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Circular RNAs (circRNAs) have important regulatory roles in the development of various
cancers. However, the biological functions and potential molecular mechanisms of
circRNAs in hepatocellular carcinoma (HCC) are still unclear. In this study, we
investigated the role of a new circRNA-circGSK3B (hsa_circ_0003763) and its
molecular mechanism in HCC. We found that circGSK3B was highly expressed in HCC
tissues and HCC cell lines. Additionally, the expression level of circGSK3B significantly
correlated with HCC tumor size and vascular invasion. Functionally, we confirmed that
circGSKBB can promote the proliferation, migration, and invasion of HCC cells in vivo and
in vitro. In terms of mechanism, we demonstrated that circGSK3B acts as a miR-1265
sponge, positively regulates the target gene CAB39, and promotes the reprogramming of
glutamine metabolism, thereby promoting the progression of HCC. Finally, the classic
RNA binding protein QKI was observed to participate in the biogenesis of circGSK3B. In
summary, we proved that the circGSK3B-miR-1265-CAB39 axis can promote the
proliferation, migration, invasion of HCC cells, indicating that circGSKB may serve as a
promising diagnostic and prognostic marker in HCC.

Keywords: hepatocellular carcinoma, circGSK3B, miR-1265, CAB39, glutaminolysis, QKI

INTRODUCTION

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide (1).
It is considered an intractable disease due to its concealed early clinical symptoms and high rate of
metastasis. At present, standard clinical practice for treating HCC is surgery as the main treatment
supplemented with chemotherapy and treatment with multi-target tyrosine kinase inhibitors such as
sorafenib and regorafenib (2). However, the 5-year survival rate of HCC patients is still very low (3).
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Therefore, further exploration of the molecular mechanisms
of HCC progression, particularly the molecular changes related
to the high rate of metastasis and drug resistance, is
urgently needed.

CircRNAs are a type of non-coding RNA, a type of
endogenous RNA widely expressed in mammals. Compared to
traditional mRNAs, circRNAs are characterized by the lack of a
cap at the 5’end and a poly (A) tail structure at the 3’end (4).
CircRNA is highly conserved in the course of evolution, the half-
life of circRNA is approximately 48 h, and its unique circular
structure makes it with resistance to the degradation of RNase R
(5, 6). The expression of many circRNAs has been confirmed to
have significant stage and tissue specificity (7). In recent years,
many studies have shown that circRNAs are abnormally
expressed in cancer tissues and are related to the development
and prognosis of cancer. As an emerging star molecule in the
field of non-coding RNAs, circRNAs have attracted strong
interest from researchers because of their special functions
such as acting as miRNA and protein sponges, and their ability
to self-translate (8). For example, circTRIM33-12 acts as an
miRNA-191 molecular sponge to inhibit the progression of HCC
(9). CircZNF609 can directly encode proteins involved in the
process of myogenesis (10). circSMARCA5 sponge SRSF1
protein regulates GBM progression (11).

Many studies have shown that miRNAs are distributed in the
cytoplasm and are an important part of the RNA-induced
silencing complex (RISC) (12). The classic RNA binding
protein AGO2 is also an important part of this complex (13).
In addition, the sponge effect of miRNA is closely related to the
mechanism of competitive endogenous RNA (ceRNA). CeRNA
refers to many RNA transcripts such as circRNAs, IncRNAs, and
mRNAs; these have homologous sequences and thus share a
large number of binding sites with miRNAs, and they can
compete with each other to further regulate the development
of tumors. circRNAs exert the ceRNA mechanism by acting as a
molecular sponge of miRNA in many tumors (14). For example,
circLONP2 was reported to sponge miR-17-5p to promote the
progression of colon cancer, particularly metastasis. circLONP2
is expected to become a prognostic and anti-metastatic treatment
target for colon cancer (15). However, the specific role of
circRNAs in the progression of HCC, particularly in abnormal
metabolism, has not been clearly elucidated.

Metabolic reprogramming is an important feature that
distinguishes tumor cells from normal cells (16). Since the
discovery of the Warburg effect, an increasing number of
studies has found that glucose metabolism has an important
role in tumor progression. However, relatively few studies on
glutamine metabolism have been published (17). Upregulated
glutamine metabolism is an important sign of tumor metabolic
reprogramming, and tumor cells are highly dependent on
glutamine to provide energy for their survival and proliferation
(18). Glutamine is converted into glutamate by the key enzyme
glutaminase (GLS1), which then is converted into o-
ketoglutarate (0-KG). Glutamate participates in the formation
of glutathione (GSH) to maintain intracellular redox
homeostasis. 0i-KG provides a key carbon source and nitrogen

source to supplement the tricarboxylic acid cycle, which in turn
provides a steady stream of energy for the malignant biological
behavior of tumor cells (19). GLS has been confirmed to be
upregulated in a variety of tumor cells. In addition, it is
considered a potential effective anti-tumor target. Some
inhibitors of GLS, such as C8-839, have undergone phase II
clinical trials for treatment of several malignant tumors (20-22).
Furthermore, recent studies have shown that circHMGCSI can
promote glutamine metabolism and then promote the
development of hepatoblastoma, and that circHECTD1 can
promote the progress of gastric cancer by promoting glutamine
metabolism (23). However, the relationship between abnormally
expressed circRNA and glutamine metabolic reprogramming in
HCC has not been clearly clarified.

In this study, we first confirmed that circGSK3B is highly
expressed in HCC tissues and HCC cell lines, and that the highly
expressed circGSK3B is closely related to HCC tumor size and
vascular invasion. We found that circGSK3B can act as an HCC
oncogene through the circGSK3B/mi-1265/CAB39 axis and
altered glutamine metabolism. In addition, the highly
expressed RNA binding protein QKI can promote the
biogenesis of circGSK3B in HCC. In conclusion, circGSK3B is
expected to be a novel diagnostic and prognostic marker in the
clinical practice of HCC.

MATERIALS AND METHODS

All the materials and methods are included in the Supplementary
Materials and Methods section.

RESULTS

Highly Expressed circGSK3B in HCC

To identify the abnormally expressed circRNA in HCC, we
downloaded three microarray data from the GEO database:
GSE78520, GSE94508, GSE97332. Then we used the GEO2R
method to analyze the differentially expressed circRNAs between
HCC tissues and adjacent normal tissues (Figure 1A). Among
these differentially expressed circRNAs, a total of 10 circRNAs
were significantly upregulated in the three GSE datasets (Figure
1B). Their expression levels were illustrated using heat maps
(Figure 1C, Supplementary Figure 1A). We selected the five
most prominently expressed circRNAs for further verification. A
comparison of 20 paired HCC and adjacent tissues showed that
the expression of circGSK3B, circCSNK1GI, and circUGGT2
was significantly upregulated, but no significant differences in the
transcription of circEIF3I or circTTLL5 were observed (Figures
1D-H). We detected the most significant upregulation of
circGSK3B in 50 paired HCC and adjacent tissues and found
that circGSK3B was remarkably highly expressed in HCC tissues
(Figure 1I). Therefore, it was chosen for further research. Next,
we confirmed that the expression of circGSK3B was significantly
upregulated in HCC cell lines, and the two cell lines HepG2 and
SMMC-7721 were the most upregulated (Figure 1J). Therefore,
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FIGURE 1 | circGSK3B was upregulated in HCC. (A) Volcano plots indicating dysregulated circRNAs between HCC and normal samples from the GSE78520,
GSE94508, and GSE97322 datasets. (B) Venn diagram of altered circRNAs in three GEO datasets. (C) Heat map showing the differences in the expression of 10
circRNAs in HCC. T1-N1, T2-N2, T3-N3, T4-N4, T5-N5 are five paired HCC tissues and their adjacent normal tissues. (D-H) Quantitative real-time PCR was used to
further validate the differences in the expression of five candidate circRNAs in 20 paired HCC tissues and adjacent normal tissues. (l) We detected higher circGSK3B
expression in 40 paired HCC samples relative to adjacent normal samples via gRT-PCR. (J) We detected higher levels of circGSK3B in the Hep-G2, SMMC-7721,
Hep3B, and Huh7 cell lines relative to LO2 cells. All data are presented as the mean + SD. *p < 0. 05, *p < 0. 01, **p < 0. 001.

we further chose these cell lines to study the role of circGSK3B in
HCC and its specific regulatory mechanism.

Validation of circGSK3B Circular Structure
CircGSK3B is derived from the GSK3B gene, located on
chromosome 3 and formed by the end-to-end circularization
of exons 10 and 11 (119582417-119582455). Sanger sequencing
confirmed the end-to-end loop structure of circGSK3B, as well as
its sequence and the circularization position point, which is
consistent with circBase (http://www.circbase.org/) (Figure 2A).
We used specially designed divergent and convergent primers for
qRT-PCR and found that circGSK3B can resist the digestion of
RNAse R, while linearGSK3B cannot (Figure 2B). Next, we
performed PCR on ¢cDNA and gDNA treated with or without
RNAse R in HepG2 and SMMC-7721 cells. Under treatment

with RNAse R, circGSK3B in cDNA (derived from reverse
transcription of mRNA) could still be amplified, but the
convergent primer for linearGSK3B could not amplify the
product. The PCR results without RNAse R treatment
suggested that both products were amplified by divergent and
convergent primers. In addition, compared to cDNA, the
amplification product of circGSK3B was not observed when
using gDNA (Figure 2C). These results indicate that the
generation of the circGSK3B circular structure is not due to
genome rearrangement or PCR artifacts. Next, we treated HCC
cells with the transcription inhibitor actinomycin D and found
that circGSK3B was more stable than linearGSK3B (Figure 2D).
This indicates that circGSK3B may be more stable than
traditional molecules and is more suitable as a diagnostic and
prognostic marker for cancer. To explore the location of
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circGSK3B, we also implemented FISH and found that
circGSK3B was mainly located in the cytoplasm (Figure 2E).
Moreover, to study the relationship between circGSK3B and the
pathological characteristics of HCC patients, we collected the
clinical data of the 50 patients mentioned previously. We found
that the expression level of circGSK3B was positively correlated
with HCC tumor size and vascular invasion (Table 1). In
summary, circGSK3B was confirmed to be circRNA, which is
expected to be a stable diagnostic and prognostic marker for
HCC, and thus is worthy of further investigation.

HepG2 SMMC-7721

FIGURE 2 | Identification of the circular structure of circGSK3B. (A) We confirmed the head-to-tail splicing of circGSK3B by Sanger sequencing. (B) We discovered
that circGSK3B rather than linear-GSK3B resists digestion by RNase R. (C) Linear and backsplicing products were amplified with convergent and divergent primers
with or without treatment with RNase R and subjected to polymerase chain reaction. (D) Actinomycin D (a transcription inhibitor) assays indicated that circGSK3B
was more stable than linear GSK3B. (E) FISH for subcellular localization of circGSK3B. Cy3-labeled circGSK3B probe, DAPI-stained cell nuclei, scale bar = 10 um.

QKI Promotes the Biogenesis of
circGSK3B in HCC

The majority of circRNAs are formed by head-to-tail cyclization
of exons of pre-mRNA. The formation of circRNAs is regulated
by a variety of factors, including RNA-binding proteins (24, 25).
RNA-binding proteins such as FUS, QKI, and EIF4A3 can bind
to specific motifs in flanking introns, thereby promoting the end-
to-end cyclization of exons and circRNA formation (15, 26, 27).
QKI in particular regulates the formation of a large number of
circRNAs during the EMT process (7). Therefore, we

TABLE 1 | Correlation between circGSK3B and clinicopathological characteristics in 40 HCCs.

Variable Group circGSK3B expression
Cases Low High P value

Sex Male 23 12 11 0.749
Female 17 8 9

Age (years) <60 29 16 13 0.288
>60 ihl 4 7

HBsAg Negative 9 5 4 0.673
Positive 31 15 16

Tumor size(cm) <5 25 16 9 0.022
>5 15 4 1

Tumor number Single 31 18 13 0.127
Multiple 9 2 7

Vascular invasion Absent 23 15 8 0.025
Present 17 5 12

TNM -1l 27 13 8 0.1138
-V 13 7 12

Statistical significance (P < 0.05) is shown in bold.
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investigated whether the formation of circGSK3B is also
regulated by a similar mechanism. Because circGSK3B is
derived from exons 10 and 11, we aligned flanking introns 9
and 11 of the GSK3B gene to the known QKI binding motif
through RBP map (http://rbpmap.technion.ac.il/index). We
detected four canonical binding sites with QKI, two of which
were located upstream with the other two downstream of the
circGSK3B-forming splice sites (Figure 3A). Moreover, the
Circinteractome tool (https://circinteractome.nia.nih.gov/)
indicated that circGSK3B can bind to the RNA-binding
protein EIF4A3 (Supplementary Figure 1H). Therefore, to
further explore this issue, we designed siQKI and siEIF4A3.
Both QKI and EIF4A3 were successfully knocked down by these

siRNAs (Supplementary Figure 1I). We found that the
expression of circGSK3B was only significantly reduced when
QKI was knocked down (Figure 3B). We subsequently found
that the expression of circGSK3B but not pre-mGSK3B or
mGSK3B was significantly downregulated when QKI was
knocked down, consistent with our hypothesis that QKI can
regulate the formation of circGSK3B after transcription (Figure
3C). Next, we aimed to further clarify whether QKI can bind
specific motifs in flanking introns. First, we named the upstream
and downstream binding motifs intron 9 QKI binding sequences
(I19QB) and intron 11 QKI binding sequences (111QB), and we
constructed a series of plasmids by mutating one or two sites (#1
wild-type #2, #3 only mutate I9QB or I111QB #4 both I19QB and

presented as the mean + SD. *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 3 | QKI promotes the biogenesis of circGSK3B by binding to flanking introns. (A) The putative binding sites of QKI in the upstream and downstream
regions of the pre-mGSK3B were predicted using the RBP map database. (B) We knocked down QKI and observed a significantly reduced expression of
circGSK3B. (C) Knock down of QKI inhibits the expression of circGSK3B but not pre-mGSK3B or mGSK3B. (D) Different deletion mutants for circGSK3B-
overexpressing plasmids. (E) gRT-PCR indicated that only wild-type plasmids significantly and stably overexpress circGSK3B. (F, G) RNA pull-down and RIP assays
indicated that QKI binds to flanking introns of circGSK3B exons. (H, 1) According to the TCGA database, GLS shows higher expression in HCC tissues relative to
normal tissues, and patients with higher expression of GLS have lower overall survival. (J) We detected higher QKI expression levels in 40 paired HCC tissues relative
to adjacent normal tissues via gRT-PCR. (K) The expression levels of QKI and circGSK3B suggested a significant positive correlation in 40 HCC tissues. All data are
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111QB were mutated) (Figure 3D). After these plasmids were
transfected separately, we found that only the wild plasmid
significantly promoted the formation of circGSK3B, while the
other mutants did not (Figure 3E). These results indicated that
I19QB and I11QB are indispensable for the biogenesis of
circGSK3B. To confirm the specific binding between QKI with
19QB and I11QB, we conducted further pull-down assays, which
showed that both I9QB and I11QB successfully pulled down QKI
(Figure 3F). RIP assays indicated that anti-QKI significantly
enriched I9QB and I111QB (Figure 3G). We also found that QKI
was highly expressed in HCC tissues and negatively correlated
with the overall survival rate of HCC patients (according to the
TCGA) (Figures 3H, I). Finally, in qRT-PCR analyses, we
detected higher QKI expression levels in HCC tissues relative
to adjacent tissues among 40 patients (Figure 3J). We also
confirmed the positive correlation between the expression
levels of QKI and circGSK3B (Figure 3K). Taken together, our
results indicate that the upregulation of circGSK3B is at least
partly due to the promotion of QKI in HCC tissues.

circGSK3B Promotes the Proliferation,
Migration, and Invasion of HCC Cells

To study the role of circGSK3B in the development of HCC, we
designed a plasmid overexpressing circGSK3B (ov-circGSK3B) and
small interfering RNAs specific to circGSK3B (si-circGSK3B) to
overexpress and knock down circGSK3B in HepG2 and SMMC-
7721 cell lines. gqRT-PCR was used to detect overexpression and
knockdown efficiency in two cell lines (Supplementary Figure 1B).
Colon formation and 5-ethynyl-2’-deoxyuridine (EdU) assays
revealed that overexpression of circGSK3B significantly promoted
the proliferation of HepG2 and SMMC-7721 cells, while
knockdown of circGSK3B significantly inhibited the proliferation
of both HCC cells (Figures 4A, B). Next, we conducted Transwell
assays to explore the effects of circGSK3B on the migration and
invasion of HCC cells. Overexpression of circGSK3B successfully
promoted the migration and invasion of HCC cells. Conversely,
knocking down circGSK3B had the opposite effects (Figure 4C).
Finally, to further explore the biological role of circGSK3B, we
established human HCC organoids. We observed that circGSK3B
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FIGURE 4 | circGSK3B promotes the proliferation, migration, and invasion of HCC cells. (A, B) We observed that circGSK3B overexpression significantly promoted
HCC cell proliferation, while silencing circGSK3B had the opposite effect; EAU scale bar = 25 um. (C) Transwell assays showed that overexpression of circGSK3B
promoted the migration and invasion of HCC cells, while knockdown of circGSK3B had the opposite results; scale bar = 100 um. (D) We observed that circGSK3B
knockdown significantly inhibited the growth of human HCC organoids, while overexpression promoted HCC organoid survival; scale bar = 20 um. All data are
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overexpression markedly promoted the growth of human HCC
organoids, while knocking down circGSK3B inhibited its growth
(Figure 4D). In summary, we demonstrated that circGSK3B
promoted the proliferation, migration, and invasion of HCC cells
and the growth of human HCC organoids. It is an important
oncogene in the progression of HCC, and its specific regulatory
mechanism remains to be further explored.

Overexpression and Inhibition of
circGSK3B Influence HCC Growth and
Metastasis In Vivo

To further confirm the biological role of circGSK3B in HCC
progression in vivo, we constructed xenograft tumor models. A
total of 36 BALB/c nude mice were divided into three groups,
and then the volume of subcutaneous tumors was measured once
a week (V = length x width? x 0.5). All mice were sacrificed after
4 weeks and the mass and volume of subcutaneous tumors were
measured. Overexpression of circGSK3B significantly promoted
the growth of xenograft tumors, while knocking down
circGSK3B achieved the opposite effect (Figure 5A). The
volume and mass of xenograft tumors also confirmed those

results (Figures 5B, C). In addition, to verify the effects of
circGSK3B on HCC metastasis, we a constructed nude mouse
lung metastasis model. In all, 18 nude mice were divided into
three groups and 1x10° HepG2 or SMMC-7721 cells were
injected into the tail vein of each mouse. Then, after 4 weeks,
we used an IVIS to detect metastasis and found that
overexpression of circGSK3B significantly promoted lung
metastasis relative to the control group, while knocking down
circGSK3B inhibited it in HepG2 cells (Figure 5D). Finally, HE
staining of lung metastasis tissues indicated that overexpression
of circGSK3B promoted lung metastasis in nude mice while
knock down of circGSK3B showed the opposite results,
consistent with the detection results of the IVIS (Figure 5E).
Taken together, these results indicate that circGSK3B promotes
the growth and metastasis of HCC in vivo.

circGSK3B Sponge miR-1265 in HCC Cell
Lines

Next, to explore the specific mechanism by which circGSK3B
functions, we first explored its protein coding ability using ORF
(open reading frames) finder (http://www.ncbinlm.nih.gov/
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orffinder/), which suggested that circGSK3B could not encode
protein. In recent years, a growing number of studies has shown
that circRNA can act like an miRNA sponge and regulate the
expression of downstream target genes to affect the progression
of tumors (28). We previously confirmed that circGSK3B is
mainly located in the cytoplasm, which suggests that it may play
a post-transcriptional regulatory role through sponge miRNA.
Subsequently, we predicted potential target miRNAs of
circGSK3B through the online databases miRanda (http://www.
mirbase.org/) and PITA (http://genie.weizmann.ac.il/pubs/
mir07/mir07_data.html) and identified 8 miRNAs in common
(Figure 6A). Many studies have indicated that AGO2 is an
important RNA binding protein involved in the role that
circRNA plays as an miRNA sponge (29). Therefore, next, we
performed an RIP assay for AGO2 and observed that
endogenous circGSK3B was significantly pulled down in
HepG2 cells, indicating that it has a close relationship with

miRNAs (Figure 6B). To further explore the target miRNA of
circGSK3B, we designed a special biotin-labeled circGSK3B
probe. This was used to pull down circGSK3B in HCC cell
lines, and the efficiency of the pull down test was verified
(Supplementary Figure 1C). Pull-down assays indicated that
only miR-1265 was obviously enriched by the circGSK3B probe
in HCC cell lines (Figure 6C). To further confirm the close
interaction between miR-1265 and circGSK3B, we designed a
biotin-labeled miR-1265 probe and successfully pulled down
circGSK3B (Figure 6D). Then, we conducted a dual luciferase
reporter gene assay based on the complementary sequence of
circGSK3B and miR-1265 to further clarify the direct binding of
circGSK3B and miR-1265 (Figure 6E). We mutated either or
both of the two binding sites located in the 3'UTR region of
circGSK3B (Figure 6F). Four different circGSK3B mutant
fragments were constructed and inserted into the downstream
region of the fluorescent reporter gene, and then we
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co-transfected miR-1265 mimic and the reporter gene into
HepG2 and SMMC-7721 cell lines. We observed that luciferase
reporter activity was significantly reduced compared to the
control group only when wild-type circGSK3B was co-
transfected (Figure 6G). These conclusions fully proved that
circGSK3B and miR-1265 directly and tightly bind through the
binding site. Moreover, FISH assays indicated that circGSK3B
and miR-1265 are co-localized in the cytoplasm, further
suggesting that circGSK3B may have a strong interaction with
miR-1265 (Figure 6H). Finally, we found that miR-1265 was
significantly lower expressed in HCC tissues relative to normal
tissues via qQRT-PCR, which was consistent with the result of
TCGA database (Figure 61, Supplementary Figures 1D, E).
Further analyses revealed that circGSK3B and miR-1265 were
negatively correlated in 50 HCC tissues (Figure 6J). In
conclusion, circGSK3B acts as a molecular sponge of miR-1265
in HCC, but its complete regulatory pathway to promote the
development of HCC needs to be further explored.

circGSK3B Positively Regulates CAB39
Through miR-1265

To further clarify the molecular mechanisms of circGSK3B
regulating HCC, we subsequently explored the function of
miR-1265 in HCC and its specific regulatory mechanism.
Several studies have reported that miR-1265 can act as a tumor
suppressor in cancer, and our previous results that miR-1265
shows low expression in HCC support those findings (30). We
constructed miR-1265 mimics and miR-1265 inhibitors to carry
out functional assays. The transfection efficiencies of miR-1265
mimics and inhibitors were detected by QRT-PCR (Supplementary
Figure 1F). Colony formation assays and Transwell assays showed
that overexpression of miR-1265 significantly inhibited the
proliferation, migration, and invasion of HCC cells, while
knockdown of miR-1265 achieved the opposite effects (Figures
7A, B). These results confirm the tumor suppressor effect of miR-
1265 in HCC. Moreover, to explore the downstream target genes of
miR-1265, we used bioinformatics analyses. Both TargetScan7.2
(http://www.targetscan.org/vert_72/) and miRWalk3 (http://
mirwalk.umm.uni-heidelberg.de/) suggested that CAB39 is a
potential target gene of miR-1265 with a high score (Figure 7C);
CAB39 has been reported to be an oncogene in various cancers
(31). Then, we conducted a dual luciferase reporter gene assay to
determine whether miR-1265 can directly bind to CAB39 in HCC
cells. The binding sites of miR-1265 and CAB39 are shown in
Figure 7D. Wild-type (wild-CAB39) and mutant-type CAB39
(mut-CAB39) reporter genes were constructed. Then we co-
transfected the miR-1265 mimic and the reporter gene into
HepG2 and SMMC-7721 cell lines. The results showed that
fluorescence intensity was only significantly reduced when wild-
CAB39 was co-transfected, which made it clear that miR-1265 can
directly bind to CAB39 (Figure 7E). Next, we further explored the
regulatory effects of miR-1265 on CAB39 expression in HCC. qRT-
PCR showed that miR-1265 regulated the expression of CAB39 in
HepG2 and SMMC-7721 cell lines (Figure 7F). In addition,

according to the TCGA database (http://www.tcga.org/), CAB39
shows significantly high expression in HCC tissues and is
associated with lymph node metastasis of HCC patients (Figures
7G). We detected the higher CAB39 expression in HCC tissues
relative to normal tissues via gqRT-PCR in 40 paired HCC tissues,
which was consistent with the result of Immunohistochemistry
in HCC tissues(Figures 7H, I). Kaplan-Meier plots were
subsequently constructed through the kmPlot website (http://
kmplot.com/analysis/index.php?p=service); these indicated that
patients with a higher CAB39 expression level had significantly
worse survival than those with a lower level (Figure 7J). Finally, to
determine whether circGSK3B indeed regulates the expression of
the downstream target gene CAB39, we investigated the
correlation between the expression levels of circGSK3B and
CAB39 (Figure 7K), and found a positive association. Western
blotting and immunofluorescence results further confirmed that
circGSK3B positively regulated CAB39 in HCC cells (Figures 7L,
M). In summary, these results confirm that miR-1265 acts as a
tumor suppressor in HCC, and circGSK3B may positively regulate
the ceRNA target CAB39 through miR-1265, thereby promoting
HCC progression.

circGSK3B Promotes the Development of
HCC Through the circGSK3B-miR-1265-
CAB39 Axis

Metastasis is the leading cause of cancer death, and the epithelial-
mesenchymal transition (EMT) is considered an important
initiation and promotion mechanism for HCC metastasis (32).
CAB39 has been reported to regulate the EMT process in HCC
through the ERK signaling pathway (31). Here, Western blotting
showed that E-cadherin was downregulated and N-cadherin was
upregulated when circGSK3B was overexpressed, while knocking
down circGSK3B had the opposite effect (Figure 8A). Therefore,
we concluded that circGSK3B can promote the EMT process in
HCC cells. Next, to investigate whether circGSK3B can promote
the progression of HCC through the circGSK3B-miR-1265-
CAB39 axis, we conducted reverse assays. miR-1265 inhibitors
were used to verify whether knocking down miR-1265 would
reverse the cancer-suppressive phenocopy when knocking down
circGSK3B. The target gene CAB39 and related protein
expression of its downstream ERK signaling pathway were
detected by Western blotting, and E-cadherin and N-cadherin
markers were also detected. These results indicate that knocking
down miR-1265 significantly reversed the low expression of
CAB39, N-cadherin, phosphorylated ERK (p-ERK), c-jun, and
c-myc caused by inhibition of circGSK3B. In addition, the
expression of ERK did not significantly change (Figure 8B).
These results suggest that circGSK3B can regulate the
downstream circGSK3B-miR-1265-CAB39 axis in HCC cells.
Next, to further confirm that the biological effects of
circGSK3B can also be reversed by miR-1265 inhibitors in
HCC cells, we conducted a series of functional assays. Colony
formation, EAU and Transwell assays indicated that the
reduction in proliferation, migration, and invasion ability
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caused by circGSK3B knockdown was successfully reversed by
miR-1265 inhibitors in HCC cells (Figures 8C-E). Reverse
assays were also conducted on human HCC organoids and
showed that miR-1265 inhibitors reverse the growth-inhibiting
effect on HCC organoids when knocking down circGSK3B
(Figure 8F). In conclusion, overexpression of circGSK3B
promotes the progression of HCC via the circGSK3B-miR-
1265-CAB39 axis.

circGSK3B Promotes Malignant Biological
Functions in HCC Through Glutamine
Metabolism

Upregulated glutamine metabolism is an important marker of
metabolic reprogramming in tumors, and tumor cells are highly
dependent on glutamine for their survival and proliferation (18).
Myc can regulate the uptake of glutamine and the expression of
GLS, which is closely related to glutamine metabolism (33, 34).
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Thus, we explored whether circGSK3B is related to glutamine
metabolism. circRNA-miRNA-mRNA pathway analyses
confirmed this to be the case (Supplementary Figure 2). Next,
we found that glutamine, glutamate, and o-KG levels were
significantly increased when circGSK3B was overexpressed in
HepG2 and SMMC-7721 cell lines (Figures 9A-C). These
results confirmed that circGSK3B is closely related to glutamine
metabolism. GLS is a key enzyme involved in glutamine
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metabolism. Therefore, we further explored whether circGSK3B
regulates glutamine metabolism in HCC cells by regulating GLS
expression. Both qRT-PCR and Western blotting indicated that
circGSK3B positively regulated GLS expression (Figures 9D, E).
According to the TCGA database, GLS shows significantly higher
expression in HCC tissues, and is associated with lymph node
metastasis and overall survival in HCC patients (Figures 9F-H).
Our qRT-PCR results for 40 paired HCC tissues were also
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(I) The expression of GLS in 40 paired HCC and normal tissues was detected by gRT-PCR (paired-samples t test). (J) Pearson’s correlation analyses indicated a

and normal tissues. (K, L) Colony formation assays and Transwell assays

indicated that the promotional effects of overexpressing circGSK3B on HCC cell proliferation, migration, and invasion were rescued after co-transfecting with si-GLS;
scale bar = 100 um. (M) Active oxygen assays suggested that low ROS levels caused by overexpressing circGSK3B were rescued after co-transfecting with si-GLS
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consistent with these data from TCGA (Figure 9I). In addition, to
further confirm the regulatory relationship between circGSK3B
and GLS, we investigated the correlation between the expression
levels of circGSK3B and GLS, and found a positive relationship
(Figure 9J). These results indicate that circGSK3B can promote
glutamine metabolism by regulating GLS expression. Finally, to
clarify the effects of circGSK3B on the malignant biological
behavior of HCC through glutamine metabolism reprogramming,
we conducted several functional assays. siGLS was used to knock
down the expression of GLS in HCC cell lines and the knockdown
efficiency was confirmed (Supplementary Figure 1G). Colony

formation assays and Transwell assays showed that siGLS reverses
the increased proliferation, metastasis ability induced by
overexpression of circGSK3B in HCC cells (Figures 9K, L).
Given that glutamine metabolism is closely related to
intracellular ROS levels, we also analyzed the ROS levels in
HCC cells. The levels were maintained at a low oncogenic level
when circGSK3B was overexpressed, and siGLS reversed this low
ROS level (Figure 9M). In summary, we proved that circGSK3B
can reprogram glutamine metabolism by regulating GLS
expression, thereby promoting the malignant biological behavior
of HCC cells.
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DISCUSSION

Although targeted therapy and targeted combined immunotherapy
of HCC have developed rapidly in recent years, the overall survival
rate of HCC patients remains problematic (2). Therefore, it is very
urgent to study the specific molecular mechanisms of HCC and to
find valuable early diagnostic and prognostic markers. circRNAs are
a class of endogenous ncRNAs that are more stable and abundant
than linear RNAs. However, their biological role in cancer is not yet
clear. It was reported that High expression of hsa_circRNA_012515
was associated with lower OS and shorter PES in NSCLC (35).
CircRNA cRAPGEF5 can inhibit the metastasis of renal cell
carcinoma via the miR-27a-3p/TXNIP pathway (36). In addition,
the role of circRNA in drug resistance has been studied recently,
reduction of circular RNA Foxo3 was found to promote prostate
cancer progression and chemoresistance to docetaxel (37). We
discovered a new oncogenic circRNA derived from the GSK3B
gene, circGSK3B. The circGSK3B was highly expressed in HCC
tissues, and positively associated with HCC tumor size and vascular
invasion. Most circRNAs are formed in the nucleus, however, m°A
modification promotes the cytoplasmic output of circRNAs (38).
Thus, the regulation mechanism of circGSK3B cytoplasmic output
including m°A modification needs to be further studied.
Additionally, we explored the biological role of circGSK3B in
HCC and found that its overexpression promotes the
proliferation, migration, and invasion of HCC cells in vivo and in
vitro, while circGSK3B knockdown has the opposite effect. In short,
we proved that circGSK3B is a potential diagnostic/prognostic
marker and therapeutic target in HCC.

The molecular mechanisms of circRNAs in tumors are
different. It has been widely reported that circRNAs can act as
miRNA sponges, their most common mechanism (39). The lack
of ORFs and the cytoplasmic location of circGSK3B allowed us to
speculate that circGSK33B may interact with miRNAs. RIP
assays for AGO2 further confirmed our hypothesis and pull-
down and dual luciferase report assays confirmed that

circGSK3B binds tightly to miR-1265. To the best of our
knowledge, we are the first to confirm that miR-1265 may act
as a tumor suppressor in HCC. Subsequently, we determined the
entire ceRNA regulatory pathway of circGSK3B. Functional
assays and reverse assays confirmed that circGSK3B promotes
HCC progression in vivo and in vitro by sponging miR-1265
thereby positively regulating its CeRNA CAB39 and downstream
ERK signaling pathway. CAB39 can activate the downstream
AMPK-mTOR or ERK signaling pathway to promote the
development of gastric cancer (GC) or HCC (21, 22).
Additionally, we detected a negative correlation between the
expression levels of circGSK3B and miR-1265 and a positive
correlation between the expression levels of circGSK3B and
CAB39. These results further suggested the circGSK3B-miR-
1265-CAB39 pathway. In recent years, it has been reported
that circRNAs can encode proteins, but the premise for this
function is that circRNA is mainly located in the nucleus, and
circRNA contains Alu translation elements and ORFs (6).
Because circGSK3B was mainly located in the cytoplasm and
does not contain an OREF, the function of encoding proteins can
be excluded. In addition, it is worth noting that many studies
have shown that circRNAs can sponge multiple miRNAs (40). In
this study, we found that four miRNAs were significantly pulled
down by the circGSK3B probe. Whether circGSK3B can sponge
the other three miRNAs requires further exploration. Recently,
many circRNAs in exosomes have been found to be closely
related to tumorigenesis and development. The exosome
circSHKBP1 promotes the progression of GC by regulating the
miR-582-3p/HUR/VEGF axis and inhibiting HSP90
degradation (41). The exosome circSATB2 can promote the
progression of non-small cell lung cancer (41). Due to its
special circular structure and stable expression, circGSK3B may
be a potential marker for HCC diagnosis. However, this study
did not detect the expression of circGSK3B in plasma samples of
HCC patients, which requires further research. Collectively,
these results indicate that circGSK3B regulates the expression
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FIGURE 10 | Schematic diagram illustrating the mechanism of circGSK3B mediated by QKI to promote HCC progression through the circGSK3B/miR-1265/CAB39 axis.
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of the oncogene CAB39 by sponging miR-1265, thus promoting
the development of HCC.

Metabolic reprogramming, including altered glucose and
glutamine metabolism, is a major feature of tumor cells. A
growing number of studies has shown that circRNAs can
regulate aerobic glycolysis (Warburg effect) and the glutamine
metabolism of tumor cells (17). The downstream molecule Myc
of ERK signaling pathway is closely related to the metabolism of
glutamine,Myc can increase the uptake of glutamine by up-
regulating the expression of the glutamine transport gene
SLCA15/ASCT2 (33). Thus, we further explored the relationship
between circGSK3B and glutamine metabolism. The results
showed that circGSK3B regulates HCC progression by
regulating GLS expression and then regulating glutamine
metabolism. As far as we know, this is the first report that
circRNA can regulate glutamine metabolism in HCC, which
provides a new and meaningful mechanism for circRNAs to
regulate the development of HCC. However, the specific
regulation mechanism remains to be further studied. In
addition, the circGSK3B parent gene GSK3B is a glycogen
synthase kinase and a key enzyme involved in liver glucose
metabolism. Interestingly, Myc is also able to transfer glucose
produced via aerobic metabolism through the TCA cycle to the
anaerobic glycolysis process (33). This suggests that circGSK3B
may also be involved in the abnormal Warburg effect in HCC,
although this needs to be further verified.

Many studies have revealed that circRNAs are widely
regulated during their formation process. The three main
pathways generating circRNAs include intron pairing-driven
circularization, RBP pairing-driven circularization, and Lariat-
driven circularization (25). In particular, RBPs without a dsRBD
domain may promote the biogenesis of circRNAs by binding
specific motifs in flanking introns (24). For example, QKI can
regulate the expression of circZKSCAN and participate in the
HCC process (26). EIF4A3 has also been reported to promote the
formation of circSEPT9 and promote the development of triple-
negative breast cancer (27). Our research revealed that QKI can
bind to flanking introns in pre-mGSK3B, thus regulating the
formation of circGSK3B at the post-transcriptional level. We also
found a positive correlation between the expression of QKI and
circGSK3B. Several studies have reported that QKI may have
dual roles in cancer. It can promote the development of colon
cancer but inhibit tumor progression in prostate cancer (42, 43).
From our research, QKI may itself be an oncogene in HCC.
However, its specific role in HCC, independent of the biological
function of circGSK3B, remains to be further explored. In
conclusion, we found that QKI is highly expressed in HCC,
and this promotes the biogenesis of circGSK3B.
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