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We aimed to develop a deep convolutional neural network (DCNN) model based on
computed tomography (CT) images for the preoperative diagnosis of occult peritoneal
metastasis (OPM) in advanced gastric cancer (AGC). A total of 544 patients with AGC
were retrospectively enrolled. Seventy-nine patients were confirmed with OPM during
surgery or laparoscopy. CT images collected during the initial visit were randomly split into
a training cohort and a testing cohort for DCNN model development and performance
evaluation, respectively. A conventional clinical model using multivariable logistic
regression was also developed to estimate the pretest probability of OPM in patients
with gastric cancer. The DCNN model showed an AUC of 0.900 (95% CI: 0.851–0.953),
outperforming the conventional clinical model (AUC = 0.670, 95% CI: 0.615–0.739; p <
0.001). The proposed DCNN model demonstrated the diagnostic detection of occult PM,
with a sensitivity of 81.0% and specificity of 87.5% using the cutoff value according to the
Youden index. Our study shows that the proposed deep learning algorithm, developed
with CT images, may be used as an effective tool to preoperatively diagnose OPM in AGC.

Keywords: stomach neoplasms, peritoneal neoplasms, deep learning, tomography, x-ray computed, neural
networks, computer
INTRODUCTION

According to the GLOBOCAN 2018 data, gastric cancer (GC) remains the fifth most common
cancer and the third most deadly cancer worldwide (1). Peritoneal metastasis (PM) occurs in ~53–
66% of patients diagnosed with metastatic GC (2), especially in younger patients with advanced
gastric cancer (AGC) (3). Patients with PM thus may be subject to late detection or even improper
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surgical treatment. Therefore, the early detection and diagnosis
of PM in GC patients prior to surgery would be crucial for
avoiding unnecessary resection and allow for optimal therapy
selection in clinical practice (4–9).

Abdominal enhanced CT is considered the most common
noninvasive modality of preoperative diagnosis in GC patients
(5, 7, 9–11). Typical PM indications on CT images include
omentum cake, extensive ascites, and parietal peritoneal
thickening (12). Clinically, occult peritoneal metastasis (OPM)
often refers to PM negativity on initial CT diagnosis that is
revised to PM positivity following subsequent laparoscopy or
surgery (12, 13). Due to the nature of OPM, it is often missed by
radiologists when interpreting CT images alone, resulting in low
detection sensitivity and diagnostic accuracy in AGC patients. It
has been reported that approximately 16% of OPMs are missed
on CT images (12, 14–16), even with multidisciplinary
discussion (12, 13). MRI and PET/CT are considered second
choices because they are less sensitive than abdominal enhanced
CT in detecting peritoneal metastases (17–19). In addition, the
costs of MRI and especially PET/CT are high. Recent advances in
technology using laparoscopy have provided reliable
preoperative methods to identify OPM in patients with AGC
(5, 8–10, 20, 21). However, there are many medical concerns and
adverse medical care issues due to its invasive and costly nature,
and its application in appropriate patient selection remains
controversial. Therefore, the development of a noninvasive
method to facilitate the targeted diagnosis of OPM beyond
conventional imaging is urgently needed.

Artificial intelligence (AI) technology, particularly deep
learning, has shown remarkable progress in medical image
interpretation (22–24). A typical deep learning approach,
named convolutional neural network (CNN), is a novel and
powerful tool for the image-based determination of complex
relationships and has exhibited sophisticated performance for
small feature detection and characterization (25–27). The
literature has reported the use of CNNs in the detection and
diagnosis of tumor diseases, such as prostate cancer, breast
cancer, and lung cancer (28, 29), highlighting the value of deep
learning in clinical practice.

We therefore aimed to develop a deep CNN (DCNN)-based
model for the preoperative diagnosis of OPM in AGC patients
and to compare its diagnostic performance with that of the
conventional clinical model using logistic regression.
MATERIALS AND METHODS

This retrospective study was approved by the Biomedical
Research Ethics Committee of West China Hospital of Sichuan
University, and the requirement for informed consent
was waived.

Patients
The study was carried out at Surgical Gastric Cancer Patient
Registry of West China Hospital (id: WCH-SGCPR-2019-08).
Patients were enrolled based on the following inclusion criteria:
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(1) patients with AGC (cT ≥ 2) diagnosed by endoscopy–biopsy
and CT; (2) patients who received whole abdominal enhanced
CT scan preoperatively with a venous-image slice thickness of
2 mm; (3) patients without typical PM findings on CT, such as
omental nodules or omental cake, extensive ascites, or irregular
thickening with high peritoneal enhancement; and (4) patients
with no other evidence of distant metastasis or other tumors. The
exclusion criteria were as follows: (1) previous abdominal
surgery; (2) previous abdominal malignancies or inflammatory
diseases; (3) CT carried out more than 2 weeks before surgery;
(4) poor stomach filling; (5) poor CT image quality due to
artifacts; and (6) inability to visualize the primary lesion of
gastric cancer on CT images. The selection process of patients
included in this study is shown in Figure 1.

PM status confirmed: All patients were confirmed to have
peritoneal metastasis by surgical or laparoscopic exploration.
The laparoscopy procedure used here was a “Four-Step
Procedure” of laparoscopic exploration for GC (30). During
the procedure, the abdominal and peritoneal conditions were
carefully examined. All suspicious peritoneal implants or ascites
were sent for pathological biopsy or cytological examination.
Existence of PM was determined using the American Joint
Committee on Cancer guidelines in consensus between
pathologists and surgeons.

CT Image Acquisition
Prior to CT examination, patients were requested to fast for at
least 6 h and orally ingested 600–1000 mL water. Patients were
first trained to hold their breath during scanning with the scan
range covering the entire abdomen and then scanned using a
128-slice scanner (SOMATOM Definition AS+, Siemens
Healthcare, Forchheim, Germany) and a dual-source CT
system (Somatom Definition Flash, Siemens Healthcare,
Forchheim, Germany) with the following parameters: tube
voltage, 120 kV; amperage, 210 mAs; slice thickness, 2 mm;
slice interval, 2 mm; field of view, 35–50 cm; matrix, 512 × 512;
rotation time, 0.5 s; and pitch 1.0. With a trigger threshold of the
aorta reaching 170 HU, a three-phase scan was obtained in the
precontrast phase, the arterial phase at the trigger, and the portal
vein phase 30 s after the trigger. Following an unenhanced scan,
1.2–1.5 mL/kg iodinated contrast agent [Iopamiro (370 mg
I/mL), Shanghai Bracco Sine Pharmaceutical Corp Ltd,
Shanghai, China] was injected intravenously at a flow rate of
2.5–3.0 mL/s using a high-pressure syringe (Medrad Stellant CT
Injector System, Medrad Inc. Inianola, USA).

Data Preparation
Portal vein-phase CT images were first exported to ITK-SNAP
software (version 2.2.0; www.itksnap.org) for manual segmentation.
Gastric cancer lesions were then manually annotated by a
radiologist (with 5 years of experience in gastroenterology
imaging) and confirmed by another abdominal specialist (with 14
years of experience in gastroenterology imaging). Two radiologists
reviewed all slices obtained from each patient, selected one slice with
the largest tumor area and manually delineated the lesion to obtain
the final regions of interest (ROIs) (Figure 2). The gastric lumen
and artifacts were carefully avoided.
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Image Preprocessing
We first converted the images into grayscale Joint Photographic
Experts Group format based on each patient’s CT images and the
corresponding ROI masks. Before training the DCNN model, we
applied data augmentation techniques to create new pseudoimages
to expand the training sample size and enhance the model
generalizability (31). Details of the data augmentation are
explained in the Supplementary Material.
Frontiers in Oncology | www.frontiersin.org 3
DCNN Model
A simple workflow scheme for the development of the DCNN
model is shown in Figure 3. The backbone of the DCNN model
employs Xception (32), which had been pretrained on the ImageNet
database (33, 34). The main structure contains a Depthwise
Convolution block and a Depthwise Separable Convolution
designed within the block. Considering the class imbalance
among the number of PM-positive cases, we utilized a stacking
FIGURE 2 | ROI annotation (red line) on a representative CT image, with the largest area of the primary lesion drawn on the axial plane.
FIGURE 1 | Flow chart of the selection process for the included studies.
November 2020 | Volume 10 | Article 601869
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strategy to train the model (35). Model training details and the
stacking strategy are presented in the Supplementary Material.

After the training was completed, the testing cohort was used as
the input into the DCNN model, and the model performance was
evaluated using receiver operating characteristic (ROC) analysis.
Heatmaps generated by gradient-weighted class activation mapping
(Grad-CAM) were applied to display activated areas of the presence
of OPM predicted by the DCNN model.

Clinical Model
The preoperative characteristic features were applied to a
multivariable logistic regression analysis to determine independent
predictors of OPM. Backward stepwise selection was utilized based
on the Akaike information criterion (AIC) (36). The clinical model
was then developed based on the independent characteristic features
and applied to the testing cohort. The diagnostic performance of the
clinical model was assessed using ROC analysis. The cutoff for the
ROC curve was determined by the Youden index.

Statistical Analysis
Considering the class imbalance in the testing cohort, we used
bootstrapping (n = 1000) to calculate the 95% confidence intervals
(CIs). A decision curve was plotted to evaluate model efficacy by
quantifying the net benefits at different probability thresholds.
Differences in continuous variables were analyzed with the
independent t-test, and differences in categorical variables were
analyzed with the chi-squared test. DeLong’s test was used to
compare the ROC curves of models. The generalizability of the
DCNN model was evaluated in subgroups of age and sex using
ROC curves. All statistical analyses were performed with R software
(version 3.5.0; http://www.Rproject.org) and SPSS 22.0 (IBM,
Armonk, NY, USA). A two-tailed p value lower than 0.05 was
considered statistically significant.
RESULTS

Finally, a total of 544 patients (age, 17–87 years; median age, 60
years), including 359 men and 185 women, were enrolled in this
study. All patients were confirmed with advanced GC based on
end-point diagnoses, among who 79 patients were confirmed as
OPM-positive using laparoscopy, while the rest (n = 465) were
defined as PM-negative. Table 1 shows the enrolled patients’
Frontiers in Oncology | www.frontiersin.org 4
demographic information. The determination of OPM presence
is described in detail in the Supplementary Material. None of
the patients were treated with neoadjuvant chemotherapy.

The entire cohort of 544 patients was randomly divided into a
training set comprising 395 patients (58 OPM-positive and 337
PM-negative) and a testing set comprising 149 patients (21
OPM-positive and 128 PM-negative).

Clinical Characteristics in the Training and
Testing Cohorts
As shown in Table 1, there were significant differences between
lesion location and Borrmann type for the OPM-positive and
PM-negative groups in the training cohort (p < 0.001). There was
no significant difference in age, sex, carcinoembryonic antigen
(CEA), or carbohydrate antigen 19-9 (CA19-9) between the
OPM-positive and PM-negative groups in the entire cohort.

Diagnostic Performance Measurements
Clinical Model
As shown in Table 2, multivariable logistic regression analysis
identified the Location-L/L+D and Borrmann type as
independent predictors (p < 0.05) for OPM positivity and PM
negativity. A clinical model that incorporated the independent
predictors was developed, and a ROC curve was created. The
area under the ROC curve (AUC) was 0.670 (95% CI: 0.615–
0.739). The sensitivity of the clinical model for the testing cohort
was 85.7%, with a specificity of 44.5% (Table 3).

DCNN Model
Along with the performance generated in the clinical model,
Table 3 also shows the diagnostic performance of the DCNN
model using the same testing cohort. In the bootstrapping
validation, the DCNN model yielded an AUC of 0.900 (95%
CI: 0.851–0.953), a sensitivity of 81.0% and a specificity of 87.5%.
Comparison of the ROC curves of the models suggested that the
DCNN model significantly outperformed the clinical model
(p<0.001). The ROC curves of the DCNN model and clinical
model are shown in Figure 4.

Stratified Analysis of Sex and Age
Deep learning algorithms frequently suffer from issues of
generalizability. To test the generalization ability of the
proposed DCNN model, we performed stratification analysis
FIGURE 3 | Proposed deep convolutional neural network (DCNN) workflow for OPM detection and prediction.
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on the testing set subgrouped by sex and age. As shown in
Table 4, the DCNN model presented good accuracy in the
discrimination of OPM positivity and PM negativity among
the different subgroups.
Frontiers in Oncology | www.frontiersin.org 5
Heatmap Analysis
Figure 5 shows two representative cases with a cropped Grad-
CAM view superimposed heatmaps on the original CT images.
The OPM-positive case 24 was diagnosed by the DCNN model
with a prediction score of 0.768, exhibiting activated status in the
highlighting subregions. Furthermore, PM-negative case 88 was
diagnosed by the DCNN model with a prediction score of 0.015,
exhibiting inactivated status in all subregions.

Clinical Use
The decision curve shown in Figure 6 was used to compare the
benefit of the DCNN model, all-laparoscopy and no-laparoscopy
schemes. We found that if the threshold probability for the
clinical decision was less than 80% (i.e., if the improper surgical
procedure for OPM-positive patients was considered more
harmful than laparoscopic exploration), the patient would
benefit more from the findings of the DCNN model than
either the all-laparoscopy or no-laparoscopy schemes.
DISCUSSION

In this study, we developed a DCNN model to identify OPM in
AGC patients prior to surgical treatment. The DCNN model
yielded an AUC of 0.900 and sensitivity of 81.0%, which was
significantly greater than that of the clinical model (AUC of
0.532, p < 0.001). The proposed DCNN model was based on 2D
images, focusing on the clinical characteristics of the primary
AGC patients identified with OPM. To our knowledge, this is the
first deep learning study for OPM detection and diagnosis in
AGC patients.
TABLE 2 | Variables and coefficients of the clinical model.

Variable Clinic model

b OR (95% CI) p

Intercept -2.2351 – –

L/L+D -0.7910 0.453(0.247–0.832) 0.010
Borrmann type 1.1324 3.103(1.504–6.401) 0.002
OR, Odds Ratio; CI, Confidence interval.
TABLE 3 | Model performance and DeLong’s test.

Performance Testing cohort

DCNN model Clinical model

TP 17 18
TN 112 57
FN 4 3
FP 16 71
Sensitivity 0.810 0.857
Specificity 0.875 0.445
AUC 0.900

(0.851–0.953)
0.670

(0.615–0.739)
p \ < 0.001
DCNN, deep convolutional neural network; TP, True Positive; TN, True Negative; FN, False
Negative; FP, False Positive; AUC, area under curve.
TABLE 1 | Characteristics of patients in the training and testing cohorts.

Characteristic Training cohort (N = 395) p Validation cohort (N = 149) p

OPM Pos(N = 58) OPM Neg(N = 337) OPM Pos(N = 21) OPM Neg(N = 128)

Mean Std Mean Std Mean Std Mean Std
Age (years) 58.17 13.24 57.99 11.74 0.451 55.86 16.33 60.41 10.76 0.121

N % N % N % N %
Gender 0.270 0.469
Male 34 58.6 226 67.1 12 57.1 87 68.0
Female 24 41.4 111 32.9 9 42.9 41 32.0
Location 0.002 0.116
U/U+M 12 20.7 68 20.2 3 14.3 36 28.1
M/M+L 20 34.5 63 18.7 6 28.6 18 14.1
L/L+D 18 31.0 181 53.7 9 42.9 63 49.2
U+E 1 1.7 11 3.3 0 0.0 5 3.9
Whole stomach 7 12.1 14 4.2 3 14.3 6 4.7
Borrmann type 0.000 0.009
Type 1, 2 48 82.8 194 57.6 18 85.7 71 55.5
Type 3, 4 10 17.2 143 42.4 3 14.3 57 44.5
CEA 0.313 0.128
normal 36 62.1 235 69.7 18 85.7 88 68.8
elevated 22 37.9 102 30.3 3 14.3 40 31.2
CA19-9 0.091 0.221
normal 37 63.8 254 75.4 11 52.4 88 68.8
elevated 21 36.2 83 24.6 10 47.6 40 31.2
November 2020 | Volume 10 | Article 6
p was derived from the univariable association analyses between each characteristic and PM status. peritoneal metastasis, PM; Positive, POS; Negative, Neg; Standard deviation, Std;
number, N; Upper stomach, U; Middle stomach, M; Lower stomach, L; Duodenum, D; Esophagus, E; carcinoembryonic antigen, CEA; carbohydrate antigen 19-9, CA19-9.
01869

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Huang et al. Deep Learning for Peritoneal Metastasis
Few published papers have focused on the preoperative
assessment of PM status in GC patients (12, 14–16, 37).
Previously, CT examination was chosen as the preferable
diagnostic imaging modality for PM detection, while MRI and
PET/CT were considered secondary choices (38). However, the
reported detectability of PM on CT images varied substantially,
with an average poor sensitivity of ~ 50% (13, 19). More recently,
Dong et al. reported a radiomics study using CT phenotypes of
primary tumors and nearby peritoneum to accurately predict
OPM in AGC patients (39). While the concept of “seed and soil”,
a classic theory of tumor metastasis (40), was applied in Dong’s
study, the delineated ROI of the peritoneum may not have been
representative of the entire “soil” condition. In our study, we
focused on the characteristic features of primary tumors and
their correlation with a high possibility of OPM to develop a
predictive model powered by a DCNN.
Frontiers in Oncology | www.frontiersin.org 6
Previous studies have shown that clinical factors, including
Lauren type, Borrmann type, tumor location and differentiation
degree, could be important predictors for PM (39, 41).
However, preoperative biopsy findings do not typically
include the Lauren type and the differentiation degree of GC;
these are more often identified in postoperative pathological
diagnosis. Therefore, Lauren type and differentiation degree
were not included in our study. By incorporating the tumor
location and Borrmann type (the independent predictors) in
our clinical model, we found that the model had decreased
diagnostic accuracy and an AUC of 0.670, suggesting that the
involvement of only preoperative clinical features may not be
effective for PM prediction in AGC patients. Compared to the
clinical model, the proposed DCNN model yielded satisfactory
performance and exhibited good generalization ability among
patients of different ages and sexes (Table 4). Furthermore, the
FIGURE 4 | ROC curves of the DCNN model and the clinical model on the testing dataset (n = 149).
TABLE 4 | Stratified analysis for DCNN model in the testing cohort.

Performance Age Gender

< 60 ≥60 Female Male

Sensitivity 0.800 1.000 0.889 0.833
Specificity 0.980 0.718 0.902 0.862
AUC 0.896 0.904 0.924 0.888
95% CI 0.811–1.000 0.845–0.955 0.851–0.989 0.825–0.956
November 2020 | Volume 10 | A
DCNN, convolutional neural network, AUC, area under curve, CI, Confidence interval.
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availability of heatmaps (Figure 5) provided a visual display of
the PM detection estimated by the DCNN model, which could
make it easier for surgeons and oncologists to make clinical
assessments accordingly.

The decision of whether to begin surgical treatment in
patients with gastric cancer is often a dilemma because of the
ambiguity of the PM condition (4). Patients without PM on
preoperative CT (but PM positivity at surgery) may undergo
an unnecessary surgical procedure due to inadequate
preoperative imaging and interpretation. The decision curve
analysis (Figure 6) in our study provided an assessment of the
value of the DCNN model. For patients with OPM (PM-
negative) on conventional CT images, the proposed DCNN
model is more suitable than the all-laparoscopy scheme or no-
laparoscopy scheme based on the risk of PM. Similarly, if the
DCNNmodel suggested a high possibility of OPM, it would be
relatively beneficial to perform diagnostic laparoscopy
for confirmation.
Frontiers in Oncology | www.frontiersin.org 7
Our study indeed has several limitations. First, the delineated
ROIs obtained from a single slice (2D) might not be
representative of the entire tumor. ROIs extracted from 2D or
3D images may have an impact on model development and
optimization. 3D analysis of the entire tumor is one of our
further study interests. Second, we used retrospective datasets to
develop the DCNN model and examined a relatively small
number of clinical factors. Other factors, such as serological
tumor markers, are not initially available on CT scans and may
account for any incomplete data. Third, OPM samples were
enrolled in the study cohort based on the combined results from
initial CT examination (negative) and laparoscopy (positive),
which limited the sample size. Finally, external validation is
needed to assess the model’s diagnostic performance and
generalizability across different medical institutions.

In conclusion, compared to a conventional clinical model
built using logistic regression, the proposed DCNN model
achieved superior diagnostic accuracy for OPM detection and
FIGURE 5 | Representative cases with cropped CT images and heatmaps generated by Grad-CAM. (A, B) An OPM-positive patient with pathologically confirmed
peritoneal tumor implants during surgery. The DCNN model correctly diagnosed the OPM region with the highest probability of 0.7683. (C, D) A PM-negative patient
who was misclassified by the DCNN model with a probability of OPM of 0.0147. The subsequent surgery confirmed the patient to have no PM in the peritoneum.
November 2020 | Volume 10 | Article 601869
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diagnoses in AGC patients. The DCNN model may have
significant clinical implications for early detection and proper
surgical treatment for patients with AGC.
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