (G) Axial T1WC image of a 52-year-old man
with no history of systemic cancer with a left parieto-occipital metastasis. (H) The elastogram shows a large cystic lesion with a small hard region and a peritumoral
region of similar consistency.
February 2021 | Volume 10 | Article 590756
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issue was to use all the images available in each case, including
different sections and projections of each tumor. We reached
a sample size and a balance of classes enough to carry out
an analysis based on artificial intelligence techniques.

On the other hand, we recognize the limitations that
elastography holds, such as the variability of elasticity
threshold values and the absence of an image quality
control; also, they often contain irrelevant patterns that can
difficult both handcrafted feature extraction and DL methods
such as CNN.

Deep learning, a branch of machine learning, can
automatically process and learn mid-level and high-level
abstract characteristics acquired from raw data, in this case,
ultrasound images. Still, tumor classification into subtypes is
difficult due to variations in shape, size, intensities, and because
different histological types can show similar patterns.

The image acquisition and processing methodology are
rigorous and clear in every step. Strain type elastography is a
technique used in previous studies, and with promising results
regarding its application in the resection of brain tumors (34, 36).
Pre-processing ultrasound images is a fundamental step, which
has been performed with the highest reliability, applying a user-
friendly open-source software that performs robust analysis
without adding complexity (49, 50).
Frontiers in Oncology | www.frontiersin.org 7
The analysis through deep learning has been demonstrated to
be superior in image recognition compared to conventional
radiological techniques and handcrafted radiomics (51, 52).
The methods applied in our study, suppress some cumbersome
steps such as tumor segmentation, which implies a significant
limitation in this type of work and may bias the selection of
variables of interest, such as texture features. The difference is
that CNN, through transfer learning, takes advantage of a
previously trained network of proven validity, to generate
classification systems that automatically and without human
intervention can distinguish between one class or another,
in our case, GBM from SBM. A disadvantage of these systems
is the inability to know which characteristics the software
has used to generate its predictions, sometimes compared to a
“black box” (53). Although feature selection techniques could
be applied after converting images to vector representations,
these techniques are still not validated. Using DL models, we
can lose interpretability in exchange for gaining more robust
and generalizable prediction systems based on much more
complex characteristics.

A comparison has been conducted between the
classification algorithms and experienced human observers
to discriminate these tumor types using ultrasound images
in our study. According to our results, the DL based model
FIGURE 5 | Flow chart of patient and ultrasound image selection process.
February 2021 | Volume 10 | Article 590756
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seems to be more precise and accurate to differentiate one
tumor type from another. These findings make it necessary
to improve our knowledge about how artificial intelligence
works, only in this way, these new technological resources will
serve as support tools in neurosurgical and radiological fields.
Frontiers in Oncology | www.frontiersin.org 8
In our study, the best performance regarding AUC and
accuracy was achieved by the elastography-based model
compared to B-mode in the classification task of SBM and
GBM. One possible explanation for this advantage could be the
better contrast offered by the color images of the elastograms, as
A

B

FIGURE 6 | Graphical representation of the clusters generated from the distance matrices after analyzing images in (A) B-mode and (B) Elastography.
Left: dendrograms of the top two clusters. Right: Bar graph of the probabilities of being assigned to each cluster of glioblastomas (blue) and metastases (red).
A B

FIGURE 7 | Representation of classifier performance using the ROC (Receiver Operating Characteristics) curve for (A) B-mode and (B) Elastography. The best
results were obtained by the Support Vector Machine (SVM) and K-Nearest Neighbor (k-NN) algorithms.
February 2021 | Volume 10 | Article 590756
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previously published (33). Furthermore, we believe that one of
the fundamental differences between the two tumor types is the
correlation between the peritumoral regions’ histology and their
radiological appearance. Although this correlation has not been
proven, previous studies indicate that the elasticity patterns differ
in gliomas and metastases (34, 54). These differences do not seem
to be captured with the B-mode; thus, the peritumoral areas’
elastographic pattern could differentiate both histological types
through automatic analysis of this imaging modality. It is worth
mentioning that the elastograms are produced in an RGB (red-
green-blue) image format. Therefore, the elastogram results from
the superposition of the B-mode image and the colorimetric scale
of the tissues’ elasticity. Our study has been carried out based on
the original image produced by the ultrasound machine because
we wanted to use the same pictures in the classification task by
human observers. Another alternative for future studies could be
to perform an image decomposition in HSB (hue-saturation-
brightness) format and then extract the hue component.

Regarding the differentiation of GBM from SBM, we know
that there are multiple radiological techniques available for pre-
operative or non-invasive applications (5, 8–11, 13, 15–17, 55);
besides, intraoperative histopathological techniques are currently
Frontiers in Oncology | www.frontiersin.org 9
the reference parameter for decision-making (56). Our study
does not intend to make a comparison with the techniques
mentioned above but to demonstrate, on the one hand, the
high value that ultrasound and especially elastography owns in
the study of brain tumors, and on the other hand, highlight that
automatic image processing is a highly reliable technique.
Therefore, we believe that it is essential to develop automatic
ultrasound image analysis methods to increase the precision in
the diagnosis, evaluation, and interventionism based on
this technique.

Our work demonstrates that automated processing of
ultrasound images through deep learning can generate
high-precision classification algorithms that differentiate
glioblastomas from metastases using intraoperative ultrasound.
The best performance regarding AUC and accuracy was achieved
by the elastography-based model, supporting the additional value
that this technique provides by analyzing brain tumor elasticity.
With our results, the next step will be to obtain real-time feedback
based on intraoperative image analysis, allowing the surgeon to
adapt the surgical strategy and even guide tumor resection.
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The patients/participants provided their written informed
consent to participate in this study.
AUTHOR CONTRIBUTIONS

Conception and design: SC and RS. Material preparation, data
collection, and analysis were performed by SC, SG-G, MV-C,
GF-P, IA, MF-P, and TZ. The first draft of the manuscript was
written by SC and all authors commented on previous versions of
the manuscript. All authors contributed to the article and
approved the submitted version.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
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Supplementary Figure 1 | Orange visual environment and the workflow used in
the construction of the predictive model.

Supplementary Figure 2 | Confusion matrices generated by the different
classification algorithms based on (left) B-Mode and (right) Elastography. (A) k-
Nearest Neighbor; (B) Logistic Regression; (C) Neural Network; (D) Random Forest
and (E) Support Vector Machine. The number of instances correctly (purple) and
misclassified (pink) are shown.
TABLE 2 | Diagnostic performance of classification algorithms based on
Ultrasound B-mode images.

Classifier AUC CA F1-Score Precision Recall

kNN 0.938 0.897 0.897 0.898 0.897
Logistic Regression 0.915 0.871 0.871 0.871 0.871
Neural Network 0.945 0.876 0.877 0.879 0.876
Random Forest 0.791 0.749 0.724 0.779 0.749
SVM 0.944 0.887 0.887 0.887 0.887
AUC, Area Under the Curve; CA, Classification Accuracy; kNN, k-Nearest Neighbor;
SVM, Support Vector Machine.
TABLE 3 | Diagnostic performance of classification algorithms based on
Ultrasound Elastography images.

Classifier AUC CA F1-Score Precision Recall

kNN 0.983 0.947 0.947 0.947 0.947
Logistic Regression 0.960 0.889 0.888 0.888 0.889
Neural Network 0.985 0.918 0.918 0.922 0.918
Random Forest 0.861 0.796 0.786 0.803 0.796
SVM 0.985 0.941 0.941 0.942 0.942
AUC, Area Under the Curve; CA, Classification Accuracy; kNN, k-Nearest Neighbor;
SVM, Support Vector Machine.
TABLE 4 | Comparison between convolutional neural network (CNN)-SVM
model performance and the two expert observers.

Ultrasound Modality Classifier AUC CA Precision

B-mode SVM 0.937 0.877 0.883
Observer 1 0.573 0.608 0.659
Observer 2 0.545 0.569 0.642

Elastography SVM 0.976 0.929 0.930
Observer 1 0.622 0.681 0.693
Observer 2 0.587 0.612 0.686
AUC, Area Under the Curve; CA, Classification Accuracy; SVM, Support Vector Machine.
February 2021 | Volume 10 | Article 590756

https://www.frontiersin.org/articles/10.3389/fonc.2020.590756/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2020.590756/full#supplementary-material
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Cepeda et al. Intraoperative Ultrasound in Glioblastomas and Metastases
REFERENCES

1. Sherwood PR, Stommel M, Murman DL, Given CW, Given BA. Primary
malignant brain tumor incidence and Medicaid enrollment. Neurology (2004)
62:1788–93. doi: 10.1212/01.WNL.0000125195.26224.7C

2. Schiff D. Single Brain Metastasis. Curr Treat Options Neurol (2001) 3:89–99.
doi: 10.1007/s11940-001-0027-4

3. Giordana MT, Cordera S, Boghi A. Cerebral metastases as first symptom of
cancer: a clinico-pathologic study. J Neurooncol (2000) 50:265–73.
doi: 10.1023/a:1006413001375

4. Nayak L, Lee EQ, Wen PY. Epidemiology of brain metastases. Curr Oncol Rep
(2012) 14:48–54. doi: 10.1007/s11912-011-0203-y

5. Abdel Razek AAK, Talaat M, El-Serougy L, Abdelsalam M, Gaballa G.
Differentiating Glioblastomas from Solitary Brain Metastases Using Arterial
Spin Labeling Perfusion– and Diffusion Tensor Imaging–Derived Metrics.
World Neurosurg (2019) 127:e593–8. doi: 10.1016/j.wneu.2019.03.213

6. Maurer MH, Synowitz M, Badakshi H, Lohkamp LN, Wüstefeld J, Schäfer
ML, et al. Glioblastoma multiforme versus solitary supratentorial brain
metastasis: Differentiation based on morphology and magnetic resonance
signal characteristics. RoFo Fortschr auf dem Gebiet der Rontgenstrahlen und
der Bildgeb Verfahren (2013) 185:235–40. doi: 10.1055/s-0032-1330318

7. Zhang G, Chen X, Zhang S, Ruan X, Gao C, Liu Z, et al. Discrimination
Between Solitary Brain Metastasis and Glioblastoma Multiforme by Using
ADC-Based Texture Analysis: A Comparison of Two Different ROI
Placements. Acad Radiol (2019) 26:1466–72. doi: 10.1016/j.acra.2019.01.010

8. Qian Z, Li Y, Wang Y, Li L, Li R, Wang K, et al. Differentiation of glioblastoma
from solitary brain metastases using radiomic machine-learning classifiers.
Cancer Lett (2019) 451:128–35. doi: 10.1016/j.canlet.2019.02.054
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