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Gastric cancer (GC) is one of the most common malignancies with high mortality and
substantial morbidity. Although the traditional treatment strategies for GC revolve around
surgery, radiotherapy, and chemotherapy, none have been able to optimally treat most
affected patients. To improve clinical outcomes and overcome potential GC resistance,
we established a three-dimensional (3D) culturing platform that accurately predicts drug
responses in a time- and cost-effective manner. We collected tumor tissues from patients
following surgeries and cultured them for 3 days using our protocol. We first evaluated cell
proliferation, viability, and apoptosis using the following markers: Ki67 and cleaved
caspase 3 (Cas3). We demonstrated that cell viability was maintained for 72 h in culture
and that the tumor microenvironments and vascular integrities of the tissues were intact
throughout the culture period. We then administered chemotherapeutics to assess drug
responses and found differential sensitivity across different patient-derived tissues,
enabling us to determine individualized medication plans. Overall, our study validated
this rapid, cost-effective, scalable, and reproducible protocol for GC tissue culture that can
be employed for drug response assessments. Our 3D culture platform paves a new way
for personalized medication in GC and other tumors and can greatly impact future
oncological research.

Keywords: gastric cancer, ex vivo tumor tissue culture, proliferation, apoptosis, chemotherapy effectiveness

INTRODUCTION

GLOBOCAN reported that, in 2018, there were approximately 1,033,000 new cases of gastric cancer
(GC) (1/18 of all cancers) and 783,000 GC-related deaths (1/12 of all cancer-related death)
worldwide. GC ranks 5th in the incidence of malignant tumors and 2nd in mortality (1). The
2015 China Cancer Data Report stated that there were 679,000 new cases of GC and 498,000 GC-
related deaths in China, accounting for over 50% of the GC morbidity and mortality in the world.
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In China, from 2011 to 2015, the incidence of GC increased by
30.1 and 21.7% in males and females, respectively, and exhibited
an upward tendency (2). China has become the country with the
highest risk for GC in Asia (3).

Depending on the clinical stage, traditional therapeutic
strategies such as surgery, radiotherapy, and chemotherapy do
not completely eradicate GC lesions. Metastasis, recurrence, and
subsequent chemoresistance are still the major causes for GC-
related fatalities (4). To improve the 5-year survival rate, after
surgery, patients undergo combined chemotherapies under the
guidelines of international classic chemotherapy or empirical
strategies (5). Even so, only 5% of patients have benefitted with
an increased 5-year survival rate, and GC prognosis continues to
be poor (5, 6). Therefore, there is urgency to develop rapid and
accurate strategies to predict the chemotherapy effects of
individual medication and improve clinical outcomes.

Immortalized cancer cell lines (such as Hela cells) and in vitro
2-dimensional culture (2D) techniques are widely used in
oncology research, especially to study pharmacokinetics; these
cancer cell lines have played important roles in drug sensitivity,
in vivo efficacy prediction, and prognosis evaluation (7). In vitro
2D preclinical tumor models have helped decipher the reasons for
malignant transformations and the emergence of chemoresistance,
greatly impacting clinically translatable findings. However, these
in vitro studies are not directly translatable, often leading to poor
clinical outcomes or are rendered completely ineffective in
patients, demonstrating a clear disconnect between preclinical
and clinical models (8, 9).

Additionally, cancer cells grow in a comprehensive 3-
dimensional (3D) matrix and cope with a series of biophysical
and biochemical factors that naturally coexist in this complex
milieu, such as bioadhesivity, stiffness, extracellular matrix
(ECM), and adhesion molecules (integrins) (10-12). The use of
traditional 3D culture systems such as the rotary cell culture
system, floating cell culture, and hydrogel scaffold culture system
is limited. This is because replicating the spatiotemporal niches,
the inherent heterogeneity in cancer cells, and the surrounding
ECM remains challenging (13, 14). Hence, the development of
3D ex vivo culture protocols, based on patient-derived tumor
tissues, is necessary to properly assess tissue and cell viability,
and optimize timelines in pharmacological research (15).

Patient-derived tumor xenograft (PDX) models have been
used as alternative preclinical models, as they closely resemble
tumor phenotypes and heterogeneity. They possess clear
advantages over traditional models and are effective for
developing medical strategies and predicting clinical prognoses
(16). PDX models have played essential roles in personalized
drug development and accurate susceptibility studies (17).
However, not all cells can be proliferated in PDX models, such
as different subsets of tumor and stromal cells, due to the natural
heterogeneity of the native tumor tissues. Only a few unique
subsets of tumor cells that are adaptable to the xenograft host
environment can be developed into PDX models (18). Therefore,
PDX models only partially reflect the cellular characteristics of
native tumor tissues and are not complete representatives of
heterogeneity within the tumor milieu (19). Additionally, the

establishment of PDX models is time-consuming (at least 3
months), has a low success rate (~30%), is expensive, and is
not amenable for high throughput patient screening (20).

Although molecular profiling has identified diverse signaling
pathways in GC subtypes, clinical treatments still largely depend
on standard regimens (21). Accurate and precise medications
have been increasingly matched against biogenetic characteristics
of individual patients (22, 23). However, no current protocol
predicts the patients’ responses to primary chemotherapeutics
for GC. For primary and recurrent tumors, clinical treatments
are still based on standard regimens, including first- and second-
line chemotherapies (24). Therefore, there is an increasing need
for more accurate and precise preclinical models to predict
individualized therapeutic responses.

In a previous study by Koerfer et al. (25), a culture model of
human gastric and esophagogastric junction cancer using a tissue
chopper was established. However, a tissue chopper is not
common in most hospitals, and this process is time-consuming
and depends on potentially error-prone tissue sectioning.
Therefore, we investigated a novel and convenient culture
system that did not require the use of a tissue chopper. Our
3D culture system retained the intact tumor microenvironment,
reflected real tumor heterogeneity, was comparable to native
tumor tissues, and maintained cell viability similar to the in vivo
status for at least 72 h.

MATERIALS AND METHODS

Patients and Tumor Tissue Collection

The study was approved by the ethics committee of the Second
Affiliated Hospital of Wenzhou Medical University. Tissue was
collected from 25 patients with GC during their surgeries. The
characteristics of the 30 cases of GC are listed in Table S1. The
GC samples were cultured and further examined on a daily basis.
Normal regions near the cancer were rejected by the surgeon and
confirmed by a board-certified pathologist. Tissue pieces were
collected and immersed in 20 ml phosphate buffered saline (PBS,
Gibco, Grand Island, NY, USA, 10010049) containing 1%
penicillin/streptomycin (100x, Gibco, Grand Island, NY, USA,
10378016), and transported to the laboratory within 10 min for
further processing.

Tissue Preparation and Culture

Continuous and accurate collection of the patient-derived tumor
tissues is the decisive factor for reliable parameter comparison in
the culture process (26). To ensure continuity of the GC tissue,
each sample was accurately trimmed to remove the necrotic
tissue and unrelated mucosa (27), which are unsuitable
for culturing.

For preparation, tissues were washed twice with PBS to
remove the blood and necrotic surface residues. They were
then cut into pieces in a 4 ml tube using ophthalmic scissors,
on ice. Tissues (0.8-1.2 mm in diameter) were picked up under a
binocular stereo microscope and transferred into six-well plates
(four to six tissues per well and one well per group). Each well

Frontiers in Oncology | www.frontiersin.org

February 2021 | Volume 10 | Article 614096


https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

Chen et al.

3D Culture for GC Drug Responses

contained 1 ml of culture medium, with the lower parts of the
tissues submerged and the upper parts exposed to air. No scaffold
was used to support the tissue pieces in the wells (Figure 1). The
complete medium was supplemented with RPMI-1640 (Gibco,
Grand Island, NY, USA, 31870082), 10% fetal calf serum (Gibco,
Grand Island, NY, USA, 10099141C), 50x B-27" (Gibco, Grand
Island, NY, USA, 17504044), 1% l-glutamine (Gibco, Grand
Island, NY, USA, 25030081), and 1% penicillin/streptomycin
(Gibco, Grand Island, NY, USA, 10378016). Tissues were
incubated in a humidified incubator at 37°C and 5% CO2 for 1
to 3 days. The culture medium was changed daily. Tissues fixed
on the preparation day were labeled as Day 0 of isolation.

Drug Responses

We used Oxaliplatin (10.0 pug/ml, MedChemExpress, Monmouth
Junction, USA, HY-17371) and 5-Fluorouracil (5-FU, 10.0 ug/
ml, Aladdin Shanghai, China, F100149) to test drug responses.
The medium was changed every day and the drug concentration
was maintained consistently. After 3 days of culture, tissues were
fixed, paraffin-embedded, and sectioned (5 pm). Hematoxylin
and Eosin (H&E) staining and immunohistochemical staining were
carried out as described below. The cell proliferation and apoptotic
indices of tissues cultured with chemotherapeutics were
quantitatively evaluated and compared with the indices of tissues
cultured in parallel without exposure to chemotherapeutics (control).

Tissue Fixation and H&E Staining

On the day of surgery and on days 1-3 of the culture process,
small pieces of tissue were taken, fixed in 4% paraformaldehyde
for 24 h, and labeled as Day 0, 1, 2, and 3 of isolation, respectively.
Fixed tissues were embedded in paraffin, sectioned, and stained
with an H&E kit (Scientific Phygene, Fuzhou, China, PH0516).
The tissue structural and morphological changes were compared
and recorded daily.

Immunohistochemistry Staining

Cell type and distribution were determined by H&E staining and
immunohistochemical staining. The specific experimental steps
refer to the previous literature of our team (28). Primary and
secondary antibodies are listed in Table S2. For antigen retrieval,

e

FIGURE 1 | Tumor tissue collection, preparation, and culture.

the paraffin tissue sections were immersed in citrate buffer (pH
6.0), and placed in a pressure cooker until steam was generated
for 3 min. To block non-specific peroxidase, a 3% hydrogen
peroxide and methanol solution was applied to tissue sections for
10 min, following incubation in goat serum (Solarbio Life
Science, Beijing, China, $9070) for 30 min. Tissue sections
were then incubated with diluted primary antibody (Table S2)
at 4°C overnight and washed twice with PBS. Fluorescent dye-
labeled or HRP-labeled secondary antibodies were applied to the
tissue sections for 30 min, followed by three PBS washes. The
nuclei were counterstained with 2-(4-amidinophenyl)-6-
indolecarbamidine dihydrochloride (DAPI) (Solarbio Life
Science, Beijing, China, C0065) or DAB (Dako, Glostrup,
Denmark, 20052898) and hematoxylin (Scientific Phygene,
Fuzhou, China, PH1464). Images of all sections were captured
using a Leica DM2500 microscope.

5-Ethynyl-2’-deoxyuridine (EdU)
Incorporation

Tissues were collected and cultured in medium containing 50
uM EdU for 2 h at 37°C before fixation. Detection of
incorporated EdU was performed with the Cell-Light EdU
Apollo 488 kit (RiboBio, Guangzhou, China, C10310-3),
according to the manufacturer’s protocol.

Analysis and Statistics

After H&E staining, the histopathological classification and cell
type were confirmed by a board-certified pathologist. During the
culture process, to evaluate cell viability in tissue, H&E staining
was performed to determine the total cell counts every day. Cas3
was used as an immunohistochemical marker of apoptosis and
Ki67 was used as an immunohistochemical marker of
proliferation. The tumor cell fraction tissue integrity was
determined with Keratin20 and CD133 staining. The positive
cells were counted using Image Pro Plus software (Media
Cybernetics, v6.0), and reconfirmed by manual counting, and
the positive area was also calculated with the Image Pro Plus
software. Due to the difference in proteins expression position,
CD133, p53, HIF-10, EdU, and Ki67 positive rates were calculated
as follows: positive cell number of immunohistochemistry/total cell
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number of immunohistochemistry. Keratin20, Fibronectin,
Collagenl, 0-SMA. and Cas3 positive rates were calculated as
follows: positive area of immunohistochemistry/(positive area of
immunohistochemistry + negative area of immunohistochemistry).
All the indices (positive rates) were calculated with at least four
random fields for each slide.

All results were reported as means = SD. All statistical
analyses and comparisons were done by student’s t-tests in
GraphPad Prism (v6.0, GraphPad Software, Inc., San Diego,
CA, USA). Statistical significance was set at P < 0.05.

RESULTS
Cell Diversity in GC Tissue Culture

Tissue structural integrity is the fundamental basis of oncology
research, as it maintains the cellular diversity in cultures (29).

Fibronectin is widely found in animal tissues and tissue fluids.
The most basic and important function of fibronectin is to
promote the growth of cell adhesion, which is necessary for the
maintenance of the tumor microenvironment and the
completion of cancer cell growth. Collagen-I is the structural
protein of the ECM, forming its skeleton, and anchoring and
supporting tumor cells. It also provides an appropriate
microenvironment for their proliferation and growth. Alpha-
smooth muscle actin (o-SMA) is an isoform that is typically
expressed in vascular smooth muscle cells.

Fibronectin, collagen-I, and vascular o.-SMA are tumor
stromal components. Hence, we labeled them using antibodies
(fibronectin, mAb; collagen-I, mAb; o-SMA, mAb) to detect
changes in the tumor stroma during culture (Figure 2A). As
shown in Figure 2A, after 3 days of culture, a large number of a-
SMA positive cells still could be found within the tumor tissue.
There were no statistical differences in 0-SMA expression
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FIGURE 2 | Cell diversity in GC tissue culture. (A) After 3 days culture, the patient-derived GC tissues (Case3) were stained with a-SMA, fibronectin, collagen, and
counterstained with DAPI. Scale bars are all 100 um. (B-D) Quantitative analysis of a-SMA, fibronectin, and collagen expression during the 3 days culture.
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between the native tumor and cultured tissues (Figure 2B). Thus, ~ tumor tissues maintained structural integrity throughout the
after 3 days of culture, a large number of vascular smooth muscle  culturing periods.
cells still existed in the tumor microenvironment.

Similar to the results of 0.-SMA expression, there were no GC Cell Proliferation, Apoptosis, and
statistical differences in fibronectin and collagen-I expression  Hypoxia in Culture
between the native tumor and cultured tissues (Figures 2C, D). To determine whether the number of cells in the tissue remained
The morphological structures of fibronectin and collagen-I also  stable during culture, H&E staining was used to count the total cell
did not change. These data suggest that in this 3D system,  numbers daily (Figure 3A). Based on this, we calculated the cell
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density (cell number/area) at different times and found no statistical
changes in cell numbers prior to and after culturing (Figure 3B).

To determine the cell viability ratio before and after the culture
(Day 0, Dayl, Day2, Day3), Ki67 and Cas3 immunohistochemistry
staining was used on all collected tissues to determine the cell
proliferation and apoptosis indices (Figure 3B). Figures 3C, D
show the overall levels of Ki67 and Cas3 expressed in five GC tissues
on Day 0, Dayl, Day2, and Day3. In all specimens, the majority of
cells were highly proliferative prior to culturing. The proportion of
apoptosis cells in almost all of the cases was less than 10%.
Therefore, these tissues were considered to be suitable for culture
and further drug response research.

In order to more rigorously detect the proliferation of tumor
cells in the tissue, we collected an additional sample and
incubated the tissue in EdU-containing medium for 2 h before
they were fixed. The results showed that the EAU levels of tumor
cells in tissues didn’t change during the culture compared to the
tissues which were not cultured (Figures 4A, B). This indicates
that the tumor tissue was still in a proliferative state immediately
after isolation, and its proliferation state was not affected by our
3D ex vivo culture system.

In addition, we also tested hypoxia in the tumor tissue during
the culture process. We used HIF-1o. antibodies to detect the

expression of HIF-1a in tissues at different time points of the
culture process. The results showed that the proportion of HIF-
la-positive cells was low in the tumor tissue that was just
isolated, and the proportion of HIF-la-positive cells did not
change even after the tissues were cultured (Figures 4A, C). This
result shows that our three-dimensional ex vivo culture system
did not hinder the gas exchange between tumor tissue and the
outside world and did not affect the tissue’s absorption of oxygen.

Cancer Cellular and Structural Integrities
Within GC Tissue

To reveal the GC cell variations in culture with time, we used
cytokeratin-specific (Keratin20, a marker expressed in most of
GC cells) (30, 31) and CD133 (a marker of cancer stem cells)
staining. These parameters enabled us to determine the
composition of GC tissues.

Figure 5A shows the results of Keratin20 staining in GC
tissues before and after 3 days of culturing. Quantitative results
demonstrated that there were no significant differences of
Keratin20 in tissues isolated on Day 0 and cultured for up to 3
days (Figure 5C). Quantitative analyses revealed that Keratin20
expression remained unchanged throughout the whole culture
period (Figure 5C). In most cases, Keratin20 expression was
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FIGURE 4 | EdU incorporation and hypoxia of GC cell during the culture. (A) EdU incorporation of Case29 before and after 3 days of culture, scale bar, 50 um, and HIF-1o.
staining of Case30 before and after 3 days of culture, scale bar, 50 um. (B) Quantitative analysis of EJU in Case29. (C) Quantitative analysis of HIF-1c. in Case30.
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relatively stable in GC tissues during the whole culture process
(Figure 5C), which suggested that the cancer cells can be

maintained at a reasonable level during the culture period.

At the same time, we used the CD133 staining to detect GC
stem cells before and after culturing (Figure 5A). Our

quantitative results showed that the number of GC stem cells
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remained stable at all points of time (Figure 5D). These data
demonstrated the reliability of our system in estimating drug
response tests.

According to Lauren classification, patient-derived GC tissues
can be defined as intestinal type carcinoma and diffuse gastric
carcinoma; Case 13 was intestinal type carcinoma and Case 17
was diffuse gastric carcinoma. H&E staining showed that the
different types of GC maintained their unique morphological
structures during culturing. Figure 5B shows that even after 3
days in culture, the different types of GC maintained their unique
morphological structures. Our classifications were confirmed by
board-certified pathologists.

Drug Responses in Culture

During the 3 culture days, we did not find significant differences
in the cell distribution or structural changes between the center
and edge zones of the tissue cubes. Due to the small sizes of (1-2
mm) and continuous supply of nutrients and oxygen (tissues
were transplanted into 6-well plates with 1 ml culture medium
with the lower segments submerged in the medium) to the tissue
cubes, slight differences in nutrient diffusion and growth factor/
drug permeation between the middle and peripheral parts can be
ignored to some extent (32, 33). With our protocol, the ideal cell
morphology and intact tissue integrity can be preserved for at
least 3 days in culture, ensuring increased reliability of drug
response tests.

A total of five tissues were obtained and cultured in this study.
Administration of chemotherapeutics revealed that almost all
specimens had decreased expression of Ki67, accompanied by
varying degrees of increased Cas3 expression in culture.
However, the effects of the drug were different from case to case.

We selected and presented histochemical pictures of the
two most resistant and sensitive tissues (Case22 and Case24).
And the remaining three cases’ pictures were showed in
the Supplementary Figure 1. Taking Case22 and Case24 as
examples, Figures 6A, B show the drug responses of the two
patients. In Case22, Ki67 expression greatly decreased following
treatment with oxaliplatin, whereas Cas3 expression increased
(Figure 6C). This suggests that oxaliplatin was a more effective
chemotherapeutic agent for Case22. For Case24, Ki67 expression
was maintained (only minor change) after the administration of
chemotherapeutics, whereas Cas3 expression increased a little
(Figure 6D). These results suggest that tumors from different
patients have varying sensitivity to chemotherapies and that our
culture system can effectively reflect this variance. These findings
demonstrate the potential utility of our system in studying
personalized therapies in GC. Future studies should focus on
incorporating a larger patient cohort to better understand the
relationships between the cell types and drug sensitivity.

Studies have shown that platinum drugs promote tumor cell
apoptosis by activating P53 production (34, 35). Therefore, we
tested the p53 protein levels in the tissues treated with
oxaliplatin. The results showed that after treatment, the level of
P53 protein in the tissues sensitive to oxaliplatin (such as Case22)
was higher compared to the level of p53 protein in tissues
resistant to oxaliplatin (such as Case24) (Figures 6E, F). The
results of the remaining three cases are in the Supplementary

Figures 1C, D. This also proved that oxaliplatin enters tumor
cells to play a role in suppressing cancer.

In addition, we also performed 5-FU drug sensitivity tests on
three other cases. For Case26, Ki67 and Cas3 expression were
maintained after the administration of chemotherapeutics, and
Cas3 expression didn’t change (Figure 7). In Case27, the Ki67
expression greatly decreased following treatment with 5-FU,
whereas Cas3 expression increased (Figure 7). This suggested
that 5-FU was an effective chemotherapeutic agent for Case27.
Case28 showed partial response to 5-FU treatment (Figure 7).

DISCUSSION

At present, GC prognosis and neoadjuvant treatments remain
ineffective in the peri- and post-operative periods (36). Patient
variabilities, and endogenous tumor tissue heterogeneity
highlight the need for more precise and individualized
treatment strategies. Especially for postoperative treatment,
traditional and standardized chemotherapy regimens are not
completely effective in all patients, and often contribute to severe
side effects (37, 38). Even so, only 5% of patients experience a
5-year survival benefit, with most experiencing poor prognostic
outcomes (5, 6).

Clinically, there is a need for the development of protocols
that have high stability, shorter turnaround times, and increased
accuracy in predicting treatment efficacies in individual
patients. A prerequisite for a more accurate prediction is an
easy-to-use laboratory protocol that can maintain cell viability,
heterogeneity, and a relatively intact stroma composition, and
demonstrate personalized results of drug susceptibility in a short
time period following surgery (29). Currently, popular methods
of investigating drug responses include the use of 2D primary cell
cultures, PDX models, and organoid models. 2D primary cell
culture mainly uses primary tumor cells in the culture process
(39), and rarely correlates with the matrix components within
primary tissue. When the system was constructed, cells other
than tumor cells and extracellular matrix were excluded. This
system cannot precisely reflect the subtle interactions among the
cells and cell-matrices. At the same time, not all primary tumor
cells can survive; only cell populations suitable for a specific
culture medium can be expanded. A mouse PDX model is
used for validation of novel therapies (40). However, the
establishment of the model takes a long time (perhaps more
than 3 months), and the success rate is low, approximately 30%.
Even if a tumor is formed, the phenotype of the tumor before and
after tumor formation or after passage may also change. The
intrinsic time-consuming nature of PDX establishment often
results in the loss of original characteristics of the primary tumor
microenvironment (41). Therefore, data derived from PDX
models do not reliably predict patient outcomes (42). In recent
years, the construction technology of organoid models has
become more advanced. However, the organoid model has
problems similar to those of PDX models. The tumor
formation process of the PDX model and the process of
organoid establishment have a screening effect. Tumor
cells that adapt to their internal environment or culture
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FIGURE 6 | Results of drug response tests to oxaliplatin based on 3D GC tissue culture. (A) The tumor tissues of Case22 and Case24 were stained with Cas3 after
3 days of culture and oxaliplatin treatment. (B) The tumor tissues of Case22 and Case24 were stained with Ki67 after 3 days of culture and oxaliplatin treatment. All
images are the same magnification, scale bar, 100 um. (C, D) Quantitative analysis of Ki67 and Cas3 in tissues of Case21-25. (E) The tumor tissues of Case22 and
Case24 were stained with p53 after 3 days of culture and oxaliplatin treatment. All images are the same magnification, scale bar, 100 um. (F) Quantitative analysis of
p53 in tissues of Case22 and Case24.

environment can proliferate, while tumor cells that cannot adapt ~ response to the first-line medication oxaliplatin and 5-FU. Due
are eliminated. This problem can be reflected in the success rate  to the limited conditions in most hospitals, we abandoned the
of PDX and organoid modeling. tissue chopper method and chose to use random dicing and

Here we demonstrated a simple and steady ex vivo 3D culture ~ grouping to build a three-dimensional culture platform. We
protocol using patient-derived tissues and assessed the drug  placed the tumor tissue at the air-liquid interface for culture, so
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that the tumor tissue could have a sufficient oxygen supply while
absorbing nutrients in the culture medium. Our data suggested
that the unique specimen processing and original culture
conditions accounted for tumor and patient variabilities,
providing a robust system for assessing drug responses before
administration. Almost all patient-derived GC tissues maintained
their original viability for at least 72 h in our system. Moreover,
during the process of culturing the tumor tissue, tumor cells,
interstitial cells such as fibroblasts, extracellular matrix proteins
such as collagen-I, and other components such as micro vessels, all
maintained their original proportions, and their morphology
remained unchanged. Importantly, in a small cohort, we
successfully evaluated different responses to a drug regimen in

different patients. Our cost- and time-effective 3D culture platform
can provide personalized drug response predictions within 3 days.
Our system enables reliable data acquisition and maximizes the
time frame for research of resistant mechanisms. Our 3D culture
platform may provide an alternative solution for assessing the
outcomes of empirical medications.

However, this model also has some shortcomings that need to
be clarified. The heterogeneity in tumor tissue has long been the
focus of attention of scholars. In our system, heterogeneity still
exists. Although we used random groupings and randomly
selected fields of view for data collection and analysis to reduce
the impact of heterogeneity on the results, the effect is still
indelible and is reflected in the error bars in the bar graphs.
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Overall, our findings demonstrated a new route for GC
research. Our system is suitable for earlier prediction of drug
responses and may be used for individualized treatment of GC.
In addition, our new model can also be used for the development
and promotion of new drugs, as well as for deeper mechanism
research. Certain specific clinical studies can also be tested on
this model in advance. Use of our system may also potentially
decrease unnecessary side effects in patients. We believe that our
3D culture system will become a useful and eftective method for
future oncology research and clinical treatment.

CONCLUSIONS

We established an innovative ex vivo protocol for 3D culturing
patient-derived GC tissues to perform cost-effective personalized
drug screening with short turnaround times. During the 3
culture days, we demonstrated the preservation of structural
integrity in the tumor matrices and cell viability of all tissues. We
administered difterent chemotherapeutic agents to cultured
tissues and derived responses that were able to reliably guide
treatment course for patients. Our system can be scaled for
laboratory use and can be used in the determination of clinically
translatable treatment plans for patients with GC.
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