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Background: Lung adenocarcinoma (LUAD) is a common malignant tumor with the
highest morbidity and mortality worldwide. The degree of tumor immune infiltration and
clinical prognosis depend on immune-related genes, but their interaction with the tumor
immune microenvironment, the specific mechanism driving immune infiltration and their
prognostic value are still not very clear. Therefore, the aim of this work was focused on the
elucidation of these unclear aspects.

Methods: TCGA LUAD samples were divided into three immune infiltration subtypes
according to the single sample gene set enrichment analysis (ssGSEA), in which the
associated gene modules and hub genes were screened by weighted correlation network
analysis (WGCNA). Four key genes related to immune infiltration were found and screened
by differential expression analysis, univariate prognostic analysis, and Lasso-COX
regression, and their PPI network was constructed. Finally, a Nomogram model based
on the four genes and tumor stages was constructed and confirmed in two GEO data sets.

Results: Among the three subtypes—high, medium, and low immune infiltration subtype
—the survival rate of the patients in the high one was higher than the rate in the other two
subtypes. The four key genes related to LUAD immune infiltration subtypes were CD69,
KLRB1, PLCB2, and P2RY13. The PPI network revealed that the downstream genes of
the G-protein coupled receptors (GPCRs) pathway were activated by these four genes
through the S1PR1. The risk score signature based on these four genes could distinguish
high and low-risk LUAD patients with different prognosis. The Nomogram constructed by
risk score and clinical tumor stage showed a good ability to predict the survival rate of
LUAD patients. The universality and robustness of the Nomogram was confirmed by two
GEO datasets.

Conclusions: The prognosis of LUAD patients could be predicted by the constructed risk
score signature based on the four genes, making this score a potential independent
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biomarker. The screening, identification, and analysis of these four genes could contribute
to the understanding of GPCRs and LUAD immune infiltration, thus guiding the
formulation of more effective immunotherapeutic strategies.
Keywords: lung adenocarcinoma, tumor immune infiltration, single sample gene set enrichment analysis, weighted
correlation network analysis, prognosis
INTRODUCTION

Lung cancer is a common malignant tumor worldwide. More
than 2 million new lung cancer cases and nearly 1.8 million
deaths occurred in 2018 (1). The incidence and mortality of lung
cancer rank first among all malignant tumors (2). Lung cancer is
mainly divided into two pathological forms: small cell lung
cancer (SCLC) and non-small cell lung cancer (NSCLC), the
latter being the prevalent one, accounting for 85~90% of lung
cancers. NSCLC is mainly divided into lung squamous cell
carcinoma and lung adenocarcinoma (LUAD), which is the
most common lung cancer subtype. About half of patients with
LUAD are at an advanced stage at the time of diagnosis, with an
average 5-year survival rate of only 4% (3).

In recent years, immunotherapy based on blocking strategies of
immune checkpoints (PD-1/PD-L1/CTLA-4) revealed considerable
survival benefits in a variety of solid tumors, including LUAD (4–6),
although only a small number of tumor patients showed a sustained
response to immunotherapy (7). More and more evidence is
available on the importance of tumor microenvironment (TME)
in tumor proliferation, metastasis, and resistance to immunotherapy
(8–10). The interaction between tumor cells and immune
modulatory factors in TME is the key factor influencing the
positive response of tumor patients to immunotherapy (11, 12).

TME represents the environment around tumor cells,
composed of extracellular matrix, blood vessels and immune
cells, all playing an important role in tumor immunity and
closely related to tumor progression and treatment results (13,
14). Many studies confirmed the involvement of TME in the
response of immunotherapy and resistance to different drugs in
different types of cancer, including LUAD, thus compromising
the prognosis of patients (15–17).
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However, at present, most of the studies on prognostic
models of LUAD only have focused on the changes of gene
expression, while the relationship between differentially
expressed genes and different levels of immune infiltration is
not yet well understood because of the limitation of the existing
literature. In addition, the articles available did not study the
specific mechanism involved in the aforementioned relationship,
and there are too many screening genes involved in the models
that maybe lead to overfitting, thus preventing satisfactory
results from being achieved (18–20). In this study, our aim was
to identify genes that are highly associated with different immune
infiltration conditions in LUAD using the RNA-seq data
downloaded from The Cancer Genome Atlas (TCGA)
database, and to analyze the potential pathways in which these
genes are involved when regulating the immune infiltration by
the use of bioinformatics. Furthermore, a prognostic model was
constructed based on these genes, the applicability, and the value
of the model in LUAD were evaluated, and the universality of the
model was investigated by the external validation of multiple
data sets from the Gene Expression Omnibus (GEO) database.
The results of this study might highlight a potentially useful
systematic and comprehensive screening process of immune
infiltration-related genes resulting in the discovery of potential
targets for immunotherapy, and a model for predicting the
prognosis of LUAD.
MATERIAL AND METHODS

LUAD Data Download
The RNA-seq data and clinical information of 487 LUAD
patients were downloaded from the TCGA database through
the GDC website (https://portal.gdc.cancer.gov/). The RNA-seq
data include HTSeq-FPKM data and counts data (the latter used
only for the identification of differentially expressed genes). After
data cleaning consisting of the removal of the repeated samples,
paraffin section samples and samples with missing prognostic
data, a total of 426 LUAD samples with complete clinical data
were included in this study (Training cohort, Table 1). Five
microarray datasets were downloaded from the GEO database to
confirm the results, and two of them were used as validation
cohorts by incorporating them into the external validation of the
prognostic model (Tables 1 and 2).

Identification of the Immune Infiltration
Subtypes in LUAD
A total of 29 gene sets associated to tumor immune cells and
immune functions were obtained from several articles (21–25).
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The “GSVA” R package was used to perform the single sample
gene set enrichment analysis (ssGSEA) on these 29 immune-
related gene data sets to obtain the immune infiltration score in
each sample to allow the clustering of all samples into three
immune infiltration subtypes (26). Next, the “ESTIMATE” R
package was used to calculate the tumor purity (representing
the proportion of cancer cells in the tumor), the immune score
(representing the infiltration of immune cells in the tumor),
the stromal score (capturing the presence of stroma in the
tumor), and the ESTIMAT score (sum of immune and stromal
score) of each sample, which were included in the heat map of
ssGSEA to verify the relationship between these subtypes and
tumor purity (27). Finally, the relative fractions of 22 kinds of
tumor immune cells were calculated in the subgroups by a
deconvolution algorithm using the “CIBERSORT” R
package (28).
Frontiers in Oncology | www.frontiersin.org 3
Screen of Coordinated Expression Genes
Related With Immune Infiltration
The coordinated expression genes related with clinical traits and
immune infiltration subtypes of LUAD were screened out using
weighted correlation network analysis (WGCNA) of the
“WGCNA” R package (29). A scale-free topological network
model was built using 18,748 genes obtained after data filtering
(removing the duplicate genes and genes with average FPKM <5
in total samples), by calculating the correlation of the expression
of these genes among each other. TOM-based differences
through dynamic tree cutting were used to form modules
related to traits (patients’ clinical phenotype and immune
infiltration). The minimum module size in this WGCNA
network was set at 30 and the height was set at 0.25. The
coordinated expression gene network was plotted based on the
evaluation of the module eigengenes (MEs), gene significance
(GS), and module membership (MM).

Construction of the Protein-Protein
Interaction (PPI) Network and GO/KEGG
Enrichment Analysis
Top 300 gene pairs in the two modules screened by WGCNA
with the highest GS in each module were selected to construct the
PPI network using the “Cytoscape” software (Version 3.8.0). The
immune infiltration key genes finally screened were analyzed by
inputting the names into the “STRING” website (https://
STRING-db.org/) (30). The minimum required interaction
score was set as 0.4 during the STRING PPI analysis, while the
max number of interactions was set as no more than 10, the line
color was set to indicate the type of interaction and the node
color was set to indicate the gene ontology (GO) terms to which
the gene belongs. The “ClusterProfiler” R package was used to
perform GO and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis (31). Three aspects were mainly
investigated by the GO analysis: biological process, molecular
function, and cellular component.

Construction and Validation of the Risk
Score Signature and Nomogram Model
The “Least Absolute Shrinkage and Selection Operator” (Lasso)-
Cox algorithm in “glmnet” R package was used to screen the
independent prognostic genes (32) and the selected ones were
subsequently used to construct a risk score signature according
to a coefficient calculated by Lasso regression. Univariate/
multivariate COX regression analysis was performed, a
Nomogram prediction model was established, and an external
validation in GEO datasets was carried out, all of them using the
TABLE 2 | Validation cohorts from GEO database.

Data Set Pathology Type Platform Samples LUAD

GSE 41271 NSCLC Microarray GPL6884 275 182
GSE 72094 LUAD Microarray GPL15048 442 398
GSE 50081 NSCLC Microarray GPL570 181 127
GSE 68465 LUAD Microarray GPL96 462 442
GSE 42127 NSCLC Microarray GPL6884 176 133
Februa
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TABLE 1 | Clinical data of LUAD patients.

Training Cohort
(TCGA)

Validation Cohort 1
(GSE 41271)

Validation Cohort 2
(GSE 72094)

Number of
LUAD

426 182 398

Age (years
old)
Medium 66 64 69
Average 65 64 69
Min 33 30 38
Max 88 86 89

Gender
Male 190 92 176
Female 236 90 222

Tumor
Stage
Stage I 224 101 254
Stage II 107 28 67
Stage III
and IV

95 53 77

T Stage not provided not provided
T1 and
T2

368

T3 and
T4

55

TX 3
M Stage not provided not provided

M0 283
M1 22
MX 121

N Stage not provided not provided
N0 270
N1 82
N2 & N3 63
NX 11
22251
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“Survival” R package. The Time-dependent receiver operating
characteristic (ROC) curve was plotted by the “survivalROC”
R package.

Statistical Analysis
The differentially expressed genes (based on counts data)
between high immune infiltration subtype and medium-low
immune infiltration subtype were found using the “DEseq2” R
package. Genes with a false discovery rate (FDR) less than 0.05
were defined as differentially expressed genes (DEGs). The
“networkD3” R package was used to perform the principal
component analysis (PCA) and to plot the Sankey diagram.
The Kaplan-Meier survival curves were tested by the log-rank
method, the data in two groups were compared by Mann–
Whitney test, the data in multiple groups were compared by
Wilcox test, and the Pearson correlation coefficient test was
performed to the linear relationship between two quantitative
measures. The P values (or adjusted P-values, Padj) of all
statistical analysis were calculated using R software (Vision
4.0.2) , and a value less than 0.05 was considered
statistically significant.
RESULTS

Immune Infiltration Subtypes in LUAD
Immune cells and immune-related pathways cause a different
immune infiltration and anti-tumor effect in the immune TME.
The immune infiltration status of the transcriptome LUAD data
was evaluated using the ssGSEA algorithm. A total of 575
immune-related genes included in 29 immune-related gene sets
were used to evaluate the immune infiltration in LUAD. The
samples in the training cohort were clustered into three immune
infiltration subtypes using the hierarchical and K-means
clustering method as follows: 44 cases with low immune
infiltration, 265 cases with medium immune infiltration, and
118 cases with high immune infiltration (Figures 1A and S1A).
The relationship between the immune infiltration status and
tumor purity was evaluated using the ESTIMATE algorithm, and
the tumor purity, ESTIMATE score, stromal score, and immune
score of the TCGA cohort were calculated. The heatmap and
violin plots revealed that the LUAD cases with high immune
infiltration were often with lower tumor purity and higher
ESTIMATE, stromal and immune scores compared with the
cases with low and medium immune infiltration (Figures 1A, B
and S1B–D). The CIBERSORT algorithm was used to quantify
the relative fractions of immune cells in the LUAD samples to
evaluate more accurately the infiltration status of immune cells in
the different immune infiltration subtypes (Figure S1E).
Fourteen types among the 22 types of immune cells defined by
the algorithm were present in different counts in the immune
infiltration subtypes (P < 0.05). Six types of immune cells, such as
immature B cells, CD8 T cells, activated memory CD4 T cells,
M1 macrophage cells, and dendritic cells, have the highest
significances of infiltration degree in different immune
infiltration subtypes (P < 0.001), and showed a progressive
Frontiers in Oncology | www.frontiersin.org 4
increasing or decreasing trend (Figure 1C). The Kaplan-Meyer
survival curve of the three immune infiltration subtypes in the
TCGA cohort showed that the 5-year overall survival rate of the
high immune infiltration subtype was significantly higher than
that in the medium and low immune infiltration subtypes
(P = 4.394000e-4, Figure 1D).

Screen of the Coordinated Expression
Genes Related With Immune Infiltration
by WGCNA
The WGCNA algorithm was used to construct a weighted
correlation gene network to screen the coordinated expression
genes associated with immune infiltration. A total of 18,748
genes were included in the WGCNA analysis after the removal of
the duplicate genes and genes with low expression. WGCNA
clustered all these genes into 14 gene modules by selecting the
appropriate soft threshold (Figures S2A, B) according to the
coordinated pattern (Figure 2A). These gene modules were
associated with both the clinical traits and the immune
infiltration subtypes of LUAD patients. The results revealed
that the red module (containing 1,028 genes) and the light
yellow module (containing 643 genes) showed a high
correlation with the immune infiltration subtypes (r = 0.62,
P = 9e-47; r = 0.69, P = 2e-60, respectively; Figure 2B). A high
correlation between red modules and bright yellow modules was
also revealed by the correlation cluster heatmap (Figure 2C). In
addition, the high reliability of the WGCNA result was
confirmed by the high correlation between GS and MM inside
the modules (Figures S2C, D). The gene pairs with the Top 300
GS weighted coefficients in the two modules aforementioned
were extracted, and the gene-related PPI map was constructed
and plotted using the “Cytoscape” software. The PPI showed that
the genes with the largest number of associated nodes in the
weighted network of the two gene modules, such as NCKAP1L,
CD53, SASH3, and CD3E, were present in the ssGSEA gene set
(Figures 2D, E), and it revealed a strong correlation between the
screened genes by WGCNA and the immune infiltration
subtypes. The total 1,671 genes in the two modules were then
analyzed by GO and KEGG pathway. The GO terms T cell
activation, regulation of lymphocyte activation, external side of
plasma membrane, and cytokine receptor binding were the
enriched GO terms (Figures 2F, S2E and S2G). The cytokine
−cytokine receptor interaction and chemokine signaling
pathways were also enriched in the two modules as revealed by
the KEGG pathway analysis (Figures 2G, S2F and S2H). These
results confirmed that the genes in the two modules were
immune related genes.

Further Screening and Identification
of Immune Infiltration Related Genes
DESeq2 standard procedure was used to screen DEGS in LUAD
patients with high immune infiltration in comparison with
patients with low or medium immune infiltration to further
define the genes related to immune infiltration and their
prognostic survival in LUAD patients (Figures S3A, B). In
addition, a total of 2,601 genes related to the prognosis of
February 2021 | Volume 10 | Article 622251
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LUAD were screened by univariate log-rank test. The coordinate
expression genes associated to immune infiltration screened by
WGCNA were intersected with DEGs and prognosis-related
genes, and 325 genes were found as common genes (Figure
3A). The genes already included in ssGSEA analysis, non-coding
genes (lincRNA and miRNA), pseudogenes, and antisense chains
of coding genes were removed and a total of 178 genes remained
that were used to construct a PPI network by the “STRING”
website (which does not show single-node genes). In this
network, some members of the G-protein coupled receptor
pathway, such as GNG2, GNB2, and P2RY13, as the central
nodes, had more associated genes, and the evidence of gene
association is also more sufficient (thicker the lines, more
sufficient the evidences) (Figure 3B). The GO analysis of the
178 genes revealed three molecular functional GO terms with the
highest enrichment degree, such as non−membrane spanning
protein tyrosine kinase activity, carbohydrate binding, and G
protein−coupled purinergic nucleotide receptor activity (Figure
Frontiers in Oncology | www.frontiersin.org 5
3C). The biological process and cellular component of the GO
analysis revealed that immune response−activating related
signaling pathways and cell membrane component were the
mainly enriched GO terms (Figures S3C, D). The KEGG
pathway analysis revealed that chemokine signaling pathway
and B cell receptor pathway were the mainly enriched
pathways (Figure 3D). Finally, the lasso-cox algorithm applied
to these 178 genes revealed that CD69, KLRB1, PLCB2, and
P2RY13 were independent prognostic genes (Figure 3E). These
four genes showed specific interactions with various immune-
related genes or immune-related signaling pathways as revealed
by the PPI network (Figures S3E–H). The LUAD patients were
divided into high expression group and low expression group
according to the median expression value of these four key genes
used as the cutoff value. The results showed that the 5-year
survival rate in LUAD patients with high expression of these four
genes was significantly higher than that in patients with low
expression of these genes (Figure 3F).
A B

C D

FIGURE 1 | Identification of the immune infiltration subtypes in LUAD in the TCGA cohort. (A) According to 29 immune-related gene sets, three immune infiltration
subtypes were identified in LUAD samples by ssGSEA. The results of the ESTIMATE algorithm are also shown in the heatmap. (B) The immune score calculated by
the ESTIMATE algorithm in different immune infiltration subtypes. (C) Relative fractions of 14 immune cells in different immune infiltration subtypes. The red box
indicated that the relative expression of immune cells increased or decreased in the three immune infiltration subtypes. (D) Kaplan-Meyer survival curve of the three
immune infiltration subtypes in the TCGA cohort. *P < 0.05; **P < 0.01; ***P < 0.001.
February 2021 | Volume 10 | Article 622251
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Relationship Between the Four Key Genes
and LUAD Immune Microenvironment
The expression of these four genes in different immune
infiltration subgroups were analyzed to further explore the
relationship between the four key genes and LUAD immune
microenvironment and the potential mechanism regulating this
relationship. A significant difference in the expression of these
genes among the three immune infiltration subgroups was found
(Figure 4A), all showing a progressive increase in their
Frontiers in Oncology | www.frontiersin.org 6
expression from the low immune infiltration subgroup to the
high one. The PCA suggested that different immune infiltration
states could be distinguished to some extent just only using the
expression of these four key genes (Figure 4B). A correlation
between the expression of these key genes and the infiltration of
various immune cells was indeed found (Figures 4C and S4A).
CD69 is a marker of macrophage activation and, as such, is
negatively correlated with the relative number of M0 cell. KLRB1
expression was positively correlated with the activation of CD8
A

C

F G

D E

B

FIGURE 2 | Detection of the immune infiltration related modules and genes by WGCNA. (A) The gene dendrogram obtained by the different clusters based on
scale-free topological network corresponding to the module represented by the colors in the row. Each colored module contains a group of highly coordinated
expression genes. (B) Relationship between the gene modules and the different clinical traits of LUAD in the TCGA cohort. (C) Dendrogram and heatmap of the
correlation of modules. The red box shows the high correlation between the red module and light-yellow module. (D, E) The PPI network of the top 300 gene pairs
with the highest GS in the red module (D) and in the light-yellow module (E). The intensity of the red color of the nodes represents the number of coordinated
expression genes in this node gene. (F) GO enriched analysis of the coordinated expression genes in red and light-yellow modules. (G) KEGG pathway analysis of
the coordinated expression genes in red and light-yellow modules.
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A B

C D

E F

FIGURE 3 | Further screening and identification of immune infiltration related genes. (A) Venn diagram showing the intersection (315 genes) of the genes related
with immune infiltration screened by WGCNA and DEGs in different immune infiltration subtypes and the prognostic genes screened by log-rank test. (B) PPI
network of the 178 genes. The line thickness indicates the strength of the data supporting the interaction. (C) A Chord graph showing the genes in the top 10
enriched GO terms in the molecular function level. (D) KEGG pathway analysis of the 178 genes. (E) Lasso-Cox regression showing the independent prognostic
genes. The top graph shows the coefficient shrinkage, the bottom graph shows the 10-fold cross-validation. (F) The Kaplan-Meyer survival curves of the four genes
(CD69, KLRB1, PLCB2, and P2RY13) screened by the Lasso-Cox regression.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Immune Infiltration in Lung Adenocarcinoma
positive T cells, PLCB2 expression was positively correlated with
monocyte infiltration, and P2RY13 expression was negatively
correlated with the number of naive B cell, but positively
correlated with the number of resting dendritic cells. A
Frontiers in Oncology | www.frontiersin.org 8
correlation between the expression of the four key genes and
immune checkpoint genes was also found, as shown in Figures
4D and S4B–J, in which the correlation between KLRB1 and PD-
1, as well as P2RY13 and PD-L2 was significant (Figures 4E, F).
A

C

D E

G H

F

B

FIGURE 4 | Relationship between the four key genes and LUAD immune microenvironment. (A) The boxplot shows the expression trends of the four key genes in
different immune infiltration subtypes. (B) 3D PCA of the four key genes shows the spatial distribution of different immune infiltrations. (C) Correlation between the
four key genes and 22 immune cell types. The blue box indicates a negative correlation, the red box indicates a positive correlation, and the increase of the color
indicates the increase of the correlation coefficient. (D) Correlation between the four key genes and the four immune checkpoints. The increase of the color indicates
the increase of the correlation coefficient. (E) Correlation between KLRB1 and PD-1. (F) Correlation between P2RY13 and PD-L2. (G) PPI network of the four key
genes. The colors of the lines indicate the types of interaction, the colors of the node indicate which GO term the gene belong to. The node in the red box (S1PR1
gene) was the common interaction of the four key genes. (H) The Kaplan-Meyer survival curve of S1PR1 in LUAD. *P < 0.05; **P < 0.01; ***P < 0.001.
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The potential interaction between these four key genes was also
evaluated. The use of the STRING website revealed that both
P2RY13 and PLCB2 belong to the G-protein coupled receptor
pathway, while CD69 and KLRB1 belong to the signal
transduction pathway, but these four genes had a common
interaction gene, such as S1PR1, which is a member of both
the G-protein coupled receptor pathway and the signal
transduction pathway (Figure 4G). The subsequent
investigation of S1PR1 revealed that it might also be a
prognostic gene in LUAD (in TCGA cohort and GSE72094),
with interactions with some well-known tumor genes such as
AKT1, STAT3 and CXCR4 (Figures 4H, S4K–4N).

Establishment of a Prognostic Model
Based on Four Immune-Related Genes
A risk score signature was constructed to integrate the roles of
these four key genes by the coefficients of LASSO-Cox regression
in view of their role in the prognosis and immune infiltration in
LUAD (Figure 5A). The coefficients are shown in Table S1. The
LUAD patients were divided into high-risk group and low-risk
group according to the median value of the risk score. The
survival rate of the patients in the low-risk group was
significantly higher than that of the patients in the high-risk
group, with a 5-year survival rate of 46.0 and 29.0%, respectively
(Figure 5B). The combination of the risk score with the clinical
baseline index of LUAD by univariate COX analysis revealed that
tumor stage, TNM stage, and risk score were prognosis
predictors, but after the correction by multivariate COX, only
the tumor stage and risk score resulted as independent predictors
of LUAD prognosis (Figures 5C, D). The result of the
multivariate COX model was then quantified and visualized
through the construction of a Nomogram to predict the 3-year
and 5-year survival rates of LUAD patients (Figure 5E). A high
coincidence rate between the predicted probability and the actual
probability in the 3-year and 5-year survival prediction of LUAD
was found through the internal calibration curves (Figure 5F).
The time-dependent ROC curve showed that the area under the
curve (AUC) of the Nomogram to predict the 3-year survival rate
was 0.715, which was higher than that of the TNM stage (0.618),
while the AUC to predict the 5-year survival rate was 0.829, also
higher than 0.699 of the TNM (Figures 5G, H). The Sankey
diagram visualized the relationship between the risk score and
the final outcome of patients with different immune infiltration
subtypes (Figure 5I).

Validation of the Prognostic Value
of the Four Immune-Related Genes
in GEO Datasets
Universality is an important index to evaluate a prognostic
model, thus, it is necessary to use data from different sources
to externally verify the Nomogram (33). Five GEO datasets using
different chip platforms were selected to confirm the prognostic
prediction ability of the immune-related genes and the
Nomogram. All the four key genes had a prognostic
significance in both GSE41271 and GSE72094 (Figures S5A,
B). As regard the other GEO datasets, CD69 and KLRB1 in
Frontiers in Oncology | www.frontiersin.org 9
GSE50081, KLRB1 and PLCB2 in GSE68465, and PLCB2 and
P2RY13 in GSE42127 also had a prognostic significance. The risk
score constructed by the four key genes in GSE41271 and
GSE72094 had a significant prognostic value (Figures 6A, B
and S5C, D). The external calibration curves of the Nomogram
to predict the two GEO datasets showed that the prediction of
the 3-year and 5-year survival rate was in good agreement with
the actual survival rates (Figures 6C, D). The ROC curves also
revealed that the predicted AUCs of other survival periods were
higher than 0.7, except for the AUC of the 5-year survival in
GSE41271 (Figures 6E, F).
DISCUSSION

The continuous development of high-throughput sequencing
technology allowed a deeper understanding of the genetic and
epigenetic pathological characteristics of tumors, including
LUAD. A variety of clustering and deconvolution algorithms
are used to determine the state of TME (especially the immune
TME) through the high-throughput RNA sequencing data,
resulting in a great improvement of tumor treatment and
prognosis (34). Moreover and more importantly, the potential
association of the changes in tumor immune microenvironment
with the gene expression changes may be helpful in finding the
key genes leading to tumor immune infiltration. These key genes
may represent novel biomarkers to predict the clinical outcome
of patients or potential immunotherapeutic targets to develop
effective anti-tumor drugs. However, most of the studies
available based on bioinformatics only focus on algorithms to
screen DEGs, lacking the in-depth investigation of the
interaction network among these key genes, or single-source
data creating an overfitting model with a weak universal
survival prediction.

In this work the tumor immune status of LUAD patients in
the TCGA database at the genetic level was considered. Based on
ssGSEA algorithm, LUAD patients were divided into high,
medium, and low immune infiltration subtype, and the
Kaplan-Meyer analysis revealed a better prognosis of the
patients with high immune infiltration subtype. These results
suggested that a high immune infiltration specifically localized in
the tumor might be considered as an anti-tumor factor. The
expression of genes implicated in immunotherapy and specific
genes of immune cells, along with the abundance of immune cell
infiltrates in a tumor, is substantially inversely correlated with
tumor purity (35). This aspect underlines the need to consider
tumor purity when evaluating the gene expression of markers
obtained from tumor transcriptome data. The ESTIMATE
algorithm was used to calculate the tumor purity and the
immune and stromal score in LUAD, thus, the negative
regulation relationship between the immune infiltration state
and tumor burden in LUAD was confirmed. Unlike the ssGSEA,
CIBERSORT deconvolution algorithm, only focus on the
proportion of immune cells in tumors. The CIBERSORT
results showed that mainly CD8+ cells, activated CD4 memory
cells and M1 macrophages are the ones highly infiltrated in a
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FIGURE 5 | Prognostic value of the four key genes. (A) Risk score signature based on the four key genes. The top graph shows the calculation formula and
the value of the risk score; the middle graph shows the distribution of the survival status based on the risk score; the bottom graph shows the cluster
heatmap of the four key genes. (B) The Kaplan-Meyer survival curve shows the different survival rate between LUAD patients with high-risk score and low-risk
score. (C) The forest plot shows the result of the univariate cox regression for the overall survival in TCGA cohort. (D) The forest plot shows the result of the
multivariate cox regression for the overall survival in the TCGA cohort. (E) Nomogram based on the multivariate cox regression for the prediction of the 3-year and
5-year survival rates in the TCGA cohort. (F) An internal calibration curve shows the fitness between the actual overall survival probability and the nomogram-
predicted overall survival probability. (G, H) The time-dependent ROCs show the accuracy of the Nomogram and TNM for the 3-year overall survival prediction
(G) and 5-year overall survival prediction (H). (I) The Sankey diagram shows the final survival status of LUAD patients with different immune infiltrations and with
different risk scores. *P < 0.05; **P < 0.01; ***P < 0.001.

Wang et al. Immune Infiltration in Lung Adenocarcinoma
A B

C D

E F

FIGURE 6 | Validation of the prognostic value of the four key genes in the GEO datasets. (A, B) The Kaplan-Meyer survival curves show the different survival rate
between high-risk group and low-risk group in GSE 41271 (A) and GSE 72094 (B). (C, D) The external calibration curves show the fitness of the overall survival
probability in GSE 41271 (C) and in GSE 72094 (D). (E, F) The time-dependent ROCs show the accuracy of the 3-year overall survival prediction and 5-year overall
survival prediction in GSE 41271 (E) and in GSE 72094 (F).
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tumor in a condition of high immune infiltration, and these cells
are important anti-tumor immune cells (36).

Whether it is tumor immune cells or tumor immune-related
genes, there is often a network-based synergistic relationship
between them often exists (37–39). If the immune infiltration
state of LUAD is classified and confirmed, it is important to
evaluate which are the coordinate expression genes, and the
correlation between them and the immune infiltration in LUAD.
For this reason, the immune infiltration of LUAD in this work
was considered as a clinical trait, and the WGCNA algorithm
was used to screen the coordinate expressed genes in the form of
gene modules that were associated with the immune infiltration
of LUAD. A total of 1,671 genes included in two gene modules
were screened and the PPI network analysis showed that the hub
gene in the two modules were included in the gene set of ssGSEA
algorithm. GO and KEGG analysis also confirmed that these
genes were mainly enriched in immune-related pathways. These
results suggested that the WGCNA method used in our study to
screen immune-related genes was effective and reliable.

A further cleaning of the aforementioned 1,671 genes resulted
in the selection of 178 genes and their PPI network was
constructed by “STRING” website. In this network, some hub
genes such as GNB2, GNB4, GNG2, GNGT2, and P2RY13 had
more interactional genes and more sufficient evidences of the
interactions. These hub genes are all members of the G protein-
coupled receptor pathway. The GO enriched analysis revealed
that the G protein-coupled purinergic nucleotide receptor
activity pathway also ranked third in the molecular function
Go terms. The G protein-coupled receptor pathway is nowadays
a hot spot in cancer immune research, and some members of
GPCRs are actually demonstrated as having a role as prognostic
factors in a variety of cancers (40–42).

The LASSO algorithm was used to find independent
prognostic molecules and avoid co-linearity between genes
since the genes screened by WGCNA are often coordinate
expression genes, and four key genes such as CD69, KLRB1,
PLCB2, and P2RY13 were finally found. The relationship
between CD69 and tumor immunity is known, although it was
initially considered as a marker of early activation of T cells and
macrophages, but the latest research revealed that it is a surface
marker of tissue resident memory T cells, and high infiltration of
these cells often indicates a better tumor outcome (43, 44).
KLRB1 (also called CD161) is a gene encoding for a surface
marker of many subtypes of T cells and NK cells, and its
widespread expression is associated with a better prognosis of
NSCLC (45, 46). PLCB2 and P2RY13 are members of the
phosphatidyl C family and purine subunit family, respectively
(47, 48). These two genes are classified as belonging to the
GPCRs pathways that are closely related to tumor immunity
and despite reports on the relationship between these two genes
and tumor immunity are still rare, new progress has been made
revealing their relationship with macrophages and NK cells (49,
50). In this study, the expression of these four genes was
increased with the increase of LUAD immune infiltration level.
The important aspect was that these four genes were correlated
with the amount of immune cell infiltration (such as CD69 and
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M0 macrophage), but also with the expression of immune
checkpoint genes (such as KLRB1 and PD-1, P2RY13, and PD-
L2) suggesting that these four genes might predict the
immunotherapy response and could be potentially considered
as new immunotherapeutic targets. These four genes interact
with a gene common to all of them, such as S1PR1, which is a
core gene of the G protein coupled pathway (51). S1PR1 is
usually considered as an oncogene, since it promotes the
proliferation, invasion, and metastasis of tumor cells through
the STAT3, PI3K/AKT, and CCR signaling pathway in many
types of malignant tumors (52–54). However, some recent
studies revealed that S1PR1 is also able to promote tumor cell
apoptosis, thus, its high expression is an indicator of a good
prognosis (55–57). In the present study, our hypothesis was that
an interacting gene network was formed among CD69, KLRB1
and GPRCs family members PLCB2, P2RY13, and S1PR1. This
gene network further activated the downstream genes in GPRCs
signaling pathway, promoting the immune infiltration in LUAD
tissues and the consequent anti-tumor effect of immune cells.
This finding provided a new basis clarifying the mechanism of
immune infiltration in LUAD, and providing a potential
therapeutic target for the immunotherapy against LUAD.

Finally, these four genes were used to construct a risk score
signature in training cohort to explore the role of these four genes
in the clinical prognosis of LUAD. This risk score signature
allowed the identification of high-risk LUAD patients with poor
prognosis. This score signature was also used as an independent
prognostic index to construct an effective Nomogram prediction
model combined with the tumor stage in LUAD TCGA cohort.
This model could predict the 3-year and 5-year survival rates of
TCGA LUADwith a high accuracy. The ROC curves revealed that
the AUC of the Nomogram were better than AUC of the TNM
stage. Tumor heterogeneity is an unavoidable problem, thus, it
should be considered in all tumor studies, being also a problem in
the prognostic prediction of LUAD patients (58, 59). The model
was externally validated in two GEO datasets using different
microarray platforms to further improve the universality and
robustness of the Nomogram in LUAD samples. The validation
further confirmed the prognostic value of these four genes and the
ability of the Nomogram to predict the survival rates in LUAD
patients. These results indicated that these four LUAD genes had a
universal prognostic value, thus, they might be potentially
considered for further clinical applications.

Our study had several limitations that should be
acknowledged while indicating necessary future studies in the
relevant areas. As shown in the results, the prognostic
significance of the four genes and S1PR1 were found in some
of the examined GEO datasets, not all. It may be due to the
limitations of the data obtained from open datasets. The data
were shared by studies using inconsistent experimental study
design, such as different detected objects, various detected
platforms, and diverse sample sizes. For example, the
GSE50081 only focused on early-stage NSCLC, and the
GSE41271 and the GSE42127 did not contain S1PR1 detection
probes. The heterogeneity of tumors, which was also hard to
control using open data, may have impacted and resulted in these
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inconsistent findings among datasets as well. Specifically, the
individual differences, difference of tumor development stages,
and difference of tumor sites could all affect the analysis results of
immune cell infiltration and gene expression levels. All these
factors can be impactful to the data analysis, lower the validation
of the prognostic value of these genes, and thus affect the
universality of the prognostic prediction model. For future
studies, the clinical application value of this gene signature
needs to be further verified in more independent LUAD
cohorts. Our research team has just launched a new validation
study at the protein level based on an independent cohort of
which the samples are being collected from our own hospital.
Meanwhile, a larger sample size should be considered in future
studies to help reduce the interference caused by tumor
heterogeneity and ensure statistic power.
CONCLUSIONS

Our study identified four key genes significantly correlated with
tumor immune infiltration and in LUAD and its prognosis.
These four genes formed a network with S1PR1, which is a
mutual interaction gene, activating the downstream genes
in GPRCs to promote the immune infiltration in LUAD.
The constructed risk score signature based on the key genes
could be used as an independent biomarker to predict the
prognosis of LUAD. Therefore, the screening, identification,
and analysis of these four genes made a contribution in
the understanding of GPCRs and the immune infiltration in
LUAD, opening up new perspectives for more effective
immunotherapeutic strategies.
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