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The principal issue derived from thyroid cancer is its high propensity to metastasize to the
lymph node. Aberrant exprssion of long non-coding RNAs have been extensively reported
to be significantly correlated with lymphatic metastasis of thyroid cancer. However, the
clinical significance and functional role of lncRNA-MAPK8IP1P2 in lymphatic metastasis of
thyroid cancer remain unclear. Here, we reported that MAPK8IP1P2 was downregulated
in thyroid cancer tissues with lymphatic metastasis. Upregulating MAPK8IP1P2 inhibited,
while silencing MAPK8IP1P2 enhanced anoikis resistance in vitro and lymphatic
metastasis of thyroid cancer cells in vivo. Mechanistically, MAPK8IP1P2 activated
Hippo signaling by sponging miR-146b-3p to disrupt the inhibitory effect of miR-146b-
3p on NF2, RASSF1, and RASSF5 expression, which further inhibited anoikis resistance
and lymphatic metastasis in thyroid cancer. Importantly, miR-146b-3p mimics reversed
the inhibitory effect of MAPK8IP1P2 overexpression on anoikis resistance of thyroid
cancer cells. In conclusion, our findings suggest that MAPK8IP1P2 may serve as a
potential biomarker to predict lymphatic metastasis in thyroid cancer, or a potential
therapeutic target in lymphatic metastatic thyroid cancer.

Keywords: thyroid cancer, lymph node metastasis, anoikis resistance, MAPK8IP1P2, Hippo signaling
INTRODUCTION

Thyroid cancer is one of the most prevalent endocrine malignancies with an increasing incidence in
recent years worldwide (1, 2). According to histological classification, thyroid carcinoma can be
divided into papillary thyroid cancer (PTC), follicular thyroid cancer (FTC), anaplastic thyroid
cancer (ATC), and medullary thyroid cancer (MTC), where PTC is the most common histological
type, accounting for 85–90% of all cases (3). Most PTCs are effectively treated by surgical removal,
followed by adjuvant radioactive iodine therapy, and has a favorable 5-year survival rate exceeding
95% (4). However, the principal issue derived from PTC is its high propensity to metastasize to
lymph node, which significantly affects the prognosis of thyroid cancer patients (5). Therefore,
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identification of lymph node metastasis-relevant factor will
facilitate early detection of lymph node metastasis and
development of anti-lymph node metastasis therapeutic
strategy in thyroid cancer patients.

With recent technological advances enabling us to detect rare
circulating tumor cells that are anoikis resistant, anoikis
resistance becomes a hot topic in cancer research. Anoikis
resistance that is a kind of capacity of cancer cells to survive
under suspension conditions has been extensively reported to be
a hallmark of metastatic cancer cells, which significantly
contributes to distant metastasis in various cancer types,
including bone metastasis of prostate cancer (6) and multiple
organs metastasis in non-small cell lung cancer (7). Furthermore,
anoikis resistance has also been demonstrated to play an
important role in metastatic thyroid cancer. Kittirat Saharat
and colleagues have reported that tumor susceptibility gene
101 protein (TSG101) was identified to be upregulated in
anoikis resistant thyroid cancer cells, which was accompanied
with decreased expression of an apoptotic marker (cleaved poly-
ADP ribose polymerase) and a pro-apoptotic protein (BCL-2 like
protein 4) (8). Our previous study revealed that anoikis
resistance induced by miR-424-5p promoted lung metastasis
of thyroid cancer by inactivating Hippo signaling via
simultaneously targeting WWC1, SAV1, and LAST2 (9).
Recently, the critical role of anoikis resistance in lymphatic
metastasis of cancer seizes great attention (10, 11). In several
cancer scenario, anoikis resistance correlated significantly with
positive lymph node metastasis status, including esophageal
carcinoma (12, 13), melanoma (14), tongue cancer (15), breast
cancer (16), and colorectal cancer (17). Importantly,
development of anoikis resistance has been reported to
significantly contribute to lymphatic metastasis of thyroid
cancer (18–20). Therefore, investigating the underlying
mechanism of anoikis resistance in lymphatic metastasis of
thyroid cancer is of great necessity.

The long non-coding RNAs (lncRNAs) are a kind of newly
discovered class of non-coding RNA with the length longer
than 200 nucleotides (21, 22). They implicate several biological
processes through various mechanisms, including transcriptional
regulation as enhancers to modulate transcription of their target
genes, post-transcription as decoys to bind proteins or scaffolds
to regulate interactions between proteins and genes, and
epigenetic modification as competing endogenous RNAs
(ceRNA) to sponge target miRNAs so as to disrupt the
miRNAs-mediated degradation of target genes (21, 22). A great
deal of attention has focused on the role of lncRNAs in miRNA-
mediated lncRNA/mRNA crosstalk (23), and dysregulation of
miRNAs is inherently linked to the progression and metastasis of
various types of cancer (9, 24–26). Recently, there is a great body
of evidence reporting the role of lncRNAs in the development,
progression, and metastasis in a number of cancers (27–29),
including lymph node metastasis (30, 31). Notably, numerous
studies have shown that aberrant expression of lncRNAs is
significantly correlated with lymph node metastasis in thyroid
cancer patients (32–34). Although these findings indicated that
lncRNAs may hold clinical applicable value as the potential
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predictive markers for early detection of lymph node
metastasis in thyroid cancer, whether lncRNAs affects lymph
node metastasis of thyroid cancer in vivo is not determined in
these studies. Therefore, further investigation of the functional
role of lncRNA in lymph node metastasis of thyroid cancer in
vivo will provide experimental evidence to support the applicable
potential of lncRNAs to predict lymph node metastasis in
thyroid cancer patients.

In the current study, we found that MAPK8IP1P2 was
downregulated in thyroid cancer tissues, and particularly in
thyroid cancer tissues with lymphatic metastasis, which was
correlated with poor progression-free survival in thyroid cancer
patients. Gain and loss of function assays showed that upregulating
MAPK8IP1P2 inhibited, while silencing MAPK8IP1P2 enhanced
anoikis resistance in vitro and lymphatic metastasis of thyroid
cancer cells in vivo. Mechanistic investigations revealed that
MAPK8IP1P2 activated Hippo signaling by sponging miR-146b-
3p to disrupt the inhibitory effect ofmiR-146b-3p onNF2, RASSF1,
and RASSF5 expression, which further inhibited anoikis resistance
and lymphatic metastasis in thyroid cancer. Taken together, our
findings provide the experimental evidence regarding the clinical
significance and biological role of MAPK8IP1P2 in lymphatic
metastasis of thyroid cancer, suggesting that MAPK8IP1P2 may
be used as a potential biomarker to predict lymphatic metastasis in
thyroid cancer patients.
MATERIALS AND METHODS

Cell Lines and Cell Culture
Normal primary thyroid follicular epithelial cells (PTFE) were
purchased from Procell (Procell Life Science & Technology Co.,
Ltd., Wuhan, China). Thyroid cancer cell lines, including PTC
cell lines (B-CPAP and KTC-1) and anaplastic thyroid cancer
(ATC) cell lines (BHT-101, CAL-62, KMH-2, and 8305C), were
obtained from Cell Bank of Shanghai Institute of Cell Biology,
Chinese Academy of Sciences (Shanghai, China). PTFE were
cultured in CM-H023 medium (Procell, China), and thyroid
cancer cell lines were cultured in RPMI-1640 medium (Life
Technologies, Carlsbad, CA, USA) supplemented with
penicillin G (100 U/ml), streptomycin (100 mg/ml), and 10%
fetal bovine serum (FBS, Life Technologies). All cell lines were
cultured at 37°C in a humidified atmosphere with 5% CO2.
Patients and Tumor Tissues
The total of 48 fresh thyroid cancer tissues and 24 adjacent
normal tissues were obtained during surgery at the China-Japan
Union Hospital of Jilin University (Changchun, China) between
January 2018 and December 2018 (Table 1). Patients were
diagnosed based on clinical and pathological evidence, and the
specimens were immediately snap-frozen and stored in liquid
nitrogen tanks. For the use of these clinical materials for research
purposes, prior patients’ consents and approval from the
Institutional Research Ethics Committee were obtained
(approval number #: 2019-NSFC-026).
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Plasmid and Transfection
Human MAPK8IP1P2 cDNA (Vigene Biosciences, Shandong,
China) was cloned into the pcDNA3.1(+) plasmid. Knockdown
of endogenous MAPK8IP1P2 was performed by cloning two
short hairpin RNA (shRNA) oligonucleotides into the GV493
vector (GenChem, Shanghai, China). The sequences of the two
separate shRNA fragments are listed in Table 2. The 3′UTR
regions of NF2, RASSF1, RASSF5, and the region including
MAPK8IP1P2 sequence targeted by miR-146b-3p were PCR-
amplified from genomic DNA and cloned into pmirGLO vectors
(Promega, USA), and the list of primers used in cloning reactions
was provided in Table 2. miR-146b-3p mimics were synthesized
and purified by RiboBio. Transfection of plasmids was
performed as previously described (35).

RNA Extraction, Reverse Transcription,
and Real-Time PCR
RNA from tissues and cells was extracted (TRIzol, Life
Technologies) according to the manufacturer’s instructions.
Frontiers in Oncology | www.frontiersin.org 3
Messenger RNA (mRNA), lncRNA, and miRNA were reverse
transcribed from the total RNA using the Revert Aid First Strand
cDNA Synthesis Kit (Thermo, USA) according to the
manufacturer’s protocol. Complementary DNA (cDNA) was
amplified and quantified on ABI 7500HT system (Applied
Biosystems, Foster City, CA, USA) using SYBR Green I
(Applied Biosystems). The primers used in the reactions are
listed in Table 3. Primers for U6 and miR-146b-3p were
synthesized and purified by RiboBio (Guangzhou, China).
Real-time PCR was performed as described previously (36).
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was
used as the endogenous controls for mRNA and lncRNA, and
U6 was used as the endogenous control for miRNA. Relative fold
expressions were calculated with the comparative threshold
cycle (37).

Western Blotting Analysis
Western blot was performed according to a standard method, as
described previously (38). Antibodies against BAX (#5023), BAD
(#9239), BCL2L1 (#2764), BCL2 (#2872), p-MST1 (Thr183)/2
(Thr180) (#3681), MST1 (#14946), p-LATS1(Thr1079) (#8654),
LATS1 (#9153), p-YAP(Ser127) (#13008), YAP (#14074), NF2
(#6995), and RASSF1 (#86026) were purchased from Cell
Signaling Technology, and TAZ from Abcam (ab224239),
RASSF5 from Sigma (N5912). The membranes were stripped
and reprobed with an anti–a-tubulin antibody (Cell Signaling
Technology) as the loading control.

Anchorage-Independent Growth Assay
Five hundred cells were trypsinized and resuspended in complete
medium containing 0.3% agar (Sigma). This experiment was
performed as previously described (39) and carried out three
times independently for each cell line.
TABLE 2 | A list of primers used in the reactions for clone PCR.

Gene Sequence (5` – 3`)

shMAPK8IP1P2-1#-up CCGGGCAGTTTCACAAGCAGTTTCTCGA
GAAACTGCTTGTGAAACTGCTTTTTTG

shMAPK8IP1P2-1#-dn AATTCAAAAAGCAGTTTCACAAGCAGTTT
CTCGAGAAACTGCTTGTGAAACTGCT

shMAPK8IP1P2-2#-up CCGGCCGGACCATATTCAGGTTTCTCG
AGAAACCTGAATATGGTCCGGTTTTTTG

shMAPK8IP1P2-2#-dn AATTCAAAAACCGGACCATATTCAGGTTT
CTCGAGAAACCTGAATATGGTCCGGT

MAPK8IP1P2-up ATAGGTGTCAAGGCCGATGACTC
MAPK8IP1P2-dn CGCAGATGACAGAGCTGAGAAC
NF2-3`UTR-up CTCTCATGGCGTTCTAGTTCTCTG
NF2-3`UTR-dn AAAGTGAGGCCTGGGTACAAC
RASSF1-3`UTR-up TTGTACCCCCAGGTGGAAGG
RASSF1-3`UTR-dn GATGATGACTGTCACCCCAACC
RASSF5-3`UTR-up CCTGGAAAAAGAGGAGCAGGAC
RASSF5-3`UTR-dn TCTGAGCCAGCCTCAGCTTTG
TABLE 1 | The basic information of 48 thyroid carcinoma patients for
MAPK8IP1P2 RNA expression analysis.

Cases (n) Percentage (%)

Histologic PTC 48 100.0
Other 0 0.0

Gender Male 1 2.1
Female 47 97.9

Age <50 41 85.4
≥50 7 14.6

T classification T1 22 45.8
T2 15 31.2
T3 9 18.8
T4 2 4.2

N classification N0 10 20.8
N1 38 79.2

M classification M0 48 100.0
M1 0 0.0
*PTC, papillary thyroid carcinoma.
TABLE 3 | A list of primers used in the reactions for real-time RT-PCR.

Gene Sequence (5`– 3`)

MAPK8IP1P2-up GGGAGAGCATTCCAGCAGTTTC
MAPK8IP1P2-dn TCCTCAAGCAGTGCCACATC
GAPDH-up TCCTCTGACTTCAACAGCGACAC
GAPDH-dn CACCCTGTTGCTGTAGCCAAATTC
CTGF-up TGGAGATTTTGGGAGTACGG
CTGF-dn CAGGCTAGAGAAGCAGAGCC
CYR61-up GGTCAAAGTTACCGGGCAGT
CYR61-dn GGAGGCATCGAATCCCAGC
HOXA1-up TCCTGGAATACCCCATACTTAGC
HOXA1-dn GCACGACTGGAAAGTTGTAATCC
SOX9-up AGCGAACGCACATCAAGAC
SOX9-dn CTGTAGGCGATCTGTTGGGG
RPL13A-up GCCATCGTGGCTAAACAGGTA
RPL13A-dn GTTGGTGTTCATCCGCTTGC
PPIA-up GGCAAATGCTGGACCCAACACA
PPIA-dn TGCTGGTCTTGCCATTCCTGGA
NF2-up AGTGGCCTGGCTCAAAATGG
NF2-dn TGTTGTGTGATCTCCTGAACCA
RASSF1-up AGGACGGTTCTTACACAGGCT
RASSF1-dn TGGGCAGGTAAAAGGAAGTGC
RASSF5-up GGGCATGAAACTGAGTGAAGA
RASSF5-dn TGGCATCATAGATGGACTGGG
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Cell Counting Kit-8 Analysis
Next, 2 × 103 cells were seeded into 96 well plates and the specific
staining process and methods were performed according to the
previous study (40).

Colony Formation Assay
The cellswere trypsinized as single cell and suspended in themedia
with 10% FBS. The indicated cells (300 cells per well) were seeded
into of 6-well plate for ~10–14 days. Colonieswere stainedwith 1%
crystal violet for 10 min after fixation with 10% formaldehyde for
5 min. Plating efficiency was calculated as previously described
(41). Different colony morphologies were captured under a light
microscope (Olympus).

Cell Cycle Analysis
Pretreatment and staining was performed using Cell Cycle
Detection Kit (KeyGEN, China) as previously described (42).
Briefly, cells (5 × 105) were harvested by trypsinization, washed
in ice-cold phosphate-buffered saline (PBS), and fixed in 75% ice-
cold ethanol in PBS. Before staining, cells were gently resuspended
in cold PBS, and ribonucleasewas added into cells’ suspension tube
incubated at 37°C for 30 min, followed by incubation with
propidium iodide (PI) for 20 min at room temperature. Cell
samples (2 × 104) were then analyzed by FACSCanto II flow
cytometer (Becton, Dickinson and Company, Franklin Lakes, NJ,
USA) and the data were analyzed using FlowJo 7.6 software
(TreeStar Inc., Ashland, OR, USA).

Anoikis Induction Assay
Cell culture plates were coated with poly-HEMA (P3932; Sigma-
Aldrich, St. Louis, USA), a non-adhesive substratum, and
allowed to evaporate to dryness at room temperature. Cells
were kept in suspension by using poly-HEMA coated plates to
prevent adhesion. After 48 h of suspension, cells were harvested
for cell viability analysis by 3-(4,5-dimethyl-2-thiazolyl)-2,5-
diphenyl-2-H-tetrazolium bromide (MTT) assay and cell
apoptosis analysis by flow cytometry.

Annexin V Apoptosis Detection
Flow cytometric analyzed of apoptosis were using the FITC
Annexin V Apoptosis Detection Kit I (BD, USA), and performed
as previously described (43). The cell’s inner mitochondrial
membrane potential (Dym) was detected by flow cytometric
using MitoScreen JC-1 staining kit (BD) (44). Briefly, cells were
dissociated with trypsin and resuspended at 1 × 106 cells/ml in
Assay Buffer, and then incubated at 37°C for 15minutes with 10ml/
ml JC-1.Before analyzedbyflowcytometer, cellswerewashed twice
by Assay Buffer. Flow cytometry data were analyzed using FlowJo
7.6 software (TreeStar Inc., USA) as previously described (45).

Caspase-9 or Caspase-3 Activity Assays
Activity of caspase-9 or caspase-3was analysis by spectrophotometry
using Caspase-9 Colorimetric Assay Kit or Caspase-3 Colorimetric
Assay Kit (Keygen, China), and was presented as protocol described.
Briefly, 5 × 106 cells or 100mg fresh tumor tissues were washed with
cold PBS and resuspended in Lysis Buffer and incubated on ice for
30 min, then mixed the 50 ml cell suspension, 50 ml Reaction Buffer,
Frontiers in Oncology | www.frontiersin.org 4
and 5 ml Caspase-3/-9 substrate, and then incubated at 37°C for 4
hours. The absorbance was measured at 405 nm, and BCA protein
quantitative analysis was used as the reference to normal each
experiment groups.

Animal Study
Eight-week-old BALB/c-nu mice were purchased from the
Experimental Animal Center of the Guangzhou University of
Chinese Medicine and housed as previously described (46). The
mice were randomly divided into three groups (n = 6 per group)
and the indicated K1 cells (1 × 106) were injected into footpad of
mice. The primary tumors were allowed to form, then the mice
were euthanized on the end-points, and the inguinal lymph
nodes were excised and paraffin embedded. Sections of the
lymph nodes were subjected to H & E staining for histological
examination, and the tumor cell number was counted as
previously described (7). Animal study was approved from the
Institutional Research Ethics Committee of Jilin University, and
approval number was KT201902051.

Luciferase Assay
Cells (4 × 104) were seeded in triplicate in 24-well plates and
cultured for 24 h, and the luciferase reporter assay was performed
as previously described (47). Cells were transfected with 100 ng
HOP-Flash (Catalog # 83467, Addgene) or HIP-Flash luciferase
reporter plasmid (Catalog # 83466, Addgene), plus 5 ng pRL-TK
Renilla plasmid (Promega) using Lipofectamine 3000 (Invitrogen)
according to the manufacturer’s recommendation. Luciferase and
Renilla signals were measured 36 h after transfection using a Dual
Luciferase Reporter Assay Kit (Promega) according to the
manufacturer’s protocol.

Statistical Analysis
All values are presented as means ± standard deviation (SD).
Significant differences were determined using GraphPad 5.0
software (USA). Student’s t-test was used to determine
statistical differences between two groups. One-way ANOVA
was used to determine statistical differences between multiple
testing. Survival curves were plotted using the Kaplan Meier
method and compared by log-rank test. P < 0.05 was considered
significant. All the experiments were repeated three times.
RESULTS

MAPK8IP1P2 Is Downregulated in Thyroid
Cancer With Lymph Node Metastasis
By analyzing RNA sequencing dataset of thyroid cancer from The
Cancer Genome Atlas (TCGA), we found that MAPK8IP1P2 was
marked downregulated in thyroid cancer tissues compared with
that in the adjacentnormal tissues (ANT) (Figure1A).Consistently,
MAPK8IP1P2 expression was reduced in our 24 paired thyroid
cancer tissues compared with the matched ANT (Figure 1B).
Interestingly, we found that downexpression of MAPK8IP1P2
occurred in 4/9 (44.4%) thyroid cancer tissues without lymph
node metastasis, and was 10/15 (66.7%) in thyroid cancer tissues
with lymph node metastasis (Figure 1B). Our results further
January 2021 | Volume 10 | Article 600927
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indicated that MAPK8IP1P2 expression in thyroid cancer tissues
without lymph node metastasis had no significant difference
compared with that in ANT (Figures 1C, D), but was
dramatically and significantly downregulated in thyroid cancer
tissues with lymph node metastasis (Figure 1C), even in lymph
node metastatic thyroid cancer tissues with T1-T2 (Figure 1D).
However, there was no significant difference of MAPK8IP1P2
expression between in T1-2 thyroid cancer tissues and in T3-4
thyroid cancer tissues, although MAPK8IP1P2 was downregulated
in both compared with that in ANT (Figure 1E). These findings
suggested that downexpression of MAPK8IP1P2 may play an
important role in lymphatic metastasis of thyroid cancer. TCGA
analysis further supported this finding that MAPK8IP1P2
expression was reduced in thyroid cancer tissues compared with
Frontiers in Oncology | www.frontiersin.org 5
that in ANT, especially in thyroid cancer tissues with lymph node
metastasis (Figures 1F–H). Therefore, our results combined with
TCGA analysis suggest that downexpression ofMAPK8IP1P2may
be implicated in lymphatic metastasis of thyroid cancer.

Upregulating MAPK8IP1P2 Inhibits
Lymphatic Metastasis In Vivo
Then, the effect of MAPK8IP1P2 on lymphatic metastasis of
thyroid cancer cells in vivo was further investigated using the
inguinal lymph node metastasis model. First, the expression
levels of MAPK8IP1P2 in 7 thyroid cancer cell lines and a
normal thyroid follicular epithelial cell line PTFE were
measured. As shown in Figure 2A, MAPK8IP1P2 was
differentially downregulated in thyroid cancer cells compared
A B

D E

F G H

C

FIGURE 1 | MAPK8IP1P2 is downregulated in thyroid cancer with lymphatic metastasis. (A) MAPK8IP1P2 expression in 59 paired thyroid cancer tissues and the
matched adjacent normal tissues in the thyroid cancer dataset from TCGA. (B) Real-time PCR analysis of MAPK8IP1P2 expression in our 24 paired thyroid cancer
tissues and their matched adjacent normal tissues, including 9 thyroid cancer tissues without lymphatic metastasis and 15 thyroid cancer tissues with lymphatic
metastasis. The number on the abscissa indicated the patient number according to our record when collecting patient information. GAPDH was used as
endogenous controls. *P < 0.05. (C) Real-time PCR analysis of MAPK8IP1P2 expression in ANT (n = 24), thyroid cancer tissues without lymphatic metastasis (n =
10), and thyroid cancer tissues with lymphatic metastasis (n = 38). GAPDH was used as endogenous controls. n.s. indicates no significance. (D) Real-time PCR
analysis of MAPK8IP1P2 expression in ANT (n = 24), thyroid cancer tissues of T1-T2 grade without lymphatic metastasis (n = 10), and thyroid cancer tissues of T1-
T2 grade with lymphatic metastasis (n = 27). GAPDH was used as endogenous controls. n.s. indicates no significance. (E) Real-time PCR analysis of MAPK8IP1P2
expression in ANT (n = 24), thyroid cancer tissues with T1-T2 grade (n = 37), and thyroid cancer tissues with T3-T4 grade (n = 11). GAPDH was used as
endogenous controls. n.s. indicates no significance. (F) MAPK8IP1P2 expression in ANT (n = 59), thyroid cancer tissues without lymphatic metastasis (n = 230), and
thyroid cancer tissues with lymphatic metastasis (n = 225) in the thyroid cancer dataset from TCGA. (G) MAPK8IP1P2 expression in ANT (n = 59), thyroid cancer
tissues with T1-T2 grade (n = 309), and thyroid cancer tissues with T3-T4 grade (n = 194) in the thyroid cancer dataset from TCGA. (H) MAPK8IP1P2 expression in
ANT (n = 59), thyroid cancer tissues of T1-T2 grade without lymphatic metastasis (n = 164), and thyroid cancer tissues of T1-T2 grade with lymphatic metastasis
(n = 110) in the thyroid cancer dataset from TCGA.
January 2021 | Volume 10 | Article 600927

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. MAPK8IP1P2 Inhibits Metastasis of Thyroid Cancer
with that in PTFE cells. We further constructed MAPK8IP1P2-
stably overexpressing B-CPAP and K1 cells and endogenously
knocked down MAPK8IP1P2 expression in B-CPAP and K1
cells, both of which expressed moderate levels of MAPK8IP1P2
compared with that in other thyroid cancer cell lines (Figure
2B). Then, Vector-, MAPK8IP1P2-overexpressing, scramble and
MAPK8IP1P2-downexpressing K1 cells were injected into the
surrounding tissues in the foot pads of the mice (n = 6/group)
using the inguinal lymph node metastasis model (Figure 2C).
The metastatic inguinal lymph nodes were excised after 4 weeks
and analyzed by H & E staining. As show in Figures 2D, E,
histological examination of the lymph node metastatic tumors
revealed that the tumors in lymph nodes formed from
MAPK8IP1P2-overexpressing cells exhibited reduce tumor
burden and the decreased number of tumor cells compared
with those injected with the vector-control cells. Conversely,
the tumors in lymph nodes formed from MAPK8IP1P2-
downexpressing cells had larger tumor burden and more
number of tumor cells than those inoculated with the scramble
cells (Figures 2D, E). These findings indicate that upregulating
MAPK8IP1P2 inhibits lymphatic metastasis in vivo.

Upregulating MAPK8IP1P2 Improves
Anoikis Resistance in Thyroid
Cancer Cells
The biological function of MAPK8IP1P2 in lymphatic metastasis
of thyroid cancer was further CCK-8 assay showed that either
upregulating or downregulating MAPK8IP1P2 had no
Frontiers in Oncology | www.frontiersin.org 6
significant effect on the cell growth of B-CPAP and K1 cells
(Figures 3A–D). Similarly, neither colony-formation ability nor
cell cycle progression was impeded by the changed expression of
MAPK8IP1P2 in thyroid cancer cells (Figures 3E, F). However,
upregulating MAPK8IP1P2 inhibited, while silencing
MAPK8IP1P2 increased anchorage-independent growth
capability of thyroid cancer cells (Figure 3G). These results
indicate that the proliferation ability of thyroid cancer cells was
not impeded by MAPK8IP1P2 in vitro.

Notably, upregulating MAPK8IP1P2 represses anchorage-
independent growth capability of thyroid cancer cells as
demonstrated above. Accumulating studies have shown that
the capacity of cancer cells to survive under suspension
conditions, namely anoikis resistance, is an important
characteristic contributing to tumor progression and metastasis
(6, 48, 49), including thyroid cancer (9, 28). Therefore, the effect
of MAPK8IP1P2 on anoikis resistance in thyroid cancer cells
was further evaluated. As shown in Figure 4A, upregulating
MAPK8IP1P2 enhanced, while silencing MAPK8IP1P2 reduced
the apoptosis rate of thyroid cancer cells. Mitochondrial
potential assay showed that upregulating MAPK8IP1P2
attenuated, while silencing MAPK8IP1P2 elevated the
mitochondrial potential of thyroid cancer cells (Figure 4B).
The results of caspase activity assay and western blot analysis
revealed that upregulating MAPK8IP1P2 increased the activity
of caspase-3 or -9 and expression of pro-apoptotic proteins
BAD and BAX, but reduced expression of anti-apoptotic
proteins BCL2 and BCL2L1 (Figures 4C–E); conversely,
A B

D
E

C

FIGURE 2 | Upregulating MAPK8IP1P2 inhibits cancer stem cell characteristics in thyroid cancer cells. (A) Real-time PCR analysis of MAPK8IP1P2 expression in 7
thyroid cancer cells, including 4 PTC cell lines, B-CPAP, BHT101, KTC-1, and K1, and 2 ATC cell lines, CAL-62 and 8305C, and 1 thyroid duct cell carcinoma cells,
TT, and a normal thyroid follicular epithelial cell line PTFE. GAPDH was used as endogenous controls. *P < 0.05. (B) MAPK8IP1P2 expression in the vector,
MAPK8IP1P2 overexpression scramble, MAPK8IP1P2 shRNA#1, and MAPK8IP1P2 shRNA#2 thyroid cancer cells using real-time PCR. Transcript levels were
normalized by GAPDH expression. *P < 0.05. (C) Schematic model of lymphatic metastasis model in vivo. (D) H & E staining analysis of tumors in lymph node from
the indicated mice group. (E) The count of tumor cells in the tumor areas of lymph node from the indicated mice group. *P < 0.05.
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silencing MAPK8IP1P2 yielded the opposite effect in thyroid
cancer cells (Figures 4C–E). Taken together, our results indicate
that upregulating MAPK8IP1P2 abrogates anoikis resistance in
thyroid cancer cells.

MAPK8IP1P2 Activates Hippo Signaling
Pathway in Thyroid Cancer Cells
To determine the underlying mechanism implicated in anti-
lymphatic metastatic role of MAPK8IP1P2 in thyroid cancer,
Gene Set Enrichment Analysis (GSEA) was performed based on
MAPK8IP1P2 expression in the thyroid cancer dataset from
TCGA. As shown in Figure 5A, MAPK8IP1P2 overexpression
was positively correlated with activity of Hippo signaling
pathway, but negatively associated with the transcriptional
Frontiers in Oncology | www.frontiersin.org 7
activity of downstream co-activators YAP1/TAZ of Hippo
signaling. Inactivation of Hippo signaling has been widely
reported to be implicated in anoikis resistance and metastatic
thyroid cancer (9, 50, 51), as well as in lymphatic metastasis
process of cancers (52, 53), suggesting that Hippo signaling may
mediate the functional role of MAPK8IP1P2 in lymphatic
metastasis of thyroid cancer. Luciferase reporter assay showed
that upregulating MAPK8IP1P2 reduced, while silencing
MAPK8IP1P2 increased the luciferase reporter activity of
HOP-Flash, but not the HIP-Flash (Figure 5B), suggesting that
upregulating MAPK8IP1P2 inhibits the TEAD-dependent
luciferase activity in thyroid cancer cells. Furthermore,
upregulating MAPK8IP1P2 enhanced the expression of
phophorylated MST1/2 (p-MST1/2), phophorylated LATS1
A B D

E

F

G

C

FIGURE 3 | Upregulating MAPK8IP1P2 does not affect proliferation of thyroid cancer cells. (A–D) The effect of overexpression or silencing MAPK8IP1P2 on the cell
growth in the indicated thyroid cancer cells by CCK-8 assay. (E) The effect of overexpression or silencing MAPK8IP1P2 on colony-formation ability of the indicated
thyroid cancer cells by colony-formation assay. (F) The effect of overexpression or silencing MAPK8IP1P2 on cell cycle progression of the indicated thyroid cancer
cells by flow cytometry. (G) The effect of overexpression or silencing MAPK8IP1P2 on survival ability in the indicated thyroid cancer cells by anchorage-independent
growth assay. *P < 0.05.
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(p-LATS1) and phophorylated YAP1 (p-YAP1), reduced the
nuclear translocation of YAP1 and TAZ, but had no effect on
total level of MST1 and LATS1 in thyroid cancer cells (Figure
5C). In contrast, silencing MAPK8IP1P2 reduced p-MST1/2, p-
LATS1, and p-YAP1 expression, and increased the nuclear
expression of YAP1 and TAZ (Figure 5C). Real-time PCR
analysis showed that upregulating MAPK8IP1P2 decreased,
while silencing MAPK8IP1P2 increased the expression levels of
multiple downstream genes of Hippo pathway, including CTGF,
CYR61, HOXA1, PPIA, RPL13A, and SOX9 (54, 55), in thyroid
cancer cells (Figure 5D). Therefore, these findings indicate that
MAPK8IP1P2 activates Hippo signaling in thyroid cancer cells.

MAPK8IP1P2 Activates Hippo Signaling by
Sponging miR-146b-3p
Accumulating studies have reported that lncRNAs can serve as
competitive endogenous RNAs (ceRNAs) to de-repress miRNA-
targeted mRNA expression (56, 57). Therefore, we further
explored the potential binding miRNAs of MAPK8IP1P2 by
analyzing the correlation of MAPK8IP1P2 with all reported
miRNAs in the thyroid cancer dataset from TCGA. As shown
Frontiers in Oncology | www.frontiersin.org 8
in Figure 6A, the only miR-146b-3p expression level was
negatively correlated with MAPK8IP1P2 expression, and was
upregulated in thyroid cancer tissues compared with that in
ANT. Using several publicly available algorithms, including
miRanda and targetscan, we found that miR-146b-3p had the
potential recognition sequences on MAPK8IP1P2, and NF2,
RASSF1, and RASSF5 were the potential targets of miR-
146b-3p (Figure 6B). NF2, RASSF1, and RASSF5 have been
reported to promote activity of Hippo signaling by varying
mechanism (58–60). Luciferase assay demonstrated that miR-
146b-3p mimics suppressed the 3’UTR reporter activity of
MAPK8IP1P2, NF2, RASSF1, and RASSF5, but not of the
mutant 3’UTR of MAPK8IP1P2 (Figures 6C, D). RT-PCR and
Western blot analysis revealed that upregulating MAPK8IP1P2
increased, while silencing MAPK8IP1P2 decreased the mRNA
and protein levels of NF2, RASSF1, and RASSF5 (Figures 6E–G).
Importantly, miR-146b-3p mimics not only reversed the NF2,
RASSF1, and RASSF5 level enhanced by MAPK8IP1P2
overexpression (Figures 6H, I), but also inactivated Hippo
signaling in MAPK8IP1P2-overexpressing thyroid cancer cells
as indicated by elevated the luciferase reporter activity of
A

B

D EC

FIGURE 4 | Upregulating MAPK8IP1P2 inhibits anoikis resistance in thyroid cancer cells. (A) The effect of overexpression or silencing MAPK8IP1P2 on the apoptotic
ratio in the indicated thyroid cancer cells by Annexin V-FITC/PI staining. *P < 0.05. (B) The effect of overexpression or silencing MAPK8IP1P2 on mitochondrial
potential in the indicated thyroid cancer cells by JC-1 staining. *P < 0.05. (C, D) The effect of overexpression or silencing MAPK8IP1P2 on the activities of caspase-3
(C) and caspase-9 (D) in the indicated thyroid cancer cells. *P < 0.05. (E) Western blotting analysis of the effect of overexpression or silencing MAPK8IP1P2 on anti-
apoptotic proteins, BCL2 and BCL2L1, and pro-apoptotic proteins, BAD and BAX, in the indicated thyroid cancer cells. a-Tubulin served as the loading control.
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HOP-Flash (Figure 6J). Thus, these results indicate that
MAPK8IP1P2 activates Hippo signaling by sponging miR-
146b-3p to disrupt the inhibitory effect of miR-146b-3p on
NF2, RASSF1, and RASSF5 expression in thyroid cancer.

Upregulating MAPK8IP1P2 Inhibits
Anoikis Resistance by Sponging
miR-146b-3p
We further investigated whether miR-146b-3p mediates the
effect of MAPK8IP1P2 on anoikis resistance in thyroid cancer
cells. As shown in Figures 7A, B, miR-146b-3p mimics enhanced
the anchorage-independent growth capability and mitochondrial
potential in MAPK8IP1P2-overexpressing thyroid cancer cells.
In contrast, our results further revealed that miR-146b-3p
mimics attenuated the stimulatory effects of MAPK8IP1P2
overexpression on the apoptotic ratio and activity of caspase-3
or -9 in thyroid cancer cells (Figures 7C–E). Collectively, our
results demonstrate that MAPK8IP1P2 inhibits anoikis
Frontiers in Oncology | www.frontiersin.org 9
resistance by sponging miR-146b-3p in thyroid cancer cells
(Figure 7F).
DISCUSSION

The critical findings of the current study present novel insights
into the pivotal role of MAPK8IP1P2 in lymphatic metastasis of
thyroid cancer by the miR-146b-3p/Hippo signaling axis. Here,
we reported that MAPK8IP1P2 was dramatically downregulated
in thyroid cancer tissues, especially in those with lymph node
metastasis. Gain and loss of function assays demonstrated
that upregulating MAPK8IP1P2 inhibited, while silencing
MAPK8IP1P2 promoted anoikis resistance in vitro and
lymphatic metastasis of thyroid cancer cells in vivo. Our results
further revealed that upregulating MAPK8IP1P2 activated
Hippo signaling by disrupting the repressive effect of
miR-146b-3p on NF2, RASSF1, and RASSF5 expression by
A

B
D

C

FIGURE 5 | MAPK8IP1P2 activates Hippo signaling pathway in thyroid cancer cells. (A) Gene set enrichment analysis (GSEA) revealed that MAPK8IP1P2
expression positively correlated with Hippo signaling. (B) The effect of overexpression or silencing MAPK8IP1P2 on TEAD transcriptional activity was assessed by
HOP-Flash luciferase reporter in the indicated cells. Error bars represent the mean ± S.D. of three independent experiments. *P < 0.05. (C) Western blotting analysis
of the effect of overexpression or silencing MAPK8IP1P2 on phophorylated MST1/2 (p-MST1/2), phophorylated LATS1 (p-LATS1), phophorylated YAP1 (p-YAP1),
total levels of MST1 and LATS1 and nuclear translocation of YAP1 and TAZ in the indicated thyroid cancer cells. a-Tubulin and p84 were served as the cytoplasmic
and nuclear loading control respectively. (D) Real-time PCR analysis of the effect of overexpression or silencing MAPK8IP1P2 on CTGF, CYR61, HOXA1, PPIA,
RPL13A, and SOX9 in the indicated cells. Transcript levels were normalized by GAPDH expression. Error bars represent the mean ± S.D. of three independent
experiments. *P < 0.05.
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sponging miR-146b-3p as ceRNA, which further suppressed
anoikis resistance in thryoid cancer cells. Therefore, our results
unravel a novel mechanism by which MAPK8IP1P2 inhibits the
anoikis resistance and lymphatic metastasis of thyroid cancer
cells, determining the tumor-suppressive role of MAPK8IP1P2
in lymphatic metastasis of thyroid cancer.

As a kind of versatile non-coding RNA, lncRNAs have been
extensively validated to function their biological role via varying
mechanisms (21, 22), in which functioning as ceRNA to sponge
target miRNAs to disrupt the miRNAs-mediated degradation of
target genes seizes great momentum (56, 57) to be implicated in
tumor progression and metastasis (27, 61). Importantly,
miRNA-mediated lncRNA/mRNA crosstalk plays an important
Frontiers in Oncology | www.frontiersin.org 10
role in the development and metastasis of thyroid cancer (28, 62,
63), including lymphatic metastasis (32–34). In this study, our
results revealed that MAPK8IP1P2 functioned as ceRNA to
sponge miR-146b-3p, which further disrupted the inhibitory
effect of miR-146b-3p on NF2, RASSF1, and RASSF5
expression. MAPK8IP1P2-mediated this lncRNA/mRNA
crosstalk activated Hippo signaling, which further inhibited
anoikis resistance and lymphatic metastasis in thyroid cancer.
Therefore, our findings uncover a novel mechanism by which
MAPK8IP1P2 inhibits the anoikis resistance and lymphatic
metastasis of thyroid cancer cells.

Loss or downregulation of core components of Hippo
signaling contributes to inactivation of Hippo signaling, which
A B

D E

F G

IH J

C

FIGURE 6 | MAPK8IP1P2 activates Hippo signaling by sponging miR-146b-3p. (A) Volcano plot analyzed the clinical correlation of MAPK8IP1P2 with all reported
miRNAs in thyroid cancer dataset from TCGA. The orange colors represent significantly and negatively correlated miRNAs with fold change > 2 and r value < -0.2.
(B) Predicted recognition sites of miR-146b-3p on MAPK8IP1P2, and predicted miR-146b-3p targeting sequence and mutant sequences in 3’UTR s of NF2,
RASSF1, and RASSF5. (C, D) The effect of miR-146b-3p on the luciferase activity of wild-type or mutant MAPK8IP1P2, NF2, RASSF1 and RASSF5 in the indicated
cells. Error bars represent the mean ± S.D. of three independent experiments. *P < 0.05. (E, F) Real-time PCR analysis of the effect of overexpression or silencing
MAPK8IP1P2 on NF2, RASSF1, and RASSF5 expression in the indicated cells. Transcript levels were normalized by GAPDH expression. Error bars represent the
mean ± S.D. of three independent experiments. *P < 0.05. (G) Western blot analysis of the effect of overexpression or silencing MAPK8IP1P2 on NF2, RASSF1 and
RASSF5 expression in the indicated cells. a-Tubulin served as the loading control. (H, I) Real-time PCR (H) and Western blot (I) analysis of the effect of miR-146b-
3p mimics on NF2, RASSF1, and RASSF5 expression in MAPK8IP1P2-overexpressing thyroid cancer cells. Transcript levels were normalized by GAPDH expression.
a-Tubulin served as the loading control. Error bars represent the mean ± S.D. of three independent experiments. *P < 0.05. (J) The effect of miR-146b-3p mimics on
TEAD transcriptional activity was assessed by HOP-Flash luciferase reporter in MAPK8IP1P2-overexpressing thyroid cancer cells. Error bars represent the mean ±
S.D. of three independent experiments. *P < 0.05.
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contributes to tumor progression and metastasis. For example,
deficiency or inactivation of NF2, which functions to initiate and
orchestrate the Hippo pathway (58), has been reported to be a
frequent tumorigenic event in several cancer types (64–66).
Furthermore, the upstream regulator of the Hippo pathway,
ras association domain family (RASSF), suppresses cancer
tumorigenesis (67, 68) by regulating MST1/2 activity (59, 60).
However, how these regulators of the Hippo signaling are
simultaneously disrupted in cancers, leading to constitutively
inactivation of Hippo signaling, remains unclear. In this study,
our results revealed that the relieved function of MAPK8IP1P2 as
a ceRNA to sponge miR-146b-3p upregulated miR-146b-3p.
Overexpression of miR-146b-3p directly targeted NF2,
RASSF1, and RASSF5 in thyroid cancer cells and inactivated
Hippo signaling, which further promoted anoikis resistance and
lymphatic metastasis of thyroid cancer. Collectively, our findings
clarify that MAPK8IP1P2 activates Hippo signaling by sponging
miR-146b-3p to disrupt the inhibitory effect of miR-146b-3p on
NF2, RASSF1, and RASSF5 expression in thyroid cancer.

Several linesof evidencehave reported thepivotal role of anoikis
resistance in lymphatic metastasis of cancer (10, 11), even in
lymphatic metastasis of thyroid cancer (18–20). Furthermore,
anoikis resistance was reported to be significantly correlated with
positive lymph node metastasis in various cancers (12–17). In this
scenario, multiple signaling pathways have been demonstrate to
promote anoikis resistance, including TGF-b, PI3K/AKT, and
Hippo signaling, where the role of Hippo signaling in inducing
Frontiers in Oncology | www.frontiersin.org 11
anoikis resistance gains more attention (9, 50, 51). Importantly,
inactivation of Hippo signaling has also been reported to promote
lymphatic metastasis of cancers (52, 53). However, the effect of
Hippo signaling on lymphaticmetastasis of thyroid cancer remains
unclear. In the current study, our results showed that
MAPK8IP1P2 activated Hippo signaling by sponging miR-146b-
3p to disrupt targeting effect ofmiR-146b-3p onNF2, RASSF1, and
RASSF5, which inhibited anoikis resistance and lymphatic
metastasis of thyroid cancer. Collectively, our findings provide
experimental evidence to support the critical role of Hippo
signaling lymphatic metastasis of thyroid cancer.

In summary, our results demonstrate that MAPK8IP1P2
activates Hippo signaling by sponging miR-146b-3p as a
ceRNA to disrupt the inhibitory effect of miR-146b-3p on NF2,
RASSF1, and RASSF5 expression, which further suppresses
lymphatic metastasis of thyroid cancer. Therefore, our results
provide novel insights into the underlying mechanism by which
MAPK8IP1P2 inhibits lymphatic metastasis in thyroid cancer,
supporting the notion that MAPK8IP1P2 can be used as a lymph
node metastatic marker in thyroid cancer.
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FIGURE 7 | Upregulating MAPK8IP1P2 inhibits anoikis resistance by sponging miR-146b-3p. (A) The effect of miR-146b-3p mimics on colony-formation ability in
MAPK8IP1P2-overexpressing thyroid cancer cells. Error bars represent the mean ± S.D. of three independent experiments. *P < 0.05. (B) The effect of miR-146b-3p
mimics on mitochondrial potential in MAPK8IP1P2-overexpressing thyroid cancer cells. Error bars represent the mean ± S.D. of three independent experiments. *P <
0.05. (C) The effect of miR-146b-3p mimics on apoptotic ratio in MAPK8IP1P2-overexpressing thyroid cancer cells. Error bars represent the mean ± S.D. of three
independent experiments. *P < 0.05. (D, E) The effect of miR-146b-3p mimics on caspase-3 (D) and caspase-9 (E) in MAPK8IP1P2-overexpressing thyroid cancer
cells. Error bars represent the mean ± S.D. of three independent experiments. *P < 0.05. (F) Hypothetical model illustrates the role and underlying mechanism of
MAPK8IP1P2 in lymphatic metastasis of thyroid cancer by miR-146b-3p/Hippo signaling axis.
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