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External beam radiotherapy remains the primary treatment modality for localized prostate
cancer. The radiobiology of prostate carcinoma lends itself to hypofractionation, with
recent studies showing good outcomes with shorter treatment schedules. However, the
ability to accurately deliver hypofractionated treatment is limited by current image-guided
techniques. Magnetic resonance imaging is the main diagnostic tool for localized prostate
cancer and its use in the therapeutic setting offers anatomical information to improve
organ delineation. MR-guided radiotherapy, with daily re-planning, has shown early
promise in the accurate delivery of radiotherapy. In this article, we discuss the
shortcomings of current image-guidance strategies and the potential benefits and
limitations of MR-guided treatment for prostate cancer. We also recount present
experiences of MR-linac workflow and the opportunities afforded by this technology.
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INTRODUCTION

Prostate cancer has accounted for 23.2% of all male cancer diagnoses in Europe in 2020 so far (1), a
large proportion of whom will be treated with external beam radiotherapy (EBRT) for localized
disease. EBRT offers patients non-invasive radical treatment and the move toward
hypofractionation has allowed treatment schedules to be shortened. The low estimated a/b ratio
of prostate cancer hypothesizes a benefit of hypofractionation, which has subsequently been
evidenced in a number of trials (2–4) and transitioned into clinical practice guidelines across
Europe (5–7) and America (8). Such results have encouraged clinicians to explore the boundaries of
ultra-hypofractionation (UHF), testing 5 or 7 fraction schedules with promising oncological results
(9–11).

Whilst the biology of prostate cancer may lend itself to hypofractionation, multiple obstacles
remain in the pursuit of accurate dose delivery. Inter- and intra-fractional variability of target organ
morphology and position as well as organ-at-risk (OAR) deformation limit the safety of dose
escalation and hypofractionation with current image-guided radiotherapy (IGRT) techniques. The
HYPO-RT-PC trial, comparing UHF for localized prostate cancer to conventional fractionation,
reported significantly higher levels of patient-reported acute bowel and urinary toxicity with UHF
(11), though late-term toxicity appeared equivalent regardless of treatment arm. However, these
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findings were not correlated in acute toxicity findings from the
PACE-B trial in which the SBRT cohort reported similar levels of
acute toxicity to the standard fractionation cohort (10). These
differences may be due to radiotherapy technique, underlying
the importance of optimizing dose delivery. Specifically, the
radiation planning technique used for 80% of patients in the
HYPO-RT-PC trial was three-dimensional conformal RT, rather
than the more modern intensity-modulated RT, which has been
associated with lower absolute rates of toxicity (11). Additionally,
more generous planning margins were placed around the
prostate to mitigate uncertainties due to prostate motion. Thus,
the absolute rates of toxicity in the HYPO-RT-PC trial are likely
higher than would be expected with modern treatment planning
and delivery. Nonetheless, toxicity remains a possibility with all
techniques and this remaining toxicity is likely determined not
only by intrinsic radiosensitivity but also by doses delivered to
critical adjacent organs.

The use of IGRT in prostate cancer is associated with improved
biochemical control and lower rates of toxicity (12–14). MR-
guided radiotherapy (MRgRT) brings IGRT to a higher level with
improved soft tissue contrast and online adaptive planning
allowing for greater accuracy of fraction delivery. MRgRT
provides the opportunity to improve cancer outcomes while
reducing treatment-related toxicity. Presently, there are two
commercially available systems from which current experiences
are drawn: Elekta Unity (Elekta AB, Stockholm, Sweden) which
uses a 1.5 Tesla MRI machine, and Viewray MRIdian MR Linacs
(Viewray Inc, Oakwood, OH) which uses a 0.35 Tesla MRI (15).

In this review, we will explore the shortcomings of current
IGRTmethods and the potential benefit and limitations of online
adaptive MRgRT in prostate cancer. We will also describe
current clinician experience of MR-guided workflow and the
potential opportunities for future development and trials.
SHORTCOMINGS OF CURRENT IGRT
STRATEGIES

Current IGRT techniques include the use of cone-beam CT
(CBCT) and implanted fiducial markers (FM), which may be
used in conjunction; however, both have their limitations. CBCT
alone has poor soft tissue resolution, limiting the accuracy of
prostate-prostate matching (16). The use of radiopaque fiducials
allows for rigid-registration but provides little to no information
about organ deformation, seminal vesicle location, or bladder or
rectal distension (17). The placement of fiducial markers is also
an invasive procedure. Uncertainties in current IGRT strategies
require larger planning margins to account for internal margin
and set-up error, which can increase toxicity. Inter-fraction
volumetric changes of the prostate gland have also been
observed in moderate and profound hypofractionation
schedules (18–20) and, with the move toward ultra-
hypofractionation, direct visualization of the prostate serves to
ensure dose coverage.

Any inter-fraction displacement necessitating contour
repositioning is purely based on prostate matching and does
Frontiers in Oncology | www.frontiersin.org 2
not take into account the potential for differential movement of
target organs such as seminal vesicles and pelvic lymph nodes
(21, 22). Peng et al. analyzed 486 daily CT scans for 20 patients
and found that in around 30% of fractions translational shifts
were unable to adequately mitigate anatomical changes,
indicating a need for online adaptive radiotherapy (ART) (23).
While dosimetric coverage of the lymph node areas may be
retained if bladder and rectal filling is pristinely maintained from
fraction to fraction (24, 25), changes in anatomy could lead to
overdosing of adjacent organs such as the small bowel.
Furthermore, there is an increasing trend to dominant
intraprostatic lesion boosts (26–28), which require additional
accuracy in prostate matching adjustments on traditional kV
planar or CBCT imaging.

Intra-fraction movement is an additional issue, which is sub-
optimally mitigated by many current IGRT strategies. The
prostate itself can move between image acquisition and beam
on. Furthermore, bladder filling or rectal gas movement may
influence target organ position by the order of a few millimeters,
sufficient to affect CTV coverage. Both CT-based and MR-based
analyses have demonstrated significant rates of intra-fractional
motion. Calypso four-dimensional localization systems with the
use of implanted electromagnetic markers showed prostate
displacement of >3 mm 13.2% of the time during treatment
(29). Similarly, three-dimensional cine MRI tracking of fiducials
found prostate motion >2 mm in 43% scans by 5 min of
treatment (30).

Any corrections to the field may be rendered inaccurate
during beam on due to the aforementioned target position
diversity (31–33), or otherwise clinicians must extend the
planning margin to cover the expected excursion of prostate
motion (34). A small number of non-MRgRT systems have intra-
fraction motion solutions such as Cyberknife, which uses KV
imaging tracking of fiducial seeds. During a fraction, which may
take up to 45 min, fiducial seeds are tracked and adjustments to
position can be made at 30–60 s intervals (35). However, systems
for managing intra-fraction motion on the basis of fiducial
markers require exposure to low doses of ionizing radiation.
POTENTIAL FOR BENEFIT WITH MRGRT
FOR PROSTATE CANCER

MRI guidance with or without ART has multiple potential
advantages in terms of improving accurate dose delivery. First,
because the prostate is much better visualized on MRI images
compared to CT images, prostate CTVs generated by MRI are
smaller and more precise than CT-based contours (36). Figure 1
shows an image of the prostate from Unity. Typically, radiation-
therapy planning MRIs are fused to CT simulation images to aid
in contouring, but the fusion itself introduces 1–2 mm of residual
error. Use of an MR-only workflow will bypass these issues.
Second, on-board MRI imaging will allow direct tracking of
the prostate, dispensing with the need for fiducials and sparing
the patient an invasive procedure. Third, as a treatment course
progresses, the daily image acquisition and adaptive re-planning
December 2020 | Volume 10 | Article 616291
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allows for compensation related to prostate gland swelling,
shrinkage, or deformation and inter-fractional motion of target
or OARs. This daily sparing of OARs has the potential to
decrease toxicity in both the short and long term. The ability
to provide daily online adaptation minimizes inter-fraction
uncertainty. Figure 2 shows a daily adaptive prostate plan
from a 0.35T MR-linac.

The workflow for the 1.5T MR-linac (Elekta Unity) is shown in
Figure 3 and the 0.35T MR-linac (Viewray MRIdian) in Figure 4.
On the 0.35T MR-linac, a high resolution (1.5 mm isotropic voxel
size or better) scan will be taken utilizing the on-board MRI to
establish target and OAR geometry at the time of treatment. If
deemed necessary, online ART with daily re-planning can be
performed. During treatment, real-time imaging is acquired using
MRIs obtained in a single sagittal plane at 4 frames per second,
with a gating boundary on the prostate CTV at the physician’s
discretion. Tolerances for the proportion of the CTV outside of the
gating boundary can be set, and 2-dimensional table shifts can be
performed as per the physician’s discretion.

For the 1.5T MR-linac, the decision to perform daily re-
planning rests on review of daily anatomy alone. If anatomy has
changed, re-contouring precedes a full re-optimization of the
plan. The acquisition of a verification image subsequent to
contouring and planning allows for there to be a shift of the
new plan immediately prior to beam on (called ‘Adapt-to-
Position’ workflow) to account for any prostate motion, which
occurs during the workflow. Typically, this is due to rectal or
bladder filling.

In the future, the prospect of intra-fraction dose adaptation
brings us closer to the ideal online adaptive dose delivery system
(37), capable of achieving the optimal balance of target dose and
OAR sparing during the entirety of beam on.
Frontiers in Oncology | www.frontiersin.org 3
CURRENT EXPERIENCE OF
MRGRT IN PROSTATE CANCER

Knowledge and experience of prostate MRgRT, on both Elekta
Unity and Viewray MRIdian systems, has developed rapidly in
the past few years. With MRgRT presenting a revolution in RT
delivery, development of workflow and assessment of patient
outcomes were initial priorities. Illustrative workflows are shown
for the 1.5T MR-linac (Figure 3) and the 0.35T MR-linac
systems (Figure 4). Such parameters were detailed by the
Amsterdam VU team who described their experiences after
700 fractions were delivered (38).

MRgRT involves a multi-disciplinary team of radiographers,
physicists, and clinicians. Most global experience is with daily re-
contouring and re-planning. For example, the Amsterdam team
reported that 97% of their delivered fractions were online ART
plans (38).

The average duration of a delivered fraction is around 45 min,
during, which time the patient is required to be on the treatment
couch. The Amsterdam team also reported on a number of patient-
reported outcomes and found that noise was the most common
complaint (38, 39). Noise may be partially mitigated by the use of
noise reduction headphones, which also enables communication
between patients and radiation therapists during treatment (40).
Our experience to date is that patients have not had any significant
problems with the treatment, and patient experience is positive (41,
42). This is echoed by other practitioners including the group at
VU University Medical Center (43).

Future studies about MR-linac clinical feasibility and patient
toxicity outcomes are currently underway such as the Prostate
Radiotherapy Integrated with Simultaneous MRI (PRISM study,
NCT03658525), and the MOMENTUM study [The Multiple
FIGURE 1 | Axial image of the prostate (T2 2 min scan) from the Unity.
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Outcome Evaluation of Radiotherapy Therapy Using the MR-
linac Study (NCT04075305)] (44), which will help develop faster,
more efficient workflows and benchmark multi-center patient
outcomes. The ongoing Magnetic Resonance Imaging-Guided
Stereotactic Body Radiotherapy for Prostate Cancer trial
(MIRAGE trial, NCT04384770) is a phase III randomized
study comparing standard CT-guided SBRT versus MRI-
guided SBRT, with the primary endpoint of acute grade ≥2
genitourinary (GU) toxicity. It is designed as a superiority study,
and secondary endpoints include patient-reported outcomes and
late toxicity.
PUBLISHED LITERATURE ON
PROSTATE MRGRT

Outcomes for prostate radiotherapy are expected to be good for
most patients, with generally low levels of side effects and high
expectations of efficacy. For these patients, the benefit of MRgRT
will be hard to show. However, small or marginal gains will have
a high population effect due to the number of prostate cancer
Frontiers in Oncology | www.frontiersin.org 4
patients and the high likelihood of cure. There is a subset of
patients with challenging anatomy where inferior dose
distributions have to be accepted to preserve OAR integrity.
Dosimetric improvement over a course of 20 fractions has been
shown, with the number of fractions achieving all target
dosimetric goals being 86% for MRgRT and 80% for simulated
conventional IGRT (45). For one patient with exceptionally
challenging anatomy, the prostate CTV D98% delivered was
54.5 Gy with MRgRT and would have been 49.9 Gy with
conventional techniques over 20 fractions. Therefore, even
though reductions in bowel and bladder toxicity will be
challenging to show on a population level, this technology
could meaningfully impact quality of life in those who will live
for many years after cure.

Small clinical series describing experiences with MRgRT for
prostate cancer have been published previously and provided
detailed suggestions about the proposed benefits, challenges, and
future development in this cancer type (46–48). To date, only
one prospective study has published outcomes. Bruynzeel et al.
(39) published early toxicity results from a phase II study on
MRg-SBRT for localized prostate cancer, which reported on
FIGURE 2 | Axial, sagittal, and coronal images of a prostate plan on the MRIdian (isodoses: Red = 40 Gy, Orange = 36 Gy, Yellow = 24 Gy, Green = 20 Gy).
December 2020 | Volume 10 | Article 616291

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Tocco et al. MR-Guided Radiotherapy for Prostate Cancer
RTOG and CTCAE clinician-reported and patient-reported
outcomes (PROMs) for 101 patients for 3 months post-
treatment with 36.25 Gy in 5 fractions. Clinician-reported
outcomes suggested early GI and GU toxicity peaked at the
final fraction of treatment and no grade 3 or higher toxicities
Frontiers in Oncology | www.frontiersin.org 5
were reported. The rates of grade ≥2 early GU and GI toxicities at
the end of the treatment were 19.8% and 3%, respectively. The
maximum cumulative grade ≥2 early GU and GI toxicity (by 12
weeks) measured by any symptom at any study time point was
23.8% and 5.0%. Patient-reported outcomes correlated closely
FIGURE 3 | Example workflow for the Unity.
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with clinician reported outcomes with urinary toxicity peaking at
the end of treatment and resolving by 3 months. The most
common GI symptom was bloating. As a comparison to the
above study, the PACE-B trial (10) showed a cumulative
(exceeding baseline) CTCAE grade ≥2 GU and GI toxicity of
27.4% and 15.3% in the 5-fraction arm.

Tetar et al. (49) recently provided an update on the VU series
with toxicity information extending through one year of follow-
up. No grade 3 or higher toxicities were reported. All symptoms
returned to baseline by 12 months. International prostate
symptom scores (IPSS) returned to baseline 6 months post-
treatment. 2.2% of patients reported GI symptoms at 1 year
follow-up. Follow-up is too short to evaluate oncologic efficacy.
Frontiers in Oncology | www.frontiersin.org 6
It is too early to form robust toxicity comparisons between
MRgRT and non-MRgRT SBRT trials, but outcomes encourage
further prospective and long-term trials to interrogate this
important point.
LIMITATIONS OF MRGRT FOR PROSTATE
CANCER

There are limitations to MRgRT for prostate cancer. The process
of MRgRT provides a significant paradigm shift in the operation
of radiotherapy departments, which necessitates updated safety
training for staff, including all aspects of MR safety. Online ART
FIGURE 4 | Example workflow for the MRIdian.
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requires the attention of several staff members for each
treatment, often including a radiation oncologist, multiple
radiographers and a physicist. Obviously, the person-hours
required to deliver MRgRT are currently high when compared
to traditional linac treatment, however efficiencies are likely to be
forthcoming over time.

From a logistical point of view, there is limited availability of
MR-linac machines and, as a result, clinician familiarity with
such systems and online adaptive planning is still progressing.
The predominance of radiation oncology experience until now
has been centered on CT imaging and therefore the nuances and
technicalities of MRI imaging are still being learned.

Maximum field size with 1.5T MR-linac machines could also
lead to limitations of therapeutic capabilities and application in
node-positive prostate cancer patients. With the current Unity
maximum field size of 22cm in the superior-inferior (SI) plane, it
is estimated that 80% of plans across cancer types would be
suitable for MR-linac treatment (50) but a significant proportion
of pelvic nodal irradiation fields would be too large. With the
MRIdian Linac, the maximum field size is 24 cm SI, so a similar
limitation applies. However, technical solutions to this limitation,
and others, are being explored and current treatment possibilities
do not represent the likely full capability of MR-linac machines
(51). With prostate cancer predominantly affecting those over the
age of 50, there is also likely to be a greater prevalence of medical
contraindications to treatment on the MR-linac, thereby reducing
numbers of suitable patients. From the patient perspective, the
significantly longer time on the couch may deter some, and
requires greater attention to patient comfort during treatment.

One element, which could reduce workload in the future of
online ART, is automation of multiple components of the
workflow. Auto-segmentation has been investigated and shown
to decrease inter-observer variability while increasing dosimetric
consistency on CT imaging (52, 53). This was replicated in MR-
guided auto-delineation of pelvic organs although there has been
evidence of poor concordance of auto-segmentation for targets
such as seminal vesicles and the prostate (54–56). The creation of
a library of contours and atlases from which an automated
algorithm can learn will likely improve outcomes further.
Currently, auto-generated contours are available for clinicians
on both the 0.35T and 1.5T MR-linac machines and allow for a
“warm-start contour” (i.e., not starting from scratch).

The duration of fraction delivery could also be aided by auto-
segmentation. As mentioned, average duration of a single
fraction for prostate cancer is around 45 min and this
inevitably leads to greater bladder filling and variability of
rectal distension, which have been shown to affect volume and
position of the prostate and seminal vesicles to independent
degrees (57). Current experiences are that intra-fraction OAR
variation has not resulted in a significant number of adaptations
required during beam on, although further published literature is
required to confirm this. The role of auto-segmentation could
reduce fraction duration and thereby minimize possible
compromises to target organ dose delivery.

Another limitation of MRgRT is the risk of over-intervention
with MRI imaging. The session MR image acquired at the
Frontiers in Oncology | www.frontiersin.org 7
beginning of each day’s treatment is a snapshot in time and
one may devise a new plan based on that particular image with
compromise of PTV coverage due to proximity of an OAR (e.g.,
bowel). OARs may move intra-fractionally (e.g., bowel
peristalsis) and therefore may have unnecessarily compromised
target coverage for that day.
OPPORTUNITIES FOR FUTURE
DEVELOPMENT OF MRGRT IN
PROSTATE CANCER

While MRgRT provides hope for safe and effective dose delivery
in prostate cancer treatment, further clinical studies are required
to demonstrate a benefit.

Development of an MR-only, online workflow, without pre-
treatment planning, would help to decrease radiotherapy
pathway duration. Dispensing of the requirement for pre-
treatment procedures, such as planning scans, would allow
departments to condense pathways to benefit both clinicians
and patients although acquisition of pre-treatment reference
plans remains the standard in MR-only workflows currently
(58). Removing the requirement to fuse planning CT to planning
MRI would remove a potential source of error and uncertainty in
the pathway. Although CT-based electron density calculations
are considered to be the gold standard for radiotherapy planning,
there are commercial MR-only solutions currently available,
which may become more widely used (59).

Presently, operation of MRgRT requires a significant number
of person-hours. Further streamlining of session times would be
likely to result from incorporating auto-segmentation, as re-
contouring is the most time-consuming component of the daily
workflow. It remains to be seen if the accuracy of auto-delineation
ever meets the standard set forth by radiation oncologists.

Amalgamation of roles within the inter-professional team
may also reduce person-hours for treatment delivery. Inter-
observer variation of MR contouring has shown good
concordance (60) and is sure to lead to an evolution of roles
within the MR-linac team starting with high volume, low
complexity cases, which may become radiographer-led.

The predominant areas of opportunity lie within extreme
hypofractionation in the online ART setting. Within the field of
primary treatment of localized prostate cancer, ultra-
hypofractionated SBRT schedules have been shown to be non-
inferior to conventionally fractionated schedules (11). The
increased levels of acute toxicity in the HYPO-RT-PC trial
(11), and the lack of this in the PACE B trial (10), underline
the importance of technical iteration to improve patient
outcomes. Further studies to compare SBRT on traditional
linac compared to MR-linac are under way, including the
aforementioned phase III MIRAGE trial.

Many studies are undergoing to investigate possible
superiority of dominant intraprostatic lesion (DIL) boosts (27).
Doses of over 90 Gy equivalency have been shown to be safe (61,
62) but, as discussed above, our current IGRT strategies are
imperfect for adapting to daily anatomical changes. Online ART
December 2020 | Volume 10 | Article 616291
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using a 1.5T MR-linac would allow direct visualization of DILs
during treatment. This is achievable on 1.5 T MR-linacs with
diffusion scanning capabilities but, at present, 0.35T machines do
not provide sufficient resolution to visualize DILs. Therefore
rigid propagation is one option for this technique on a 0.35T
MR-linac but alternative techniques to improve primary tumor
visibility may be required; these have been employed in the
diagnostic MR setting (63) but not as of yet in the therapeutic
field. The feasibility of DIL visualization is also decreased with
concomitant androgen deprivation therapy (62).

Other opportunities, beyond the scope of this review,
include the use of MRgRT for post-operative prostatic bed
irradiation or re-irradiation for radio-recurrent disease. The
ability to provide more accurate dose-escalated treatment with
direct visualization of tumor bulk has implications for post-
prostatectomy relapses. The RADICALS-RT trial recently
reported its 5 year results, which showed non-inferiority of
salvage radiotherapy compared to adjuvant treatment (64).
Currently, standard of practice is to treat the prostate bed
empirically upon biochemical failure. The use of multi-
parametric MRI (mpMRI) has been shown to be of use in
detection of locally recurrent disease (65, 66); those with
macroscopic disease on MRI could be triaged to treatment on
the MR-linac with the possibility of macroscopic lesion boost
(67, 68). In addition, as larger margins and a formulaic
derivation of the target volume is currently used for prostate
bed treatments, there is the prospect of reducing toxicity with
MRgRT—one current phase II study promises to shed light
on the efficacy and toxicity of MR-guided SBRT and CT-
based SBRT delivered in the post-prostatectomy setting
(NCT03541850). There are also few salvage treatments for
locoregional recurrent disease after radical prostate EBRT.
Early toxicity results of re-irradiation salvage SBRT are
favourable (68–70) and further research into MR-guided
salvage re-irradiation may be useful.

Qualitative and quantitative inter-fraction assessment of
tumor response with functional MRI has implications for
future treatment (71). The ability to directly visualize biological
response to radiotherapy during a treatment course would
allow the opportunity to tailor dose delivery. Online daily ART
to target areas of persistent areas of restricted diffusion,
for example, could possibly improve outcomes although
implementation of functional imaging on MR-linac poses a
number of challenges (72). For instance, there is a decrease in
signal intensity of healthy prostate tissue on T2-weighted
imaging during the course of treatment, which reduces
visibility of the dominant intraprostatic lesion (73).

Thanks to the persistent and focused efforts of many prostate
radiotherapy researchers over the last decade, significant GI and
GU side effects of radiotherapy are becoming rarer. Effects of
radiotherapy on sexual function are now the most prevalent long
term side effect experienced by patients. The structures, which
require dosimetric sparing in order to preserve sexual function,
are not well elucidated, but it is thought that this is vascularly-
mediated. Excellent outcomes have been seen after sparing the
internal pudendal artery (74) using standard image-guidance
Frontiers in Oncology | www.frontiersin.org 8
strategies. As the vascular structures can be clearly seen on the
MR-linac, it may be possible to preserve sexual function by
sparing visualized vessels. Further study is planned.

As we progressively hypofractionate in prostate cancer,
optimising image-guidance becomes ever-more important.
Research is currently planned to investigate reducing the number
of fractions below 5, to explore the limits of hypofractionation. The
ONE SHOT trial aims to assess the efficacy of a 19 Gy fraction with
17Gy urethral sparing with a 2 mm margin. No grade 3 or higher
GU and no grade 2 or higher GI toxicities were observed (75),
although current HDR brachytherapy data suggests that a single
fraction may be sub-optimal (76). Two-fraction HDR appears to
have excellent outcomes and the MR-linac would be the perfect
EBRT platform to test this in prostate cancer.
CONCLUSIONS

MRgRT presents a new paradigm shift in the delivery of
prostate radiotherapy. Increasing accuracy of delivery and
promising early experience will further encourage larger
investigations of the benefit of MRgRT. The use of MRgRT
could abolish the requirement for pre-planning and lead to
shorter pathways, potentially with improved outcomes. Cohort
randomized trials are needed and these will require
collaboration between industry and academic partners to
provide robust evidence for practice.
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