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Pancreatic cancer is one of the most common digestive system cancers. Early diagnosis
is difficult owing to the lack of specific symptoms and reliable biomarkers. The cause of
pancreatic cancer remains ambiguous. Smoking, drinking, new-onset diabetes, and
chronic pancreatitis have been proven to be associated with the occurrence of
pancreatic cancer. In recent years, a large number of studies have clarified that a
variety of microorganisms colonized in pancreatic cancer tissues are also closely
related to the occurrence and development of pancreatic cancer, and the specific
mechanisms include inflammatory induction, immune regulation, metabolism, and
microenvironment changes caused by microorganism. The mechanism of action of the
pancreatic colonized microbiome in the tumor microenvironment, as well as
immunotherapy approaches require further study in order to find more evidence to
explain the complex relationship between the pancreatic colonized microbiome and
PDAC. Relevant studies targeting the microbiome may provide insight into the
mechanisms of PDAC development and progression, improving treatment effectiveness
and overall patient prognosis. In this article, we focus on the research relating to the
microorganisms colonized in pancreatic cancer tissues, including viruses, bacteria, and
fungi. We also highlight the microbial diversity in the occurrence, invasion, metastasis,
treatment, and prognosis of pancreatic cancer in order to elucidate its significance in the
early diagnosis and new therapeutic treatment of pancreatic cancer, which urgently need
to be improved in clinical practice. The elimination or increase in diversity of the pancreatic
microbiome is beneficial for prolonging the survival of PDAC patients, improving the
response to chemotherapy drugs, and reducing tumor burden. The colonization of
microorganisms in the pancreas may become a new hotspot in the diagnosis and
treatment of pancreatic cancer.
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INTRODUCTION

Pancreatic cancer is the most refractory malignant tumor, owing
to its lack of early diagnostic markers, early tendency for
neurovascular invasion, rapid deterioration, extensive
metastasis to multiple organs, high postoperative recurrence
rate, high postoperative distant metastasis rate, poor response
to chemoradiotherapy, and several additional characteristics,
which lead to an extremely poor prognosis (1). Following
decades of improvements in surgical techniques, radiotherapy,
chemotherapy, and biotherapy, the five-year survival rate has
barely increased, and now stands at 9% (2). Known genetic
drivers in the etiology of pancreatic cancer include KRAS, TP53,
BRCA, etc. Family history (3), chronic pancreatitis (4, 5), obesity
(6), diabetes (7, 8), smoking (9), and heavy drinking (10) are all
risk factors for pancreatic cancer. Although ultrasound
endoscopy and ultrasound-guided fine-needle aspiration have
brought hope for the early diagnosis of pancreatic cancer in
recent years (11), further progress is needed to identify specific
biomarkers and improve the early diagnosis rate.

The human microbiome is a new target for studying cancer
development and treatment. It can be directly carcinogenic by
promoting an inflammatory response, and may also play an anti-
cancer role by changing the tumor immune microenvironment
(12). Interactions between microorganisms near or far from tumor
tissues affect cancer progression and disease progression in specific
ways (12). Studies have shown that each tumor type has a distinct
microbiome composition, and that most of the bacteria in the
tumor are intracellular and exist in cancer cells and immune cells
(13). The same is true for pancreatic cancer. New research suggests
bacteria may be playing a role in other gastrointestinal cancers (14).
However, the latest research indicates that the specific bacterial
ecosystem in the pancreatic cystfluid sample may reflect the local
microbiota in the pancreas (15). In contrast to normal pancreatic
tissue, a large number of microorganisms, such as bacteria and
fungi, colonize the pancreatic cancer tissue. Their presence not only
promotes the occurrence and development of pancreatic cancer, but
also affects the response and prognosis of pancreatic cancer to
Abbreviations: CDDL, cytidine deaminase; CTLA-4, cytotoxic T-lymphocyte-
associated protein 4; EMT, Epithelial-mesenchymal transition; FMT, fecal
microbial transplantation; GFP, green fluorescent protein; GM-CSF,
Granulocyte-macrophage Colony Stimulating Factor; GzmB, granzyme B+; IFN-
g, interferon-g; IL-2, interleukin-2; IL-4, interleukin-4; IL-8, interleukin-8; IL-12,
interleukin-12; IL-13, interleukin-13; LTS, long-term survival; LTS-NED, LTS
with no evidence of disease; MBL, mannose-binding lectin; MDSC, myeloid-
derived suppressor cell; MMP, matrix metalloproteinase; MyD88, myeloid
differentiation primary response gene 88; NF-kB, nuclear factor-kappa B; NLRs,
NOD-like receptors; PanIN, pancreatic intraepithelial neoplasia; PCR, polymerase
chain reaction; PDAC, pancreatic ductal adenocarcinoma; PD-1, programmed cell
death protein 1; PD-L1, programmed cell death ligand 1; PRRs, pattern-
recognition receptors; TAM, Tumor-associated macrophage; TGF-b,
transforming growth factor b; TLR, Toll-like receptor; TME, tumor
microenvironment; TNF-a, tumor necrosis factor a; STAT3, signal transducer
and activator of transcription 3; STS, short-term survival; VEGF, vascular
endothelial growth factor; CI, Candida infection; LPS, Lipopolysaccharide;
MAPK, mitogen-related protein kinases (MAPK); TAK1, transforming growth
factor b activated kinase 1; IKK, IkB (inhibitor of nuclear factor kB) kinase; NKT,
natural killer T; R, responders (R); NR, non-responders (NR); PC, Pancreatic
Cancer; HC, healthy controls; FadA, Fusobacterium adhesin A.
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treatment (16, 17). Table 1 has summarized some studies on
pancreatic colonizing microorganisms and pancreatic cancer.
This article aims to analyze the relationship between the
colonization of microbes in pancreatic cancer tissue and the
occurrence and development of pancreatic cancer.
COMPOSITION OF MICROORGANISMS
COLONIZED IN PANCREATIC
CANCER TISSUE

Bacterial Colonization in Pancreatic
Cancer Tissue
The common hepatic duct and the pancreatic duct merge to form
the common bile duct, which opens to the major duodenal nipple.
The migration of bacteria from the oral cavity and gastrointestinal
tract to the pancreas through the pancreatic duct is the source of
bacteria in the pancreatic tissue. In cats, E coli can spread to the
pancreas by the blood stream, transmurally from the colon, and
enter the pancreatic duct through reflux. Pathogens may spread
from the colon, gallbladder, and kidneys to the pancreas (18). The
way bacteria enter the pancreas is still controversial, and may
include some mechanisms, such as oral route, via translocation
from the lower gastrointestinal tract through the portal
circulation or mesenteric lymph nodes (19). Figure 1 lists the
different ways that microorganisms from different parts of
the pancreas enter the pancreas. Regardless of the disease state,
the bacterial DNA profile in the pancreas is similar to that in the
duodenum of the same subject, suggesting that bacteria may
migrate from the intestine to the pancreas. Pancreatic colonized
microbiota, as well as gut microbiota, are related to disease
development (19, 20). Riquelme et al. (17) compared the
microbiome with similar specimens and found that the human
gut microbiome accounted for 25% of the human tumor
microbiome, while the bacterial composition in normal adjacent
tissues was different from that in tumors, which indicated the
ability of the gut microbiota to specifically colonize pancreatic
tumors. Studies have found that the bacterial composition in
pancreatic cancer tissue is different from that in normal
pancreatic tissue. Pushalkar et al. (16) sequenced the
multivariate region of the bacterial 16S ribosomal RNA (rRNA)
gene in 12 pancreatic ductal adenocarcinoma (PDAC) tissues and
detected 13 different phyla, of which Proteus (45%), Bacteroides
(31%), and Firmicutes (22%) were relatively high and present in
all specimens. Actinobacteria (1%), although low in content, were
also prevalent in all specimens. In addition, the genera
Pseudomonas and Elizabethkingia were also highly abundant.
Geller et al. (21) performed rRNA fluorescence in situ
hybridization with probes targeting bacterial 16S rRNA and
deep sequencing of polymerase chain reaction (PCR)-
amplified bacterial 16S rDNA of 65 PDAC tumor tissues. The
most common group identified in pancreatic cancer tissues
was the class Gammaproteobacteria, most of which were
Enterobacteriaceae and Pseudomonas, which demonstrated that
bacteria colonized the pancreas and were components of the
pancreatic cancer tumor microenvironment.
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Oral microbial community composition is associated with
pancreatic cancer (22, 23). Gnanasekaran, J., et al found that
Porphyromonas gingivalis survives inside pancreatic cancer cells.
This property can be enhanced in vitro and increased by hypoxia,
which is the main feature of pancreatic cancer. Increased tumor cell
proliferation was related to the degree of intracellular persistence,
and infection of tumor cells with P. gingivalis led to enhanced
Frontiers in Oncology | www.frontiersin.org 3
growth in vivo (24). Oral microorganisms may colonize the
pancreas through the gastrointestinal tract, especially in the case
of pancreatitis, the microbiota isolated from the pancreas is similar
to the oral microbiota (25). A certain number of Clostridium
species that originally colonized the oral cavity can be detected in
normal pancreatic tissues (26). Compared with non-cancer
patients, patients with ampullary cancer or pancreatic ductal
FIGURE 1 | Different ways for microorganisms from different parts to enter the pancreas.
TABLE 1 | Research on microorganism and pancreatic cancer in pancreas and pancreatic cancer.

Time Author Methods Conclusions Magazine Reference

2019 Del Castillo, E
et al.

16S rRNA gene
sequencing

Bacterial DNA profiles in the pancreas were similar to those in the duodenum tissue of
the same subjects

Cancer
Epidemiol
Biomarkers
Prev

(20)

2018 Pushalkar, S et
al.

16S rRNA gene
sequencing

Cancerous pancreas has a significantly richer microbiome Cancer Discov (16)

2019 Riquelme, E et
al.

16S rRNA gene
sequencing

Higher alpha diversity found in the tumor microbiome of LTS patients is associated with
long-term survival

Cell (17)

2017 Geller, LT et al. 16S rRNA gene
sequencing

Of the 113 human PDACs that were tested, 86 (76%) were positive for bacteria, mainly
Gammaproteobacteria.

Science (21)

2020 Gnanasekaran
J et al.

16S rRNA gene
sequencing

P. gingivalis survives inside pancreatic cancer cells. Cancers (Basel) (24)

2015 Mitsuhashi, K
et al.

custom-made
TaqMan primer/probe
sets

Fusobacterium species were detected in pancreatic cancer tissue. Oncotarget. (26)

2018 Maekawa T et
al.

16S rRNA gene
sequencing

Enterococcus faecalis was detected in pancreatic tissue from chronic pancreatitis and
pancreatic cancer patients.

Biochem
Biophys Res
Commun

(38)

2019 Aykut, B et al. The modified Illumina
metagenomics
protocol

pancreatic ductal adenocarcinoma (PDA) tumours in humans and mouse models of
this cancer displayed an increase in fungi of about 3,000-fold compared to normal
pancreatic tissue.

Nature (51)

2013 Jin Y, et al. Detection of HBV
covalently closed
circular DNA

HBsAg and HBcAg were expressed in 21.0% (34/162) of PC and 29.0% (47/162) of
non-tumor pancreatic tissues.

Cancer Lett (67)
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adenocarcinoma have significantly reduced numbers of
Lactobacillus, while oral bacteria such as Porphyromonas,
Clostridium, and Prevotella are more abundant (20).

The relationship between Helicobacter pylori and pancreatic
cancer remains controversial. To date, numerous case-control
studies, prospective cohort studies, and meta-analyses have
suggested that H. pylori infection is associated with an
increased risk of PDAC (27–29). However, some studies have
found that there is no correlation between the two (30–32). A
Swedish study detected H. pylori DNA in pancreatic tumor
tissues and/or surrounding tissues in 60% of patients with
pancreatic cancer, proposing that H. pylori may play a role in
the occurrence of pancreatic cancer (33). It has also been found
that H. pylori DNA cannot be detected in pancreatic juice or
pancreatic tissues in chronic pancreatitis and PDAC (34),
suggesting that H. pylori does not colonize the pancreas
directly and may trigger pancreatic carcinogenesis in an
indirect manner. The possible mechanisms are as follows: the
colonization of H. pylori in the gastric antrum increases gastric
acid secretion, decreases somatostatin production, increases
pancreatic bicarbonate secretion, promotes pancreatic
hyperplasia, and accelerates DNA synthesis. H. pylori colonize
the gastric body, and bacterial overgrowth causes an increase in
the production of bacteria-catalyzed N-nitrosamines, which act
on the pancreas through the blood. Long-term pancreatic cell
proliferation and the stimulation of endogenous carcinogen N-
nitroso compounds, together with the reduction of DNA repair
ability, lead to the occurrence and development of pancreatic
cancer (35–37). Whether H. pylori colonize the pancreas and the
impact of colonization on the immune microenvironment of
pancreatic tumors warrants further investigation.

Bile is associated with bacterial colonization of the pancreas.
A study on chronic pancreatitis and pancreatic cancer found that
29 pancreatic juice samples collected from 20 patients with
pancreatic cancer and 16 patients with duodenal cancer or bile
duct cancer, using drainage tubes following pancreatectomy,
tested positive for enterococcal DNA (38). Enterococcus and
Enterobacter species were also detected in the bile, and
Enterococcus faecalis was detected in the pancreatic tissue of
patients with chronic pancreatitis and pancreatic cancer (38).
Bile duct obstruction and liver damage also affect the
microbiome. PC-related liver damage disrupts the normal gut
balance, driving reductions in multiple normal gut-residing
bacteria (39). It is suggested that bile microbiota such as
Escherichia coli may affect the pancreatic microbiota. Some
specific bacteria can migrate from the gallbladder to the
pancreas, and the clearance of these bacteria may trigger the
Th1 type immune response, which can play a protective effect on
the growth of pancreatic cancer (40–42). Bacterial DNA was
detected in the duodenal fluid collected from patients with biliary
obstruction after common bile duct stent placement by
endoscopy (n = 6), otherwise there was almost no bacterial
DNA was found in the control group without stent placement
(n = 5). It is suggested that the common bile duct stent may affect
the duodenal microbiome. Many clinical factors such as proton
pump inhibitors may affect the composition of colonized
Frontiers in Oncology | www.frontiersin.org 4
microbiome in the pancreas and increase the risk of pancreatic
cancer (43, 44).

Fungal Colonization in Pancreatic
Cancer Tissue
Owing to the low abundance of intestinal fungi and the lack of a
well-characterized reference genome, the action of fungal flora in
pancreatic cancer progression is a relatively new and
undiscovered field. The migration of certain fungi from the
intestine to colonize the pancreas is related to the occurrence
of pancreatic cancer. The fungal genome may be a new target for
the treatment of pancreatic cancer (45, 46). A study in Taiwan
showed that Candida infection (CI) can significantly increase
overall and certain individual cancer risks (47). Candida can
produce compounds such as nitrosamines, which are identified
carcinogens that play a role in oral cancer initiation (48, 49) A
previous study suggested that Candida albicans promotes cancer
through a proinflammatory response, mediated by an increase in
cytokine production and adhesion-molecule expression (50).

Aykut et al. introduced fungal strains labeled with green
fluorescent protein (GFP) into the intestine of mice. Fungi
migrated to the pancreas within 30 min, indicating that the
intestinal fungi may colonize the pancreas (51). The fungi in the
pancreatic tumors of human and mouse models were 3,000 times
more than normal pancreatic tissues and contained several
different species. For example, the most common species of the
pancreas in KC mice was Malassezia, which had a significant
increase in relative abundance compared to the intestine (51).
Pathogenic fungi in pancreatic tumor tissues bind Mannose-
binding lectin (MBL) to activate the complement C3 cascade
and promote pancreatic cancer progression. MBL is a soluble
lectin of the innate immune system that is produced by the
liver and secreted into the circulatory system to activate the
lectin complement pathway, enhance the phagocytosis of
microorganisms by leukocytes, and regulate inflammation (52).
The tumor microenvironment (TME) plays a key role in
tumorigenesis, development, metastasis, and recurrence.
Complement activation in TME has immunomodulatory
functions, and the interactions between the complement
system and cancer cells contribute to proliferation, epithelial–
mesenchymal transition, migration, and invasion of tumor cells
(53, 54). MBL recognizes the carbohydrate structure produced by
Malassezia and activates protein C3, triggering the complement
cascade inflammatory immune response. Complement
activation stimulates cell proliferation and migration and
promotes tumor growth (55). Deletion of MBL/C3 in the
extratumoral compartment or knockdown of C3aR in tumor
cells can inhibit tumor growth. Therefore, further studies on the
role of fungal flora as a potential prognostic tool for early
diagnosis of this cancer are warranted.

Viral Colonization in Pancreatic
Cancer Tissue
Some case-control studies and meta-analyses have shown that
hepatitis B or C virus infection increases the risk of pancreatic
cancer (56–59). However, some studies have shown that
January 2021 | Volume 10 | Article 604531
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hepatitis B and C virus infections are not a risk factor for
pancreatic cancer (60–62). A Swedish study showed that HCV
infection may be associated with an increased risk of pancreatic
cancer (63). There are also data in China showing that chronic
hepatitis B and hepatitis B carriers (HBsAg-positive) have a
significantly increased risk of pancreatic cancer (64). Hoefs
et al. reported for the first time in 1980 that HBsAg was
detected in the pancreatic juice of HBV infected patients
(65), HBsAg and HBcAg were detected in the cytoplasm of
pancreatic acinar cells (66). Studies have confirmed that HBV
not only infects pancreatic tissues of pancreatic cancer patients
but also replicates in pancreatic tissues. Chronic inflammation
caused by HBV infection may play a role in the development of
pancreatic cancer (67). Hepatitis B virus encodes the regulatory
HBx protein that promotes transcription of the viral genome
(68) and causes prolonged metabolic disorders, all of which
may promote the development of pancreatic cancer (67). The
integration of HBV/HCV DNA with the DNA of infected cells
delays the clearance of the host immune system of HBV/HCV
(69). Although the HBV replication level of pancreatic
cancer cells are very low (67), the potential role of hepatitis
virus in chronic pancreatitis and pancreatic cancer cannot
be ignored.
PANCREATIC RELATED MICROBE-
INDUCED INFLAMMATION AND
PANCREATIC CANCER

Inflammation triggered by microorganisms is beneficial in
defending against pathogens; however, if inflammation persists,
it may lead to tissue fibrosis and even carcinogenesis, Microbial-
induced inflammation leads to tumor development by activating
tumor-related inflammatory signaling pathways, including
proinflammatory cytokines, Toll-like receptor (TLR)/MyD88
(myeloid differentiation primary response gene 88) pathway,
nuclear factor-kappa B (NF-kB), etc., constitute a fine
and complex network (70–72). Toll-like receptors (TLRs)
are usually expressed on immune cells such as macrophages,
dendritic cells, mast cells, as well as on eosinophils
and some epithelial cells. They play a central role in the
recognition of harmful molecules that belong to invading
microorganisms or internal damaged tissues, which lead to
inflammation. Microorganisms colonized in the pancreas may
cause inflammation in this way, thereby promoting
tumorigenesis (73). Lipopolysaccharide (LPS) is a component
of the cell wall of Gram-negative bacteria and can be specifically
recognized by Toll-like receptor 4 (TLR4), a family member of
the pattern recognition receptor (PRR) (74). Atsuo Ochi et al.
show that lipopolysaccharide can promote pancreatic
tumorigenesis, whereas TLR4 inhibition is protective. In
addition, blockade of the MyD88-independent TRIF pathway
is protective against pancreatic cancer, whereas blockade of the
MyD88-dependent pathway surprisingly exacerbates pancreatic
inflammation and malignant progression (74). Pattern
recognition receptors (PRRs), such as Toll-like receptors
Frontiers in Oncology | www.frontiersin.org 5
(TLRs) located on monocytes or endolysosome membranes,
interact with pathogen-related or risk-related molecular
patterns to trigger mitogen-related protein kinases (MAPK)
kinase-kinase TAK1 (transforming growth factor b activated
kinase 1) and IkB (inhibitor of nuclear factor kB) kinase IKK
signaling pathway (70). The main reaction between
inflammation and cancer is the imbalance of oxidative stress
(75). Pathogenic microbes often activate the inflammatory
response, increase the recruitment of pro-inflammatory cells,
and secrete cytokines. Oxidative stress results in DNA damage
and ultimately promotes tumorigenesis, invasion, and metastasis,
affecting tumor response to therapy and other aspects (75, 76).

Chronic pancreatitis is a risk factor for PDAC. Systemic and
local chronic inflammation increases the risk of PDAC, and the
associated inflammation in the tumor microenvironment
contributes to tumor growth and metastasis (77). Chronic
inflammation of chronic pancreatitis may also be caused by
microbial infection (78). In a mouse model of pancreatic
cancer, Kras itself causes spontaneous infiltration of immune
cells, and other chronic inflammatory stimuli further
accelerate the development of pancreatic cancer (79). In
mice with KRAS mutations, pancreatitis that lasts for
4 weeks can cause pancreatic intraepithelial neoplasia
(PanIN), which are precancerous lesions (4). In the
earliest stages of PDAC formation, an active inflammatory
stimulus and fibrotic environment support cancer cell
immune response evasion and metastasis to distant organs,
which are important factors for cancer cell survival, immune
evasion, and metastasis (80).
EPITHELIAL–MESENCHYMAL
TRANSITION (EMT) INDUCED BY
PANCREAS-RELATED
MICROORGANISMS AND PANCREATIC
CANCER

Epithelial–mesenchymal transition is a process in which
epithelial cells acquire mesenchymal features. In cancer, EMT
is related to tumor initiation, invasion, metastasis, and resistance
to therapy (81). Chronic inflammation caused by bacterial or
viral infections is associated with certain types of cancer, and
these microorganisms upregulate the expression of some
transcription factors involved in EMT regulation (82).
Microbes induce EMT by inducing cell signaling that mediates
transcription factor activation via specific transmembrane
receptors, and growth factors and microbes share common
signaling pathways (82). Microbes promote tumorigenesis by
triggering EMT via E-cadherin/b-catenin and inducing epithelial
barrier alterations in EMT and tumor-promoting inflammation
(83). Opportunistic infections of various pathogens can promote
malignant progression. The virulence factor FadA is expressed
on the surface of Fusarium sclerotium. It binds and induces
phosphorylation/internalization of E-cadherin, thereby
disrupting cell-cell junctions. Then the release of b-catenin
from the plasma membrane and further activation of the Wnt
January 2021 | Volume 10 | Article 604531

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Pancreatic Microorganisms and Pancreatic Cancer
signaling pathway (phosphorylation/degradation of GSK3b and
decomposition of the APC/Axin/GSK3b complex) occur, leading
to enhanced EMT and invasion of cancer cells (84). Chronic
inflammation associated with long-term microbial infections
cause continuous activation of NF-kB and mitogen-activated
protein kinase modules as the basis of EMT, which ultimately
leads to fibrin production, cancer progression, and metastasis
(82). Viruses can induce EMT, and viral infections can lead to
activation of intracellular signaling pathways. The main
pathogenic viruses are cytomegalovirus, herpes simplex virus,
hepatitis B virus, and hepatitis C virus (82). EMT induction in
pancreatic ductal epithelial cells represents an early event in
PDAC development (85). The EMT process is regulated by
complex networks of cytokines, transcription factors, growth
factors, signaling pathways, and the tumor microenvironment,
exhibiting cancer stem-like properties. The transition of solid
cancer cells from the epithelial phenotype to the intercellular
phenotype increases their migratory and invasive properties,
thus promoting metastasis. EMT and chemoresistance in
pancreatic cancer have also been implicated. Inflammation
enhances the occurrence and development of pancreatic cancer
and promotes EMT in the early stages of PDAC invasion (86).
KRAS mutation is a hallmark of PDAC, while EMT is the driving
force for its progression (87). Inflammation, EMT, and cancer
are tightly linked. The molecular regulatory mechanisms of
inflammation and EMT in PDAC during tumor occurrence
and progression include the interaction among NF-kB,
transforming growth factor b (TGF-b), tumor necrosis factor a
(TNF-a) , and signal transducer and activator of transcription 3
(STAT3) signaling pathways. NF-kB is not only a direct and
powerful inducer of EMT, but also promotes the mobilization of
innate immunity and inflammation, thus building a molecular
bridge between inflammation, EMT, and cancer (88). EMT is a
key step in PDAC metastasis, allowing polarized motionless
epithelial cells to acquire fibroblast-like intercellular abilities
such as enhanced motility (89). Each microbial pathogen
colonized in pancreatic tissue has the potential to induce EMT
and EMT-related pathological changes. For the dynamic process
of microbiota-induced EMT in PDAC, elucidating its specific
signal transduction pathways and regulatory mechanisms is
important for pancreatic cancer occurrence and progression,
particularly metastasis.
IMMUNE REGULATION INDUCED
BY PANCREAS-RELATED
MICROORGANISMS AND PANCREATIC
CANCER

The microbiome plays an important role in the development and
maturation of the immune system, destroying tumor immune
surveillance processes and promoting pancreatic cancer (90).

A large number of immune cells infiltrate the stroma of
PDAC tumor tissues, including T cells, B cells, neutrophils,
monocytes/macrophages, and mast cells, which promote the
Frontiers in Oncology | www.frontiersin.org 6
initiation, progression, and immune evasion of PDAC (79, 91).
Many different types of immune cells have been found to cause
changes in PDAC inflammation (Table 2) (16). The activity of
these cells and their role in immune regulation during tumor
development have not yet been fully elucidated. However, tumor
cells seem to alter the activity of immune cells, thus promoting
tumor growth and development. The existence of these immune
cells in PDAC is related to poor prognosis. Interestingly, some of
the most typical immune cells promote tumor development.
However, these cells have a tumor-suppressing effect by changing
their polarity (92). Infiltration of CD4+ T lymphocytes and
CD8+ T lymphocytes are beneficial for improving the
prognosis of PDAC patients (93). Infiltration of intratumoral
CD4+ Th2 cells in PDAC is associated with reduced survival
(94). Foxp3+ Tregs can promote immune escape in PDAC (95).

The microbiome in the pancreas effectively regulates the tumor
immune microenvironment. Bacteria can promote the progression
of pancreatic cancer in the mouse PDAC infiltration model, oral
antibiotic treatment can reduce the tumor burden by 50%. If the
bacteria of the PDAC host are retransplanted into the intestines of
mice, the growth of tumors will be accelerated. The microbiome
regulates immunogenicity in PDAC and promotes PDAC
progression by inducing peritumoral immune suppression. The
elimination of microorganisms is related to immunogenic changes
in the PDAC tumor microenvironment. Tumor-associated
macrophage (TAM) phenotype analysis showed that microbial
ablation resulted in a decrease in immune-suppressive CD206+
M2-like TAMs and an increase in M1-like TAMs, which expressed
higher MHC II, CD86, TNF-a, IL-12, and IL-6. Anti-microbial
treatment resulted in an increased intratumoral CD8:CD4 T cell
ratio, promoting Th1 differentiation of CD4+ T cells and CD8+ T
cell activation (16). Microorganisms in PDAC produce immune
tolerance by activating selective Toll-like receptors (TLRs) in
monocytes (96). TLRs, which are the most recognized family of
pattern-recognition receptors (PRRs), which are a group of
molecular pattern receptors related to pathogens (96). These
receptors play a role in the immune response of microbial
infections and accelerate tumorigenesis via innate and adaptive
immune suppression in PDAC. A variety of PRRs, including TLR3,
TLR4, TLR7, TLR9, NLRP3, Dectin-1, and Mincle, are upregulated
in PDAC (16, 20). The microbiota also induces the activation of
NOD-like receptors (NLRs), which also belong to the PRR family
and can recognize different but overlapping microbial components.
NOD2 plays a key role in activating NF-kB signaling and forming
bacterial communities (97).

Bacterial elimination can also improve the efficacy of
immunotherapy targeting checkpoints by upregulating PD-1
expression. To-date, monoclonal antibodies have successfully
blocked two checkpoints: cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4) and programmed cell death protein 1 (PD-
1)/programmed cell death ligand 1 (PD-L1) (98). PD-L1 is
expressed in 60 to 90% of tumor cells in human pancreatic
cancer. Various studies have shown that multiple pathway-
dependent regulation of PD-L1 expression in tumor cells
supports immune evasion in pancreatic cancer (99, 100). Studies
have found that although PDAC mice have cancer cell-specific
January 2021 | Volume 10 | Article 604531
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CD8+ T cells, the mice do not respond to two immune checkpoint
antagonists that promote T cell function (101). However, blocking
the PD-L1/PD-1 pathway in vitro can enhance the function of
circulating CEA-specific T cells in patients with pancreatic cancer
(102). Combination therapy with IL-6 and PD-L1 antibody
blockade can reduce tumor progression in a mouse model of
pancreatic cancer (103). The combination of antibiotics and PD-1
blockers in PDAC leads to enhanced intratumoral activation of
CD4+ and CD8+ T cells, which has synergistic antitumor effects
(16). Matson V et al. showed that the commensal microbiome may
have a mechanistic effect on antitumor immunity in human cancer
patients (104). The gut microbiome uses bile acid as a messenger to
control the accumulation of chemokine-dependent liver NKT cells
and the mechanism of liver anti-tumor immunity to prevent both
primary and metastatic liver tumors (105). Immune checkpoint
inhibitors (ICIs) targeting the PD-1/PD-L1 axis induce sustained
clinical responses in a sizable minority of cancer patients. We found
that primary resistance to ICIs can be attributed to abnormal gut
microbiome composition (106). Fecal microbiota transplantation
(FMT) from cancer patients who responded to ICIs into germ-free
or antibiotic-treated mice ameliorated the antitumor effects of PD-1
blockade, whereas FMT from nonresponding patients failed to do
so (106). These data suggest that the endogenous microbiota
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promotes severe immunosuppressive properties of PDAC, and
that the microbiome has the potential to be a therapeutic target
in regulating disease progression (16).

In relation to long-term survival (LTS) of PDAC,
microorganisms in tumors enhance immune infiltration, showing
activated, polyclonal, tumor-specific T cell infiltration (107).
Riquelme et al. (17) found that the density of CD3+ and CD8+ T
cells in LTS was higher than that in short-term survival (STS), and a
higher number of granzyme B + (GzmB) cells were detected in LTS.
CD8+ T cells and GzmB+ tissue densities were significantly
correlated with microbiome diversity. The diversity of the tumor
microbiome contributes to the anti-tumor immune response by
promoting the recruitment and activation of CD8+ T cells. The gut
microbiome also affects the immune infiltration of pancreatic
tumors. Tumors from mice that received fecal microbial
transplantation (FMT) from LTS with no evidence of disease
(LTS-NED) had higher numbers of CD8+ T cells and higher
serum levels of interferon-g (IFN-g) and interleukin-2 (IL-2),
whereas those who received STS FMT had increased CD4+,
FOXP3+, and myeloid-derived suppressor cell (MDSC)
infiltration. CD8+ T cell depletion blocks the anti-tumor effect
induced by LTS-NED FMT, indicating that the beneficial effect of
LTS-NED-related gut/tumor bacteria is mediated by CD8 + T cells
TABLE 2 | Summary of immune cells in the tumor microenvironment of pancreatic adenocarcinoma.

Immune
Cell Type

Infiltration and distribution Related
Cytokines

Function Prognostic factors
associated with

PDAC

Other known immune functions

Pancreatitis Pancreatic ductal
intraepithelial
neoplasia

PDAC

Neutrophil High Present Very
low

IL-8, C5a,
MMP

Promoting inflammation,
promoting cancer

No difference in
various types of PDAC

Resist pathogens such as bacteria
and viruses.

TAM
M1 High Present Present IFN-g, IL-12,

IL-23, TNF-
a

Promoting inflammation,
promoting cancer

Participate in th1 type immune
response, killing pathogens and
tumor cells

M2 Low Low High IL-4, IL-10,
IL-13, TGF-
b

Immunosuppression Poor survival rate Mediates Th2-type immune
response and plays a major role

MDSC Present Low High GM-CSF,
VEGF, TGF-
b

Immunosuppression,
decreased CD8 + T cell
infiltration

Poor survival rate Suppress immune cell response

T cell
Treg Present Low High TGF-b, IL-6 Immunosuppression,

decreased CD8 + T cell
infiltration

Poor survival rate Immunosuppression and tolerance.

Helper T
cell
Th1 Present Low Low IL-2, IFN-g Immune activation Better survival rate Assist in the removal of

microorganisms in cells
Th2 Present Low High IL-4, IL-5,

IL-6, IL-13
Immunosuppression Poor survival rate Participate in allergic reactions

against
Effector T
cell

Present Low Low IFN-g, TNF-
a,
IL-2

Antitumor immunity Better survival rate Recognize infected cells and bind to
cell

Th17 cell IL-17A,IL-
17F,IL22,
TNF-a

Promoting inflammation Activate neutrophils, mediate
inflammation, and tumor immunity.

DCs L12,IL18,
cck

Antitumor immunity Inducing specific CTL anti-tumor
immune response.
January
TAM, tumor-associated macrophage; VEGF, vascular endothelial growth factor; MDSC, myeloid-derived suppressor cell.
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(17, 108). In short, the gut microbiome can colonize pancreatic
tumors, change their overall tumor bacterial composition, and
regulate immune function, which ultimately affects the prognosis
of PDAC.
PANCREAS-RELATED MICROBIAL
METABOLISM AND PANCREATIC
CANCER

Microbial metabolites in the tumor microenvironment affect
immune cell differentiation and function. Metabolites produced
by some bacteria can promote the production of peripheral
regulatory T cells (109). Microbial bile acid metabolites can
modulate gut RORg regulatory T cell homeostasis (110).
Microbial-derived short-chain fatty acids can promote the
memory potential of antigen-activated CD8+ T cells (111).
Bacterial metabolites can also affect the host immune system to
suppress inflammation and prevent tumors. Microbial metabolites
(e.g. palmitoleic acid, short-chain fatty acids) reduce inflammation
by regulating the production of Foxp3 + T cells or reducing IFN-g
produced by T cells (112). The microbiome causes changes in
human metabolism, leading to metabolic diseases such as obesity
and diabetes, which are important factors in the development of
PDAC (30). Geller et al. have experimentally demonstrated that
pancreatic colonized bacteria are part of the PDAC tumor
microenvironment and may play a key role in mediating
chemotherapy resistance. Gemcitabine is a nucleoside analog used
to treat pancreatic cancer, lung cancer, breast cancer, or bladder
cancer. In pancreatic tumors, g-Proteus expresses the bacterial
enzyme cytidine deaminase (CDDL), which can metabolize
gemcitabine (2', 2'-difluorodeoxycytidine) into the inactive form
2', 2'-difluorodeoxyuridine, affecting its therapeutic effect, and the
use of antibiotics can eliminate the conversion of this activated form
to a non -activated form (21). Three metabolic subtypes were
identified (slow proliferating, glycolytic, and lipogenic) from
pancreatic cell lines using a metabolomic approach. Then a strong
correlation between metabolic and Collisson’s subtype was
discovered. The relationship between the influence of the
microbiota on metabolism and the different genetic subtypes of
PDAC deserves further discussion (113). A study found that in KPC
mice and PDAC patients, serum polyamine concentrations were
significantly increased. At the early stages of tumorigenesis, there is
a strong correlation between microbial changes and release of
metabolites that foster host tumorigenesis. These findings may
provide a potential, precise, noninvasive tool for early detection of
PDAC, which may result in improved the prognosis (114).
THE DIVERSITY OF PANCREAS-RELATED
MICROBIOME AND PANCREATIC
CANCER

Recent studies have shown that microorganisms in PDAC are
associated with patient survival. Bacterial DNA was extracted from
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surgically resected PDAC tissues of 68 patients (36 LTS and 32 STS)
and classified by 16S rRNA gene sequencing. Microbiome alpha
diversity describes the diversity of species or other taxonomic units
in the sample, including species richness, which refers to the number
of species present in each tumor sample (115). The alpha diversity of
the tumor microbiome in LTS is significantly higher than that in
STS, and patients with high alpha diversity have significantly
extended overall survival, so tumor alpha diversity can be used
as a predictor of survival outcomes in patients with surgically
resected PDAC. The tumor microbiome is significantly different
between LTS and STS. Tumor tissues from LTS patients showed
enrichment of Proteobacteria (Pseudomonas), Saccharopolyspora,
and Streptomyces, whereas nodominant bacteria were detected
in STS patients. In addition, the composition of the
intratumoralmicrobiome determines the different metabolic
pathways between LTS and STS patients (17, 116).

Gopalakrishnan et al. examined the oral and gut microbiome of
melanoma patients undergoing anti-PD-1immunotherapy (n=112).
Significant differences were observed in the diversity and
composition of the patient gut microbiome of responders (R)
versus non-responders (NR). Analysis of patient fecal microbiome
samples (n=43, 30R, 13NR) showed significantly higher alpha
diversity and relative abundance of Ruminococcaceae bacteria in
responding patients. Systemic immunity and anti-tumor immunity
are enhanced in patients with a favorable gut microbiome, as well as
in germ-free mice receiving fecal transplants from responding
patients (117). Half et al. analyzed the fecal microbiota of 30
patients with pancreatic adenocarcinoma, 6 patients with pre-
cancerous lesions, 13 healthy subjects and 16 with non-alcoholic
fatty liver disease, using amplicon sequencing of the bacterial 16S
rRNA gene. Fourteen bacterial features discriminated between PC
and controls (39). A prospective study collected 85 PC and 57
matched healthy controls (HC) to analyze microbial characteristics
by MiSeq sequencing. The results showed that gut microbial
diversity was decreased in PC with a unique microbial profile,
which partly attributed to its decrease of alpha diversity (118). The
tumor microbiota can be influenced by changes in the gut
microbiota. The fecal microbes of patients with advanced PDAC
were transplanted to mice that had previously been treated with
antibiotics. It was observed that tumor growth in the mice that
received FMT from LTS-NED donors was significantly slower than
that of mice receiving FMT from STS donors or healthy control
donors. Tumors from mice with FMT from STS were larger than
those frommice with FMT from healthy control donors, suggesting
that PDAC-related intestinal/tumor bacteria may play a tumor-
promoting effect. The gut/tumor bacteria from patients who had
PDAC and survived long-term can inhibit tumor growth, and
bacterial elimination can reduce the anti-tumoral efficacy induced
by LTS-NED FMT (17). While PC-associated microbial signatures
are easily observed, their translation to predictive biomarkers is not
straightforward. However, a feasible approach may be to combine
several microbial features with other non-invasive biomarkers, such
as the serum biomarker CA19-9 which is of limited use in PC
detection, or urinary biomarkers currently being investigated, for
increased accuracy (39). Various studies have indicated the
important role of the gut and tumor microbiome in pancreatic
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cancer. In the future, microbiome diversity could be used to predict
the PDAC survival rate and guide new treatment strategies.
CONCLUSION

In summary, the microbiome colonized in pancreatic tissue or
tumor is related to the occurrence, development, treatment
response, and survival period of pancreatic cancer. The
elimination or increase in diversity of the pancreatic
microbiome is beneficial for prolonging the survival of PDAC
patients, improving the response to chemotherapy drugs, and
reducing tumor burden. It is worth noting that the living
environment of animals and the sampling errors of human
samples will affect the study of microorganisms and should be
strictly controlled. Conducting certain clinical trials within an
appropriate range helps to understand the relationship between
microorganisms and pancreatic cancer, as shown in Table 3. The
mechanism of action of the pancreatic colonized microbiome in
the tumor microenvironment, as well as immunotherapy
approaches require further study in order to find more
evidence to explain the complex relationship between the
pancreatic colonized microbiome and PDAC. Relevant studies
targeting the microbiome may provide insight into the
mechanisms of PDAC development and progression,
improving treatment effectiveness and overall patient prognosis.
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