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Radiation resistance is linked to immune escaping and radiation sensitivity. In this study,
we found that the PD-L1 expressions of non-killed tumor cells in NSCLC were enhanced
after radiotherapy, and dihydroartemisinin (DHA) could synergistically enhance the
antitumor effect of radiotherapy in NSCLC. A total of 48 NSCLC patients with sufficient
tumor tissues for further analyses were enrolled. The PD-L1 expressions of NSCLC were
evaluated by immunohistochemistry. Cell apoptosis was measured by flow cytometry,
and the relationship between the PD-L1 expression and radiation resistance was
investigated in patient specimens, xenograft model, and cell lines. First, the results
indicate that the PD-L1 expression of NSCLC was positively related with the radiation
resistance. Second, we found that DHA could eliminate the radiation resistance and
synergistically enhance the antitumor effect of radiotherapy in the NSCLC cells lines and
xenograft model. Finally, mechanistically, DHA could inhibit the PD-L1 expression to avoid
immune escaping by inhibiting TGF-b, PI3K/Akt, and STAT3 signaling pathways. In
addition, DHA could activate TRIM21 and regulate the EMT-related proteins by
inhibiting the PD-L1 so as to enhance the radiation sensitivity and eliminate radiation
resistance to NSCLC. Collectively, this study established a basis for the rational design of
integrated radiotherapy and DHA for the treatment of NSCLC.

Keywords: radiation resistance, synergistic action, dihydroartemisinin, radiotherapy, non-small cell lung cancer,
programmed death ligand 1
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INTRODUCTION

Lung cancer is the main cause of cancer-related deaths in China,
and non-small cell lung cancer (NSCLC) accounts for
approximately 80% of all lung cancers (1). About 70% of
NSCLC patients need radiotherapy during treatment, which is
the most import nonsurgical treatment strategy in the
multidisciplinary management of NSCLC patients (2).
However, radiation resistance is still a major clinical problem,
leading to poor prognosis of cancer patients (3–5).

NSCLC is a highly immunosuppressed malignant tumor, and
numerous mechanisms have been reported to evade the
antitumor immune response, including immunomodulatory
cytokine release, inhibition of T cell activation, and other
defects (5, 6). Radiotherapy kills cancer cells via the ionizing
radiation of X, g, or high-energy electron beams by destroying
the DNA of tumor cells so it can have targeted therapeutic effects
without damaging normal cells (7). However, not all NSCLC
patients have a good response to radiotherapy. Previous studies
related to radiotherapy mainly focus on the tumor cell itself,
ignoring the immune system in the tumor microenvironment.
Recently, increasing evidence has identified a close link between
radiation resistance and immunity evasion because the
radiotherapy effect and radiation sensitivity vary from person
to person (4, 8–13). It has also been reported that some specific
signaling pathways contribute to radiation resistance, such as
DNA damage repair, cell adhesion, immune checkpoint block,
and inflammatory response (4, 7, 14–18).

The programmed cell death ligand 1 (PD-L1) are important
immune checkpoint molecules restricting the antitumor immune
response and inducing immune escape (9, 12, 13). Our previous
studies also show that NSCLC patients with high PD-L1
expressions produce radiotherapy resistance, and their
radiotherapy effect is worse than those with negative PD-L1
expressions (19, 20). Meanwhile, it has also been proven that the
radiotherapy effect can be enhanced with PD-L1 antibodies in
the NSCLC cells and mice (19, 21).

PD-1/PD-L1 antibodies have been widely used in the treatment
of NSCLC, but they are often accompanied with unpredicted side
effects, and many patients cannot derive survival benefits with high
medical expenses (4, 11, 22). Therefore, it is promising to find a
small molecule compound inhibiting the PD-L1 expression that
could be used in combination with radiotherapy for the treatment of
NSCLC. Artemisinin is a famous sesquiterpene lactone
endoperoxide in Artemisia annua L for its derivatives being
effective FDA-approved and WHO-recommended for malaria
treatment pillars (23–25). Dihydroartemisinin (DHA) is an active
metabolite of many artemisinin compounds in Artemisia annua L
and is 5 timesmore potent than artemisinin against malaria (26, 27).
Abbreviations: NSCLC, non-small cell lung cancer; PD-L1, programmed cell
death 1 ligand 1; DHA, dihydroartemisinin; TGF-b, transforming growth factor-b;
NF-ƘB, nuclear factor-kappa-B; PI3K: phosphoinositide 3-kinase; FFPE: paraffin-
embedded archival; EMT, epithelial-mesenchymal transition; STAT3, signal
transducer activator of transcription 3; Erk1/2, extracellular signal-regulated
protein kinases 1/2; iTregs, tumor-infiltrating regulatory T cells; MDSCs,
myeloid-derived suppressor cells; MDSCs, myeloid-derived suppressor cells;
ROS, reactive oxygen species; GST, inhibiting glutathione-S-transferase.
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Remarkably, DHA demonstrates good inhibitory effects on
numerous tumors, including hepatocellular carcinoma, pancreatic
cancer, and lung cancer, et al. (28–33). More interestingly, DHA can
enhance radiation sensitivity to glioblastoma, cervical cancer, and
lung cancer, et al. by regulating inflammatory signaling pathways,
such as nuclear factor kappa-B (NF-Ƙb) and extracellular signal
regulated protein kinase 1/2 (ERK1/2) activity (20, 34–36).
Therefore, we speculated that integrated radiotherapy and DHA
may have better therapeutic effects.

In the present study, we explored the relationship between the
PD-L1 expression and radiation resistance in NSCLC and then
evaluated the synergistic action of radiotherapy and DHA and,
finally, elucidated the potential synergistic mechanisms in
eliminating radiation resistance and enhancing the
radiotherapy effect in NSCLC cells and xenograft mice.
METHODS

Patients and Tissue Collection
A total of 57 patients with recurrent NSCLC after surgical
resection, who received concurrent chemoradiotherapy from
January 2014 to December 2019 at Shanghai Pulmonary
Hospital (Shanghai, China) were identified in the present
study. All patients had adequate information for response
assessment after delivery of conventionally fractionated
radiotherapy. Tumor tissues were fixed in 10% neutral-buffered
formalin and stored as paraffin-embedded archival (FFPE)
samples. All tissues were reviewed by experienced pathologists
for confirmation of histological type and a tumor content higher
than 30%. PD-L1 immunohistochemistry testing was performed
on FFPE samples. The tumor response was assessed according to
the Response Evaluation Criteria in Solid Tumor (RECIST,
version 1.1). This study was approved by the Ethics Committee
of Shanghai Pulmonary Hospital, Tongji University School of
Medicine (K16-202), and written informed consent was obtained
from each participant before any study-related procedures.

Cell Culture and Cell Transfection
The A549, PC9, and Lewis lung cancer cells (LLC) were obtained
from ATCC (Manassas, VA, USA). The A549/X and PC9/X cell
lines were induced and obtained in our research laboratory as
previously described (15, 19). All cell lines were cultured in
Dulbecco’s modified Eagle medium (DMEM) (Hyclone, Longan,
UT, USA) containing 10% fetal bovine serum (FBS) (Life
Technologies, Grand Island, NY) at 37°C with 5% CO2. All
cell lines for research were cultured less than 20 generations
and were routinely screened to confirm the absence of
Mycoplasma contamination.

Cell transfection experiments with PD-L1 mimics and
siRNAs (RiboBio, Guangzhou, China) and their corresponding
controls were carried out with 60%–70% confluent cells grown in
6-well plates by using Lipofectamine 2000 (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s instructions as
previously described (15, 19). The target sequence for si-PD-
L1-RNA was as follows: sense strand, 50-CAUAGUAG
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CUACAGACAGA dTdT-30, antisense strand, and 30-dTdT
GUAUCAUCGAUGUCUGUCU-50. Forty-eight hours after
transfection, the cells were harvested for flow cytometry or
western blot analyses.

Cell Proliferation and Apoptosis Assays
Cells were seeded overnight at a density of 1×105 in 96-well
plates in DMEM containing 10% FBS, and an MTT assay was
used to determine the proliferation of different cells exposed to
DHA (Sigma, USA). After growing for 48 h, the cells were
incubated for 4 h at 37°C with 200 ml MTT solution and
measured at 490 nm by using a microplate reader.

For apoptosis assay, the cells were harvested, washed twice
with pre-cold PBS, centrifuged at 1000 rpm for 10 min, and
resuspended in chilled PBS after growing for 48 h in DMEM
containing 10% FBS. Then, the cells were stained with
fluorescein-conjugated annexin V and propidium iodide (BD
Biosciences) for 15 minutes in the dark at room temperature
according to the manufacturer’s instructions for the apoptosis
staining, and the percentages of apoptosis cells were analyzed by
a BD FACSCalibur flow cytometer (BD Biosciences, San Jose,
CA). The experimental groups are representative of at least three
independent experiments.

Western Blot Analyses
Cells were lysed using RIPA protein extraction reagent (Beyotime,
Beijing, China) supplemented with phenylmethanesulfonyl
fluoride (PMSF) (Riche, CA, USA). Approximately 50 µg of
protein extracts were separated by 10% sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE), transferred onto
nitrocellulose membranes (Sigma), and incubated with specific
antibodies. An enhanced chemiluminescent (ECL) chromogenic
substrate was used to visualize the bands. The blots were
developed with a chemiluminescence system, and GAPDH was
used as a control. All the rabbit monoclonal antibodies were
purchased from Cell Signaling Technology, including PD-L1
(1:5000), Bim, Bcl-2, cleaved caspases-3, cleaved caspases-8
(1:5000), TGF-b, TRIM21, NF-ƘB, AKT Phospho-AKT (Ser473)
(1:2500), AKT (1:2500), Phospho-STAT3 (Tyr705) (1:3000),
STAT3 (1:3000), E-cadherin, N-cadherin, Snail, and Vimentin
(1:1000). Experimental groups are representative of at least 3
independent experiments.

Xenograft Animal Study
The 5-week-old female specific pathogen-free (SPF) C57/BL6
mice were used for animal experiments. The animal studies were
approved by the Institutional Animal Care and Use Committee
of Tongji University School of Medicine and were performed
according to institutional guidelines. The LLC cells were injected
into the right outer thighs of the mice. Radiotherapy was
commenced once a day for 5 days at 2 Gy of the fractionated
radiotherapy on day 1, and DHA was intragastric administered
once a day for 12 days at a dose of 50 mg/kg as Gong and Zhou
et al. previously described (19, 37).

Tumor sizes were assessed every 2 days by a digital caliper.
The tumor volumes were determined by measuring their length
(l) and width (w) and calculating the volume (V) as follows:
Frontiers in Oncology | www.frontiersin.org 3
V=lw2/2. After 12 days of treatment with DHA, the mice were
killed and paraffin-embedded tissues were prepared for
immunohistochemistry staining. Experimental groups
containing at least 6 mice/group are representative of at least 3
independent experiments.

Immunohistochemistry (IHC)
The 4-µm-thick formalin-fixed paraffin-embedded (FFPE)
xenograft NSCLC tumors were dewaxed in xylene, hydrated in
graded alcohols, and washed with PBS. After blocking
endogenous peroxidase activity with 3% H2O2 aqueous
solution for 10 minutes, the sections were incubated with
primary antibodies overnight. After washing with PBS, they
were then incubated with general-type IgG-HRP Polymer
(K5007, Dako, USA) for 10 min, followed by 3, 3 ’-
diaminobenzidine (DAB) for about 2 to 5 min. Finally, the
sections were restained with hematoxylin for 1 min and then
dehydrated in graded alcohols, cleared in xylene, and covered
with coverslips. We adopted the staining-intensity-distribution
(SID) score as previously described by Ye et al. (18). The
intensity of positive tumor cells was categorized into three
grades according to staining intensities compared with those of
internal controls: -, negative staining; + (weak), lighter than
skeletal muscle; ++ (moderate), equal to skeletal muscle; and +++
(strong), more intense than skeletal muscle. The distribution of
positive tumor cells was graded as -, no stained cells; +, <25%
stained cells; ++, 25%–50% stained cells; and +++, >50% stained
cells. We used rabbit polyclonal to PD-L1 (1:100), CD8 (1:100),
CD4 (1:500), Foxp3 (1:500), LyGr (1:1000) and CD11b (1:1000)
as primary antibodies (Novus Biologicals, USA). Experimental
groups are representative of at least 3 independent experiments.

Statistical Analysis
Quantitative values were presented as mean ± standard deviation
(SD) or standard error of mean (SEM) of 3 independent assays.
The independent sample t test was used to compare the mean
values, and c2 test and Fisher’s exact test were used to compare
categorical value. The two-sided P<0.05 was consider to be
statistically significant. Statistical analysis was performed using
SPSS software package (version 17.0, Chicago, SPSS Inc.).
RESULTS

High PD-L1 Expressions Were Associated
With Radiation Resistance and Poor
Prognosis in NSCLC Patients Treated With
Radiotherapy
The relationship between PD-L1 expression and tumor regression
was evaluated in 57 NSCLC patients who received radiotherapy.
Notably, it was observed that the patients with 18 positive
expressions of PD-L1 achieved a good response to radiotherapy,
and the 39 patients with PD-L1 positive tumors had a relatively
lower response to radiotherapy. The ORRs (100% vs. 56.41% [p <
0.001]) were significantly higher in patients with negative PD-L1
expression (IHC 0) than those with positive PD-L1 expression
October 2020 | Volume 10 | Article 595466
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(IHC 1, 2, and 3) (Table 1), suggesting that the expression of PD-
L1 was positively related with the radiation resistance in NSCLC.
Patients with negative PD-L1 expression showed a good response
to radiotherapy, and those with high PD-L1 expression showed
minimal or no response to radiotherapy (Figure 1A). These results
demonstrate that high PD-L1 expressions may promote radiation
resistance and was associated with poor prognosis after
radiotherapy in NSCLC patients. Although patients with
negative PD-L1 expression showed a better radiotherapy effect
in the first radiotherapy, its radiotherapy effect gradually
decreased. It was deduced that radiotherapy not only kills some
of NSCLC cells but also increases the expression of PD-L1 in non-
killed NSCLC cells, and therefore, the expression of PD-L1 in
NSCLC patients with negative PD-L1 expression are enhanced
after multiple radiotherapy.

The Expression of PD-L1 Was Enhanced
After Radiotherapy and Positively Related
With the Radiation Resistance in NSCLC
Cell Lines
To further investigate the role of PD-L1 involved in radiation
resistance, the A549 and PC9 radiation resistance cell lines were
induced and named A549/X and PC/R as we described
previously. Given delivery of 2 Gy radiation, the cell viability
of A549/X (76%) and PC9/X (88%) were higher than A549 (52%)
Frontiers in Oncology | www.frontiersin.org 4
and PC9 (38%), suggesting that the A549/X and PC9/X cells had
already been resistant to radiation (Figure 1B). Western blot
analyses showed that PD-L1 expression was significantly
upregulated in radiation-resistant NSCLC cell lines (A549/X
and PC9/X cells, Figure 1C) compared to normal NSCLC cells
lines (A549 and PC9 cells, Figure 1C). After conventionally
fractionated radiation at doses of 0, 2, 4, and 6 Gy (2 Gy per
fraction per day for 3 consecutive days), the expression of PD-L1
in survival A549 and PC9 cells sorted by flow cytometry
significantly increased, but that in radioresistant A549/X and
PC9/X cells was in a high expression state with no significant
change. (Figure 1D). These results suggest that conventionally
fractionated radiation upregulates the PD-L1 expressions of
A549 and PC9 cells and elevated the PD-L1 expression was
associated with radiation resistance of NSCLC cells.

DHA Eliminates Radiation Resistance of
NSCLC Cell Lines by Inhibiting the PD-L1
Expression
Whether DHA could eliminate radiation resistance of NSCLC
cells was further analyzed. An MTT cell viability assay showed
that cell viability of radiation-treated A549/X and PC9/X cells
was significantly decreased compared to A549 and PC9 cells
after treatment with DHA (Figures 2A, 3A). When the PD-L1
was knocked down, it was found that the cell viability of
radiation-treated A549/X-Si-PD-L1-RNA and PC9/X-Si-PD-
L1-RNA cells was also decreased significantly, whose effects
were similar as DHA (Figures 2B, 3B). The apoptosis rate of
A549/X and PC9/X cells was not significantly changed after a
delivery of 6 Gy radiation (1.0% vs. 1.3%), suggesting that A549/
X and PC9/X cells were resistant to radiation. It was noteworthy
that the apoptosis rate of radiation-treated A549/X and PC9/X
cells significantly increased after treatment with DHA (71.5%
and 68.2%), suggesting that DHA could alleviate radiation
resistance and promote apoptosis (Figures 4A, 5A). When
PD-L1 was knocked down, we found that the apoptosis rate
of radiation-treated A549/X-Si-PD-L1-RNA and PC9/X-Si-PD-
L1-RNA cells was also significantly increased, and the effects
were similar to DHA. PD-L1 knockdown can achieve a similar
effect as DHA on the cell viability and apoptosis rate of
radiation-treated A549/X and PC9/X cells. Western blot
analyses indicated that the PD-L1 expression in A549/X and
PC9/X cells was significantly decreased after treatment with
DHA (Figures 2D, 3D). Taken together, these results indicate
that DHA eliminates radiation resistance of NSCLC cell lines by
inhibiting PD-L1 expression.

DHA Downregulates the PD-L1 Expression
to Evade Immunity Escaping Through
Inhibition of TGF-b, PI3K/AKT, and STAT3
Signaling Pathways
The western blot results indicated that the expressions of TGF-b,
PD-L1, p-AKT, and p-STAT3 were upregulated after delivery of
radiation in A549/X and PC9/X cells, and those were
downregulated after treatment of DHA (Figures 2C, 3C).
More notably, the expression of TGF-b, p-AKT, p-STAT3, and
TABLE 1 | The Characteristics of Efficacy, Radiotherapy Response, and PD-L1
Expression in Patients with NSCLC.

Characteristic Overall PD-L1 expression (n=57) P
value

IHC 0
(n=18)

IHC 1
(n=21)

IHC 2
(n=16)

IHC 3
(n=2)

Age, year 0.018
≥65 25 10 9 6 0
<65 32 8 12 10 2
Sex 1.003
Male 41 16 13 11 1
Female 16 2 8 5 1
T stage 0.021
T1 19 9 7 3 0
T2 27 6 8 12 1
T3 7 3 3 1 0
T4 4 0 3 0 1
N stage
N0 19 7 9 5 0 0.051
N1 17 6 5 6 0
N2 11 3 4 3 1
N3 8 2 3 2 1
TNM stage 0.049
I 23 8 8 7 0
II 18 5 6 6 1
III 16 5 7 3 1
Efficacy
PR 40 18 16 6 0
SD 14 0 5 9 0
PD 3 0 0 1 2
ORR 71.4% 100% 76.19% 37.5% 0 0.001
Negative PD-L1 expression (IHC 0); Positive PD-L1 expression (IHC 1, 2, and 3); PD-L1,
programmed death 1 ligand; IHC, immunohistochemistry; PR, partial response; PD,
progressive disease; ORR, objective response rate.
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A

B

D

C

FIGURE 1 | The PD-L1 expression of NSCLC was positively related with the radiation resistance, and radiotherapy enhances PD-L1 expression of NSCLC cells.
(A) The two representative patients with negative and positive PD-L1 expression achieved different responses to radiotherapy. (B) Growth inhibition of the A549,
A459/X, PC9, and PC9/X cell lines after delivery of 2 Gy of radiation per fraction by MTT assay. (C) The expression of PD-L1 in A549, A459/X, PC9, and PC9/X cell
lines after conventionally fractionated radiotherapy (0, 2, 4, and 6 Gy in 2 Gy per fraction) lines by Western blot. (D) The expression of PD-L1 in A549, A459/X, PC9,
and PC9/X cell after 6 Gy was delivered in three fractions in vitro by flow cytometry.
Frontiers in Oncology | www.frontiersin.org October 2020 | Volume 10 | Article 5954665
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PD-L1 were all reversed after integrated DHA and radiation
treatment significantly more than those of radiation alone,
suggesting the synergistic antitumor effect might be driven by
the inhibition of TGF-b, p-AKT, p-STAT3, and PD-L1 (Figures
2C, 3C). Meanwhile, we also noticed that the expression of p-
AKT, p-STAT3, and NF-ƘB was not changed after transfection
Frontiers in Oncology | www.frontiersin.org 6
with si-PD-L1-RNA in A549/X and PC9/X cells but decreased
after treatment of DHA (Figures 2D, 3D), suggesting that PI3K/
AKT and STAT3 are the upstream signaling pathways of PD-L1,
and DHA downregulates the PD-L1 expression to eliminate
radiation resistance by inhibiting the upstream PI3K/AKT,
STAT3, and NF-ƘB signaling pathways.
A B

D

C

FIGURE 2 | Effects of radiotherapy and DHA on PD-L1, TGF-b, PI3K/Akt, and STAT3 signaling pathways in A549 and A549/X cells. (A) The MTT assay results of
A549 and A549/X cell lines treated with vehicle, D, R, D+R. (B) The MTT assay results of A549/X-NC and A549/X-Si-PD-L1-RNA cell lines treated with vehicle, D, R,
D+R. (C) The expressions of TGF-b, Akt, p-Akt, STAT3, p-STAT3, NF-kB, and PD-L1 in A549 and A549/X cell lines treated with vehicle, D, R, D+R by western blot.
The values are expressed as means ± SEM. ap < 0.05 vs. the A549 group, bp<0.05 vs. the A549/X group, cp < 0.05 vs. the A549/X-R group; (D) The expressions
of TGF-b, Akt, p-Akt, STAT3, p-STAT3, NF-kB, and PD-L1 in A549/X transfected with NC or PD-L1 siNRA while treated with vehicle, D, R, D+R by western blot.
The values were expressed as means ± SEM. ap < 0.05 vs. the A549/X-NC group, bp < 0.05 vs. the A549/X-Si-PD-L1-RNA group, cp < 0.05 vs. the A549/X-Si-PD-
L1-RNA+R group.
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DHA Promotes Radiation Sensitivity to
Facilitate Cell Apotosis by Activating PD-L1-
Independent Downstream Signaling
Pathways Trim21 and EMT-Related Proteins
Indicators of cell apoptosis, including BIM, caspases-8, caspases-
3, and Bcl-2, were analyzed by western blot. The western blot
Frontiers in Oncology | www.frontiersin.org 7
results showed that the expression of pro-apoptosis protein BIM
was significantly upregulated, the cleavage of caspases-8 and
caspases-3 was promoted, and the expression of anti-apoptosis
protein Bcl-2 was downregulated after integrating DHA and
radiation treatment (Figures 4A, 5A). In addition, E-cadherin,
vimentin, Snail, and N-cadherin are all involved in the EMT
A B

D

C

FIGURE 3 | Effects of radiotherapy and DHA on PD-L1, TGF-b, PI3K/Akt, and STAT3 signaling pathways in PC9 and PC9/X cells. (A) The MTT assay results of PC9
and PC9/X cell lines treated with vehicle, D, R, D+R. (B) The MTT assay results of PC9/X-NC and PC9/X-Si-PD-L1-RNA cell lines treated with vehicle, D, R, D+R. (C) The
expressions of TGF-b, Akt, p-Akt, STAT3, p-STAT3, NF-kB, and PD-L1 in PC9 and PC9/X cell lines treated with vehicle, D, R, D+R by western blot. The values are
expressed as means ± SEM. ap < 0.05 vs. the PC9 group, bp < 0.05 vs. the PC9/X group, cp < 0.05 vs. the PC9/X-R group; (D) The expressions of TGF-b, Akt, p-Akt,
STAT3, p-STAT3, NF-kB, and PD-L1 in PC9/X transfected with NC or PD-L1 siNRA while treated with vehicle, D, R, D+R by western blot. The values are expressed as
means ± SEM. ap < 0.05 vs. the PC9/X-NC group, bp < 0.05 vs. the PC9/X-Si-PD-L1-RNA group, cp < 0.05 vs. the PC9/X-Si-PD-L1-RNA+R group.
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process, whose expressions can reflect the rate of cell apoptosis.
The expression of E-cadherin was significantly increased in
A549/X and PC9/X cells treated with radiotherapy and DHA,
and the expression of vimentin, Snail, and N-cadherin were
decreased (Figures 4A, 5A), implicating that DHA may enhance
Frontiers in Oncology | www.frontiersin.org 8
radiation sensitivity via inhibiting EMT process. As shown in
Figures 4A, 5A, the expression of TRIM21 protein was increased
after treatment with radiotherapy and DHA.

When the PD-L1 was knocked down, the apoptosis rate of
radiation-treated A549/X-Si-PD-L1-RNA and PC9/X-Si-PD-L1-
A

B

FIGURE 4 | Effects of radiotherapy and DHA on apoptosis-related signaling pathways in A549 and A549/X cells. (A) The expressions of TRIM21, apoptosis-related
proteins Bcl-2, cleaved caspases-3, cleaved caspases-8, Bim, and EMT-related proteins Vimentin, E-Cadherin, Snail, and N-Cadherin in A549 and A549/X cell lines
treated with vehicle, D, R, D+R by western blot. The values are expressed as means ± SEM. ap < 0.05 vs. the A549 group, bp < 0.05 vs. the A549/X group, cp <
0.05 vs. the A549/X-R group. (B) The expressions of TRIM21, apoptosis-related proteins Bcl-2, cleaved caspases-3, cleaved caspases-8, Bim, and EMT-related
proteins Vimentin, E-Cadherin, Snail, and N-Cadherin in A549/X, A549/X-NC, and A549/X-Si-PD-L1 treated with vehicle, D, R, D+R by western blot. The values are
expressed as means ± SEM. ap < 0.05 vs. the A549/X-NC group, bp < 0.05 vs. the A549/X-Si-PD-L1 group, cp < 0.05 vs. the A549/X-Si-PD-L1+R group.
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RNA cells were also significantly increased. Western blot results
showed that the pro-apoptosis protein BIM was significantly
upregulated, anti-apoptosis protein Bcl-2 was downregulated,
TRIM21 protein was increased, and the cleavage of caspases-8
and caspases-3 was promoted, and these signaling pathways were
Frontiers in Oncology | www.frontiersin.org 9
not changed significantly after treatment of radiotherapy and
DHA (Figures 4B, 5B). These results above indicated that
TRIM21 and EMT-related proteins were PD-L1-dependent
downstream signaling pathways. Taken together, DHA could
promote radiation sensitivity to facilitate cell apoptosis by
A

B

FIGURE 5 | Effects of radiotherapy and DHA on apoptosis-related signaling pathways in PC9 and PC9/X cells. (A) The expressions of TRIM21, apoptosis-related
proteins Bcl-2, cleaved caspases-3, cleaved caspases-8, Bim, and EMT-related proteins Vimentin, E-Cadherin, Snail, and N-Cadherin in PC9 and PC9/X cell lines
treated with vehicle, D, R, D+R by western blot. The values are expressed as means ± SEM. ap<0.05 vs. the PC9 group, bp<0.05 vs. the PC9/X group, cp<0.05 vs.
the PC9/X-R group. (B) The expressions of TRIM21, apoptosis-related proteins Bcl-2, cleaved caspases-3, cleaved caspases-8, Bim, and EMT-related proteins
Vimentin, E-Cadherin, Snail, and N-Cadherin in PC9/X, PC9/X-NC, and PC9/X-Si-PD-L1 treated with vehicle, D, R, D+R by western blot. The values were expressed
as means ± SEM. ap<0.05 vs. the PC9/X-NC group, bp<0.05 vs. the PC9/X-Si-PD-L1 group, cp<0.05 vs. the PC9/X-Si-PD-L1+R group.
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activating PD-L1-dependent downstream signaling pathways
TRIM21 and EMT-related proteins.
Synergistic Actions of Integrated
Radiotherapy and DHA for the Treatment
of Anticancer of NSCLC In Xenograft Mice
To verify whether DHA has a synergistic antitumor effect in
combination with radiotherapy, a Lewis lung cancer mice model
was established and treated with DHA at a dose of 50 mg/kg (D
group), radiation at 2 Gy delivered once a day for 5 days at 2 Gy
of the fractionated radiotherapy on day 1 (R group), DHA and
radiation with the same dose of D and R group (D+R group), and
no treatment (NC group). As shown in Figure 6A, DHA alone
had no significant impact on tumor growth, whereas
Frontiers in Oncology | www.frontiersin.org 10
radiotherapy slightly slowed tumor progression. Most notably,
integrated DHA and radiation treatment significantly inhibit the
tumor growth in comparison with that of DHA alone (p<0.01) or
radiation alone (p<0.01).

The western blot results showed that the pro-apoptosis protein
BIM was significantly upregulated, anti-apoptosis protein Bcl-2
was downregulated, TRIM21 protein was increased and the
cleavage of caspases-8 and caspases-3 was promoted after
treatment of radiotherapy and DHA (Figures 6B, C). The
myeloid-derived suppressor cells (MDSCs) have already been
proven to be able to suppress immune responses and facilitate
tumor progression. The tumor-infiltrating regulatory T cells
(iTregs) can suppress the effector T cells and are also the key
mediators of peripheral tolerance. In this study, we examined the
expressions of PD-L1, CD8+, MDSCs, and iTregs after treatment
of DHA and radiation by using immunohistochemistry method.
A B

C

FIGURE 6 | Synergistic actions of radiotherapy and DHA on NSCLC in xenograft model mice. (A) Tumor volumes of xenograft model mice treated with vehicle, D,
R, D+R in vivo after 12 days. (B) The expressions of apoptosis-related proteins Bcl-2, cleaved caspases-3, cleaved caspases-8, Bim in NC, D, R and D+R groups
by western blot. (C) The expressions of EMT-related proteins PD-L1, TRIM21, Vimentin, E-Cadherin, Snail and N-Cadherin in NC, D, R and D+R groups by western
blot. The values are expressed as means ± SEM. ap<0.05 vs. the NC group, bp<0.05 vs. the D group, cp<0.05 vs. the R group.
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Judging from the immunohistochemistry results, the PD-L1
expression was significantly increased after radiotherapy, but it
was inhibited after integrated DHA treatment. By contrast, the
expressions of CD8+ cells presented the opposite results, which
were enhanced after treatment of integrated DHA and radiation.
We also found that these two key mediators of peripheral
tolerance, iTregs (CD4+, Fox3p+) and MDSCs (LyGr+,
CD11b+), were significantly reduced after treatment of DHA
and radiation in mouse model (Figure 7). Taken together,
integrated DHA and radiotherapy synergistically enhanced
antitumor effect through reducing the accumulation of MDSCs
and iTregs and promoting CD8+ T cells filtration by
downregulating the PD-L1 expression.
Frontiers in Oncology | www.frontiersin.org 11
DISCUSSION

Our previous study has already suggested that PD-L1 may be a
marker to predict radiation resistance and treatment response to
radiotherapy in NSCLC, and combined radiotherapy and anti-
PD-L1 antibody could synergistically enhance antitumor effects
in NSCLC (19). However, it did not elaborate the specific
molecular mechanism of promoting radiation resistance
systematically. In this study, a total of 57 patients were
enrolled to deliver fractionated radiotherapy, 39 patients
with high PD-L1 expressions had radiation resistance, and 18
with negative PD-L1 expression achieved good response
to radiotherapy. We also observed that the original PD-L1
FIGURE 7 | The expressions of PD-L1, CD8+, CD4+, FOXp3+, LyGr+, CD11b+ cells in NC, D, R and D+R groups by immunohistochemistry, scale bar=50 mm.
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negative patients produced radiotherapy resistance after multiple
radiotherapies, whose PD-L1 expression in tumor tissue
was increased. The NSCLC cell experiments also proved that
PD-L1 expressions of non-killed tumor cells in NSCLC were
enhanced after radiotherapy and positively related with the
radiation resistance.

It already has been indicated that the radiotherapy effects are
enhanced in combination with anti-PD-L1 antibody in the
NSCLC cells and mice in our previous study (19). However,
anti-PD-L1 antibody often induces some unpredicted side
effects, and many patients cannot derive survival benefits from
high medical expenses (11, 22). It was reported that artemisinin
can inhibit tumor growth and enhance the radiation response
through triggering production of reactive oxygen species and
inhibiting glutathione-S-transferase or inducing a caspases-
independent apoptosis-like cell death or causing cell cycle
arrest (25, 38). Our previous study demonstrated that
artemisinin might be a potential radiosensitizer through
regulating the expression of G2 checkpoint-related proteins
such as Wee 1 and cyclin B1 in human cervical cancer cells
(20). Zhao et al. also revealed that artesunate enhanced radiation
sensitivity of A549 cells via NO signal transduction pathway to
induce cell cycle arrest at the G(2)/M phase (36). DHA is an
active metabolite of artemisinin and five times more potent
against malaria than artemisinin, which is a safe, effective,
FDA-approved and WHO-recommended mainstay in treating
malaria. Therefore, we speculated that DHA may be a promising
treatment of NSCLC as a radiosensitizer in combination with
radiotherapy. Intriguingly, DHA has already been proven to have
promising antitumor effects in various cancer types via inhibiting
TGF-b, AKT, and STAT3 pathways and promoting the cleavage
of caspases-8 and caspases-3 and downregulating the expression
of anti-apoptosis protein Bcl-2 (30, 31, 37, 39, 40). In this study,
we find that DHA eliminates the local aggregation of iTregs and
MDSCs and promotes the infiltration of CD8+ T cells in the
tumor microenvironment, indicating that DHA can
synergistically enhance the antitumor efficacy in combination
with radiotherapy. To the best of our knowledge, it is the first to
report a small molecule as a radiosensitizer eliminating radiation
resistance of NSCLC through abrogating immunity escaping and
promoting radiation sensitivity via inhibiting PD-L1 expression.

Accumulated evidence also demonstrates that the PD-L1
expression could be enhanced by activation of inflammatory
signaling pathways, including TGF-b and PI3K/AKT pathways,
as well as transcriptional factors, such as NF-kB and STAT3 (4, 6,
12). The PI3K/AKT pathway is essential for the regulation of
growth, proliferation, cell cycle, metastasis, apoptosis, and
autophagy, and the STAT3 signaling pathways can play a key
role in many cellular processes, such as cell growth and apoptosis
(41). In the current study, the expressions of TGF-b, pAKT,
pSTAT3, and PD-L1 were all inhibited after treatment of DHA,
so DHA downregulates the PD-L1 expression by inhibiting the
expressions of TGF-b, pAKT, and pSTAT3. However, it was
noticed that the expressions of p-STAT3, p-AKT, and NF-ƘB in
A549/X and PC9/X cells did not change after transfection of si-
PD-L1-RNA. Therefore, it can be inferred that DHA might
Frontiers in Oncology | www.frontiersin.org 12
abrogate immunity escaping of NSCLC through inhibiting the
PD-L1 expression via inhibiting its upstream inflammatory
signaling pathways, PI3K/AKT, STAT3, and NF-ƘB.

The expression of TRIM21 is closely related to the response to
cancer and cell apoptosis (42, 43). In our previous study, we
found that TRIM21 could directly bind to PD-L1, and its
expression decreased in radiation-resistant cell lines (19). After
treatment of DHA, the protein expression of TRIM21 increased
significantly. The epithelial-mesenchymal transition (EMT) can
facilitate cell apoptosis to promote radiation sensitivity. The
EMT-related proteins include E-cadherin, vimentin, snail, and
N-cadherin, and their expressions can reflect the rate of cell
apoptosis. In this study, the E-cadherin expression was
significantly increased in A549/X and PC9/X cells after
treatment of DHA, and vimentin, snail, and N-cadherin were
all decreased, implicating that DHA may enhance radiation
sensitivity via regulating the EMT process. Furthermore, the
pro-apoptosis protein BIM expression was significantly
upregulated, the cleavage of caspases-8 and caspases-3 was
promoted and the anti-apoptosis protein Bcl-2 expression was
downregulated after treatment of radiotherapy and DHA. DHA
may enhance radiation sensitivity to facilitate cell apoptosis
through activating PD-L1-independent downstream signaling
pathways, TRIM21, and EMT-related proteins.

To sum up, DHA could eliminate the radiation resistance and
synergistically enhance the radiotherapy effect in NSCLC, which
was verified in the NSCLC cells and xenograft mice model. The
FIGURE 8 | The synergistic mechanisms of DHA enhancing radiotherapy
effect of anticancer in NSCLC by inhibiting PD-L1 expression.
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synergistic mechanism of the DHA-enhancing radiotherapy
effect is as follows: On the one hand, it could inhibit PD-L1
expression by inhibiting TGF-b, PI3K/Akt, and STAT3 signaling
pathways to avoid immune escaping. On the other hand, it could
activate by inhibiting the PD-L1-independent signaling
pathways, TRIM21, and EMT-related proteins so as to enhance
the radiation sensitivity (Figure 8). These results provide useful
evidence for further exploration of potential clinical application
of the combined approach of radiotherapy and DHA. Because
DHA is commercially available, and economic, integrated
radiotherapy and DHA may provide a promising treatment
strategy for the NSCLC patients.
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