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Tumors infiltrating the motor system lead to significant disability, often caused by
corticospinal tract injury. The delineation of the healthy-pathological white matter (WM)
interface area, for which diffusion magnetic resonance imaging (dMRI) has shown promising
potential, may improve treatment outcome. However, up to 90% of white matter (WM)
voxels include multiple fiber populations, which cannot be correctly described with
traditional metrics such as fractional anisotropy (FA) or apparent diffusion coefficient
(ADC). Here, we used a novel fixel-based along-tract analysis consisting of constrained
spherical deconvolution (CSD)-based probabilistic tractography and fixel-based apparent
fiber density (FD), capable of identifying fiber orientation specific microstructural metrics. We
addressed this novel methodology’s capability to detect corticospinal tract impairment. We
measured and compared tractogram-related FD and traditional microstructural metrics
bihemispherically in 65 patients with WHO grade III and IV gliomas infiltrating the motor
system. The cortical tractogram seeds were based on motor maps derived by transcranial
magnetic stimulation. We extracted 100 equally distributed cross-sections along each
streamline of corticospinal tract (CST) for along-tract statistical analysis. Cross-sections
were then analyzed to detect differences between healthy and pathological hemispheres. All
metrics showed significant differences between healthy and pathologic hemispheres over
the entire tract and between peritumoral segments. Peritumoral values were lower for FA
and FD, but higher for ADC within the entire cohort. FD was more specific to tumor-induced
changes in CST than ADC or FA, whereas ADC and FA showed higher sensitivity. The
bihemispheric along-tract analysis provides an approach to detect subject-specific
structural changes in healthy and pathological WM. In the current clinical dataset, the
more complex FD metrics did not outperform FA and ADC in terms of describing
corticospinal tract impairment.

Keywords: tractography, corticospinal tract, diffusion magnetic resonance imaging, motor function, apparent
diffusion coefficient, tumor, transcranial magnetic stimulation
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INTRODUCTION

In previous studies we introduced the combination of navigated
transcranial magnetic stimulation (TMS) cortical motor
mapping and tractography to improve surgery of motor
eloquent brain tumors (1–4). In a recent study we could also
demonstrate that the segmental analysis of diffusion tensor
imaging (DTI) derived metrics, such as fractional anisotropy
(FA) and apparent diffusion coefficient (ADC), correlated with
clinical outcomes (5). Here, we now set out to investigate
whether more complex metrics derived from constrained
spherical deconvolution (CSD) and probabilistic tractography,
which allow for more detailed analysis of the white matter, would
prove superior in terms of detecting tumor induced white matter
(WM) changes (6). In this context we analyzed the structural
impact of gliomas affecting the corticospinal tract (CST) in 65
patients. This was carried out without the generation of a group
template because of the lateralized pathology, which allows a
clear deduction of interhemispheric differences on the subject-
level (7). We compared the pathological with the healthy
hemisphere and focused on describing tumor-induced changes
along the CST with dMRI. We used CSD-based probabilistic
tractography at an individual scale within the MRtrix3
framework (8).

DTI enables quantification of the molecular diffusion rate,
ADC, or the directional preference of diffusion, FA (9). ADC and
FA are established metrics integrated as predictive features in
neurosurgical studies (5). The two main diffusion tensor-derived
parameters, ADC and FA, are based on voxel-wise eigenvalues,
which represent the magnitude of the diffusion process in the
principal diffusion orientation and two directions perpendicular
to it. These values are influenced by different factors (10). ADC is
a measure of the overall diffusivity in a single voxel, regardless of
its orientation. It is higher where water diffuses more easily, e.g.
in ventricles, lower in structures with high tissue density and
consequently more diffusion barriers, such as GM (11). FA
describes the directional coherence of water diffusion in tissue
and is modulated by numerous biological factors, such as the
microstructural and architectural organization of white matter,
myelination and non-white matter partial volume effects. Further
influences on FA modulation are methodological factors, such as
the choice of the estimation, preprocessing methods, and
subjective selection of regions of interests (ROIs) (12, 13).

In contrast to DTI, CSD can distinguish complex fiber
populations in the brain. In brief, CSD estimates fiber
orientation distributions (FODs) within each voxel, based on
the expected signal from a single collinearly oriented fiber
population (14). By leveraging the rich information in FODs,
probabilistic tractography algorithms, such as the iFOD2, have
been proposed to address limitations of tensor-based
tractography methods (15). In up to 90% of all WM voxels,
Abbreviations: ADC, apparent diffusion coefficient; CSD, constrained spherical
deconvolution; CST, corticospinal tract; dMRI, diffusion magnetic resonance
imaging; DTI, diffusion tensor imaging; FA, fractional anisotropy; FD, fiber
density; FDI, first dorsal interosseous; FOD, fiber orientation distribution; GM,
gray matter; MEP, motor evoked potentials; nTMS, navigated transcranial
magnetic stimulation; WM, white matter.
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multiple fiber orientations were observed, and 30 to 40% of these
WM voxels contain more than three fiber populations (16–19).
Moreover, non-white matter contamination is present in more
than a third of the WM voxels (12) and has been addressed by
multi-tissue CSD methods (20–22).

A complete picture about the underlying white matter
architecture is highly relevant with regard to adequate risk
estimation and neurosurgical planning (23). To that end, in
addition to the conventional DTI measures, modern CSD-based
fiber density (FD) and fixel-based analysis (FBA) methods offer
promising opportunities since they are related to the intra-axonal
restricted compartment that is specific to a certain fiber
orientation within a voxel (24). Based on its advantages for the
analysis of crossing fiber regions, we expect this metric to
improve the detection of tumor-induced changes along the
CST and obtain more specific information about the
microstructural effects of tumors in combination with
traditional FA or ADC measures. Furthermore, we expect
higher specificity of FD in detecting the peritumoral segments,
most importantly at the tumor–white matter interface, which is
surgically the most important area. However, the translation of
advanced neuroimaging to clinical settings is slow both in terms
of adapting modern methods and imaging protocols. While there
exist tools to use the modern CSD and probabilistic tractography
with conventional images, for tumor patients, little is known
about how applicable they prove with existing conventional
neuroimaging protocols. Nevertheless, clinical feasibility,
robustness, and methodological superiority have been proven
(25, 26). Until now, fixel-based studies have concentrated on
group analyses without subject-specific examination of tumor
patients for neurosurgical planning (24). We developed a new
variant of FD for the fiber orientation specific along-tract
investigation of microstructural properties in relation to
infiltrating tumors.

Importantly, we used state-of-the-art TMS methods for
motor mapping to find functionally critical regions of interest
(ROIs) and used these as seed points to generate streamlines.
This approach is shown to be highly effective for surgical
planning (4); therefore it is superior to studying the whole
CST, which lacks information about patient and tumor specific
functional consequences of neurosurgery.
MATERIAL AND METHODS

Ethical Standard
The study proposal is in accordance with ethical standards of the
Declaration of Helsinki and was approved by the Ethics
Commission of the Charité University Hospital (#EA1/016/19).
All patients provided written informed consent for medical
evaluations and treatments within the scope of the study.

Patient Selection
We included n = 65 left- and right-handed adult patients in this
study (25 females, 40 males, average age 55.6, SD = 15.2, age
range 24–81). Only patients with an initial diagnosis of unilateral
WHO grade III and IV gliomas (14 WHO grade III, 51 WHO
January 2021 | Volume 10 | Article 622358
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grade IV) were included (Table 1). All tumors were infiltrating
M1 and the CST or implied critical adjacency, either in the left or
right hemisphere. Patients with recurrent tumors, previous
radiochemotherapy, multicentric or non-glial tumors were
not considered.

Image Acquisition
MRI data were acquired on a Siemens Skyra 3T scanner
(Erlangen, Germany) equipped with a 32-channel receiver
head coil at Charité University Hospital, Berlin, Department of
Neuroradiology. These data consisted of a high-resolution T1-
weighted structural (TR/TE/TI 2300/2.32/900 ms, 9° flip angle,
256 × 256 matrix, 1 mm isotropic voxels, 192 slices, acquisition
time: 5 min) and a single shell dMRI acquisition (TR/TE 7500/95
ms, 2 × 2 × 2 mm3 voxels, 128 × 128 matrix, 60 slices, 3 b 0
volumes), acquired at b = 1,000 s/mm2 with 40 gradient
orientations, for a total acquisition time of 12 min.

Preprocessing and Processing of MRI
Data
All T1 images were registered to the dMRI data sets using
Advanced Normalization Tools (ANTs) with the Symmetric
Normalization (SyN) transformation model (27, 28). The
preprocessing of dMRI data included the following and was
performed within MRtrix3 (8) in order: denoising (29), removal
of Gibbs ringing artefacts (30), correction of subject motion (31),
eddy-currents (32) and susceptibility-induced distortions (33) in
FMRIB Software Library (34), and subsequent bias field
correction with ANTs N4 (35). Each dMRI data set and
processing step was visually inspected for outliers and artifacts.
Scans with excessive motion were initially excluded (over 10%
outlier slices). We upsampled the dMRI data to a 1.3 mm
isotropic voxel size before computing FODs to increase
anatomical contrast and improve downstream tractography
results and statistics. To obtain ADC and FA scalar maps, we
first used diffusion tensor estimation using iteratively reweighted
linear least squares estimator, resulting in scalar maps of tensor-
derived parameters (13, 36). For voxel-wise modeling we used a
robust and fully automated and unsupervised method. This
method allowed to obtain three-tissue response functions
representing single-fiber combined white and gray matter and
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cerebrospinal fluid from our data with subsequent use of multi-
tissue CSD to obtain tissue specific orientation distribution
functions and white matter FODs (20, 22, 37).

Transcranial Magnetic Stimulation
Non-invasive functional motor mapping of both pathologic and
healthy hemispheres was performed in each patient using
navigated transcranial magnetic stimulation (nTMS) with
Nexstim eXimia Navigated Brain Stimulation. Briefly, each
patient’s head was registered to the structural MRI through
the use of anatomical landmarks and surface registration. The
composite muscle action potentials were captured by the
integrated electromyography unit (EMG) (sampling rate 3
kHz, resolution 0.3 mV; Neuroline 720, Ambu). The muscle
activity (motor evoked potential, MEP amplitude ≥50 mV) was
recorded by surface electrodes on the abductor pollicis brevis and
first dorsal interosseous. Initially, the first dorsal interosseous
hotspot, defined as the stimulation area that evoked the strongest
MEP, was determined. Subsequently, the resting motor
threshold, defined as the lowest stimulation intensity that
repeatedly elicits MEPs, was defined using a threshold-hunting
algorithm within the Nexstim eximia software. Mapping was
performed at 105% resting motor threshold and 0.25 Hz. All
MEP amplitudes >50 mV (peak to peak) were considered as
motor positive responses and exported in the definitive mapping
(38). The subject-specific positive responses of the first dorsal
interosseous were exported as binary 3 × 3 × 3 mm3 voxel masks
per response in the T1 image space.

Tractography
Probabilistic tractography was performed in each hemisphere
with the iFOD2 algorithm by using the above mentioned nTMS
derived cortical seeding ROI. A second inclusion ROI was
defined in the medulla oblongata. Tracking parameters were
set to default with a FOD amplitude cutoff value of 0.1, a
streamline minimum length of 5× voxel size and a maximum
streamline length of 100× voxel size. For each tractogram
describing the CST, we computed 5,000 streamlines per
hemisphere. Each streamline of the tractograms was resampled
along its length to 100 points. Peritumoral segments were defined
in relation to the resampled points within the range 1–100 in all
individual tractograms by visual inspection performed by one
neuroscientist and one expert neurosurgeon with 4 and 20 years
of experience, in that order. Subsequently, values of associated
FA, ADC, and FD scalar maps were sampled along the derived
100 segments of each streamline (Figures 1 and 2). The code
used for the tractography pipeline is archived as a shell script on
Zenodo (https://zenodo.org/record/3732348) and openly
accessible (39).

Computation of Along-Tract FD Values
Using FBA
A fixel is considered as a specific fiber population within a voxel
(7, 24). For each subject, segmentations of continuous FODs via
the integrals of the FOD lobes were performed to produce
discrete fixel maps which are developed to indicate voxel-based
measures of axon diameters, weighted by their relative volumes
ABLE 1 | Patient demographics.

Number (%)

emographics
ample size 65
ge 55.6 ± 15.2
emale 25(38)
ale 40(62)
lioma Degree
lioma III 14 (22)
lioma IV 51 (78)
umor Location
rontal 33 (51)
emporal 7 (11)
sular 9 (14)

Parietal 16 (25)
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within voxels (24, 40). With higher-order diffusion models, such
as CSD, parameters related to FD can be extracted for individual
fixels (7). FBA is able to identify effects in specific fiber pathways
and in crossing fiber regions, unlike voxel-based analysis (7).
After obtaining the fixels for all voxels in an image, FD values
along CST tractograms were computed in four steps: (i) fixels
associated with CSTs were obtained using fixel tract-density
imaging, (ii) fixels in the image were thresholded based on the
CST fixels which eliminates the contributions of other tracts that
are present in these voxels, (iii) the mean FD of the remaining
fixels were exported as a scalar image, and (iv) FD values were
interpolated along the 100 sampled points of each streamline
Frontiers in Oncology | www.frontiersin.org 4
present in the CST tractograms. The code used for the tract-
based fixel image construction pipeline is archived as a shell
script on Zenodo (https://zenodo.org/record/3732348) and
openly accessible (39).

Statistical Analysis
Confirmatory statistical analysis was performed using RStudio
version 1.2.5019 (https://rstudio.com) with R version 3.6.1
(https://cran.r-project.org). We compared FD with traditional
tensor-derived ADC and FA to study signal changes between
healthy and pathological hemispheres. To analyze the behavior
of the different metrics, we used the above mentioned resampled
FIGURE 1 | TMS-based tractography of the CST and subsequent along-tract resampling of streamlines. The tractogram shows streamlines in relation to cortical
hand representation derived by TMS-ROIs (left). The first zoom shows a combination with resampled points (yellow), overlaid on each streamline (middle). The
second, larger magnification reveals the single points, derived by resampling along the streamlines (right).
FIGURE 2 | CST tractogram with mapped ADC (left), FA (middle), and FD (right) scalar values, illustrating the methodological differences of scalar map sampling.
January 2021 | Volume 10 | Article 622358
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streamlines, comparing the median values for each of the 100
CST segments per 5,000 streamlines per hemisphere. To model
the tumor-related effect on each metric, a linear mixed model
(package lmerTest_3.1-0 under R version 3.6.1) was built for
each metric using the metric’s value as dependent variable,
hemisphere (0, healthy; 1, pathological) as independent
variable and a random intercept for subjects (41). Thus, each
model contained 13,000 data points (65 subjects * 2 hemispheres
* 100 median tract segment values per streamline). Further, we
repeated this analysis for the peritumoral area according to our
hypothesis to find stronger effects in these segments. Each of
these models contained 4,138 data points, with each subject
contributing a different number of peritumoral segments
depending on tumor location and size. All effects were
considered significant using a two-sided p-value of 0.05. All
models were examined for patterns in the residuals (deviation
from normality via QQ-plots, pattern fitted values vs. residuals).
All plots were generated with the ggplot2 library within tidyverse
(42, 43). Tests for sensitivity (n of true positive predicted
segments/n of true positive predicted segments + n of false
negative predicted segments) and specificity (n of true negative
predicted segments/n of true negative predicted segments + n of
false positive predicted segments) were based on classified tract
segments (0 non-tumorous, 1 tumorous) in relation to the
Frontiers in Oncology | www.frontiersin.org 5
obtained significant or non-significant differences between
healthy and pathological hemispheres per segment (classified
as 0 and 1). These tests were performed with Bonferroni-adjusted
alpha levels of 0.0005 (0.05/100) and thresholded only for large
effects (≥0.474) with Cliff’s delta due to the non-normal
distribution. The script used to perform the statistical analysis
and produce this manuscript is available on and archived in
Zenodo (39).

Data Availability
Parts of the data that support the findings of this study are not
publicly available due to information that could compromise the
privacy of the research participants but are available from the
corresponding author on reasonable request. However, code we
have used is openly available under the following address
(https://doi.org/10.5281/zenodo.3732348) and is cited at the
corresponding passage in the article (39).
RESULTS

TMS mapping, the calculation of TMS-ROI-based streamlines
and the extraction of ADC, FA and FD were feasible in each
subject (cf. Figure 3) and showed either close tumor-tract
FIGURE 3 | Demonstration of different voxel-level modeling methods results and their subsequently obtained scalar maps, illustrated on a coronal section. The ROI
is highlighted in a pre-processed diffusion image. Either diffusion tensor-ellipsoids as estimated by diffusion tensor imaging or FOD’s estimated using CSD are shown.
Further, their respective scalar maps such as ADC, FA, or fixel-based are depicted. The tensor-based scalar values do not represent any single fiber population in
the voxel in comparison to the fixel-based metric.
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distance (<8mm, n = 3) or adjacency or direct infiltration of the
CST by the tumor (n = 62). Visual inspection of boxplots showed
differences between pathological and healthy hemispheres for
ADC, FA, and FD (Figure 4A). As expected, these differences
were larger when looking at the peritumoral area only (Figure
4B). Further, a larger variability in ADC values could be observed
in the pathological hemisphere in general and the peritumoral
area specifically. When plotting values along the entire CST,
distinct patterns of variation between hemispheres could be
observed. ADC showed no significant differences in the non-
peritumoral segments but showed significant differences in
peritumoral segments, even stronger than FA and FD. In
contrast, FA and FD values showed differences both in the
non-peritumoral and peritumoral segments (Figures 5, 6,
Table 2). The distribution of tumors along the CST is
indicated in Figure 6. Additionally, the tumor-induced
variability in peritumoral ADC values in contrast to the entire
CST becomes particularly evident here (Figure 5). Finally, the
information shown in Figure 2 highlights and visualizes the
advantages of FOD representation in regard to multiple fiber
populations. The CSD method identifies multiple appropriately
oriented fiber populations in a voxel including multiple fiber
populations, while the DTI-based method does not represent
multiple fiber populations within each voxel and does not
Frontiers in Oncology | www.frontiersin.org 6
provide an orientation estimate corresponding to any of the
existing fiber populations (25), cf. Figure 3.

Group Wise Analysis
The results from the mixed model analysis confirmed our
hypotheses. We expected FD to improve the detection of
tumor-induced changes along the tract, in combination with
traditional FA or ADC measures. Furthermore, we expected
stronger effects in the peritumoral segments. Our results show
significant differences between healthy and pathological
hemispheres for ADC, FA, and FD in the peritumoral areas
(Table 2). As expected, these effects can be confirmed in the
peritumoral segments in all tested values (Table 3). Figures 4
and 5 illustrate significantly lower values in the pathological
hemisphere within the entire cohort and even greater differences
within the peritumoral segments for FD. Calculations for
sensitivity and specificity yielded 63, 74, and 42% sensitivity
and 68, 53, and 76% specificity for ADC, FA, and FD in that
order, reflecting a higher sensitivity for ADC and FA to tumor
induced microstructural differences, whereas FD showed higher
specificity to local WM architecture complexities or
orientation dispersion.

In addition to these analyses, we calculated the mean of the
entire cohort of ADC, FA, and FD differences between the
A

B

FIGURE 4 | Boxplots for ADC, FA and FD for both hemispheres. (A) Values for the entire CST. (B) Values for the peritumoral segments only. Outliers are marked by
small circles.
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healthy and pathological hemispheres with respect to healthy
segments only, pathological segments only, and healthy-
pathological WM interface (range of three voxels) for tumor
external as well as internal segments (Figure 7). The results
indicate that ADC is strongly altered within the pathological
WM area, while FA and FD show alterations along the entire
CST. Furthermore, FD shows stronger differences in the healthy–
pathological WM interface.

Subject-Specific Analysis
The differences are illustrated by means of two example cases
(Figure 8 and Table 3). Four further case-specific examples are
Frontiers in Oncology | www.frontiersin.org 7
given in the supplementary materials (Supplementary Figures
1–4 & Supplementary Tables 1–4). The exemplary cases were
randomly selected by a script. Case A: This patient in his 80’s was
brought to our emergency room with suspected stroke. A sudden
weakness in the legs had occurred, causing the patient to collapse
without losing consciousness. Furthermore, it was reported that
the patient had been suffering from dizziness for several weeks.
Conventional MRI confirmed a left parietal mass with extensive
perifocal edema. The patient was diagnosed with a left
postcentral WHO grade IV glioblastoma and right leg
emphasized hemiparesis. The indication for resection of the
mass was given.

Case B: This patient in his 60’s presented with a several weeks’
history of dysesthesia in his left arm and right hand with
associated arm weakness. He also felt insecure when walking
and suffered from a general weakness. Conventional MRI
confirmed the presence of a right frontal mass. Following this,
the patient was referred to our clinic. The patient was diagnosed
with a complex focal seizure with right precentral WHO grade
IV glioblastoma and Todd’s paresis which included transient left
hemiparesis. The indication for resection of the mass was given.

Our results show significant differences between healthy and
pathological hemispheres in FD over the entire CST (p <.01 and
p <.01) for both cases (Table 3). Case A shows significant
differences in FA over the entire CST and in the peritumoral
segments (p <.01 and p <.01). In addition, a significant difference
(p <.05) can be seen in the peritumoral area as well with respect
to ADC. However, case B shows no significant differences for
ADC and FA, neither between the entire healthy and
pathological hemispheres nor in the peritumoral segments.

The values of the two hemispheres overlap here in the non-
peritumoral area, similar to the group-wise results described
above. Case A shows less overlap for FA and FD, also in the non-
peritumoral segments, while ADC shows large overlap.
FIGURE 5 | Line plots illustrating ADC, FA, and FD along the entire CST of both hemispheres (0, medulla oblongata; 100, cortex). The points indicate median values
with their respective 95% confidence intervals. The heat-maps demonstrate related Bonferroni-corrected p-values, derived by paired t-tests.
FIGURE 6 | Density plot displaying the distribution of tumors grouped by
hemispheric occurrence. Additionally, the plot shows that no tumors occur
below segment 25.
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DISCUSSION

Morbidity due to brain tumor growth and their surgical
treatment is often caused by impairment of relevant WM.
Neuroimaging-based characterization of the healthy–
Frontiers in Oncology | www.frontiersin.org 8
pathological WM interface area is therefore crucial for
neurosurgical planning. DTI based tractography has seen a
widespread adoption in clinical neuroscience and practice in
the recent years. Especially the combination of TMS and DTI for
motor function-informed tractography has shown promising
TABLE 2 | Results of linear mixed model analysis.

Dependent variable:

FA ADC FD FA Peritumoral ADC Peritumoral FD Peritumoral

Pathologic
hemispheres

−0.042 0.0001 −0.046 −0.075 0.0001 −0.067

(−0.047, −0.038) (0.00005, 0.0001) (−0.052, −0.039) (−0.082, −0.069) (0.0001, 0.0001) (−0.076, −0.057)
p < 2e-16 p < 2e-16 p < 2e-16 p < 2e-16 p < 2e-16 p < 2e-16

Constant 0.560 0.001 0.718 0.540 0.001 0.729
(0.552, 0.567) (0.001, 0.001) (0.704, 0.732) (0.515, 0.564) (0.001, 0.001) (0.689, 0.769)
p < 2e-16 p < 2e-16 p < 2e-16 p < 2e-16 p < 2e-16 p < 2e-16

Observations 13,000 13,000 13,000 4,138 4,138 4,138
Log Likelihood 7,926.707 97,226.680 2,486.618 3,201.497 31,060.070 1,495.331
Akaike Inf. Crit. −15,845.410 −194,445.400 −4,965.236 −6,394.995 −62,112.150 −2,982.661
Bayesian Inf. Crit. −15,815.520 −194,415.500 −4,935.345 −6,369.683 −62,086.840 −2,957.349
J
anuary 2021 | Volume 10
Models 1–3 show results for the entire CST for FA, ADC, and FD, models 4–6 for the peritumoral segments respectively. The table shows regression coefficients for the fixed effect of
hemisphere and the intercept with their respective standard error in brackets. Further, number of observations for each model, the log likelihood ratio, Akaike information criterion, and
Bayesian information criterion are stated.
TABLE 3 A, B | Subject A and B results of linear mixed model analysis.

Dependent variable:

FA ADC FD FA Peritumoral ADC Peritumoral FD Peritumoral

Pathologic
hemispheres

0.021 0.00000 0.077 0.055 0.00004 -0.058

(0.008, 0.034) (-0.00002, 0.00002) (0.038, 0.117) (0.031, 0.080) (0.00002, 0.0001) (−0.138, 0.023)
p = 0.012 p = 1 p = 0.0012 p = 0.00006 p = 0.00012 p = 0.972

Constant 0.517 0.001 0.645 0.371 0.001 0.705
(0.488, 0.546) (0.001, 0.001) (0.611, 0.678) (0.331, 0.411) (0.001, 0.001) (0.640, 0.771)
p < 1.2e-15 p < 1.2e-15 p < 1.2e-15 p < 1.2e-15 p < 1.2e-15 p < 1.2e-15

Observations 200 200 200 40 40 40
Log Likelihood 172.557 1,488.435 69.184 44.545 339.211 15.904
Akaike Inf. Crit. −337.115 −2,968.871 −130.368 −81.090 −670.423 −23.807
Bayesian Inf. Crit. −323.921 −2,955.678 −117.175 −74.334 −663.667 −17.052

Dependent variable:

FA ADC FD FA Peritumoral ADC Peritumoral FD Peritumoral

Pathologic
hemispheres

−0.006 0.00001 −0.033 0.013 0.00000 −0.012

(−0.022, 0.011) (−0.00000, 0.00003) (−0.057, −0.010) (−0.020, 0.045) (−0.00002, 0.00003) (−0.037, 0.012)
p = 1 p = 0.606 p = 0.036 p = 1 p = 1 p = 1

Constant 0.562 0.001 0.705 0.459 0.001 0.543
(0.539, 0.585) (0.001, 0.001) (0.665, 0.744) (0.432, 0.486) (0.001, 0.001) (0.510, 0.577)
p < 1.2e-15 p < 1.2e-15 p < 1.2e-15 p < 1.2e-15 p < 1.2e-15 p < 1.2e-15

Observations 200 200 200 90 90 90
Log Likelihood 176.595 1,624.744 87.184 83.431 723.449 78.396
Akaike Inf. Crit. −345.190 −3,241.488 −166.367 −158.862 −1,438.898 −148.793
Bayesian Inf. Crit. −331.997 −3,228.295 −153.174 −148.863 −1,428.898 −138.793
Models 1–3 show results for the entire CST for FA, ADC, and FD, models 4–6 for the peritumoral segments respectively. The table shows regression coefficients for the fixed effect of
hemisphere and the intercept with their respective standard error in brackets. Further, number of observations for each model, the log likelihood ratio, Akaike information criterion, and
Bayesian information criterion are stated.
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results. Yet, the interpretation of differences as measured by
tensor-based scalar values is particularly challenging in regions
with crossing fibers, since tensors reflect only the main diffusion
direction (16, 44). Because the tensor representation is not able to
distinguish crossing fiber populations present in the majority of
the WM voxels, FA offers limited opportunities to quantitatively
study WM integrity (11, 16). Nevertheless, diffusion anisotropy
can provide unique information about axonal anomalies (45) as
it decreases as a consequence of loss of coherence in the preferred
main diffusion direction (9). In this context, studies also show
that ADC is generally higher in damaged tissue due to increased
free diffusion. This suggests that we can compare values of above-
mentioned metrics with a population average in order to
determine whether they are unusually high or low, e.g. by
comparing the subject-specific values of WM pathways of the
healthy hemisphere with those of the pathological hemisphere or
compare group-wise pathological populations with healthy
ones (45).

It has already been confirmed that many voxels along the CST
contain considerable contributions of multiple fiber populations
(25, 26). Nevertheless, our results indicate more significant
segment-wise differences between the healthy and pathological
hemispheres for FA and ADC in comparison to FD. This result
was found in the group and individual tests. While results could
marginally differ with the use of other seeding strategies (e.g.
anatomical landmarks for ROI selection), we believe when
Frontiers in Oncology | www.frontiersin.org 9
comparing different hemispheres, it is more reliable to
determine seed regions based on their function using TMS.
The investigation of other pathways may result in another
order for the sensitivity and specificity of the metrics due to,
for instance, different contributions of multiple fiber populations
or extra axonal signal. Therefore, future investigations could
study whether FD is more beneficial for the analysis of fiber
tracts, which pass through even more complicated WM regions
with highly variable fiber compositions.

FD Metrics in Clinical Settings
To better account for the complex microstructural organization
of WM and its quantitative analysis, FD, which uses higher-order
dMRI models such as FODs to analyze differences along WM
pathways, allows to consider multiple fiber populations within a
voxel. Multiple studies for group-wise statistical analysis of dMRI
measures were published earlier (7, 24, 44). In contrast to these
group-wise study designs, we used FD for an individual
assessment of a specific tract for clinical validation. However,
the presented higher sensitivity of ADC and FA indicates that
these metrics are more appropriate and robust for peritumoral
analysis. However, this may be due to the fact that FD has
underperformed due to insufficient raw data. This finding
highlights the need for better dMRI quality in clinical routine
to be able to integrate advanced neuroimaging methods into
clinical workflows. The discrepancy between clinical scan quality
A B

C D

FIGURE 7 | Box plots of cohort mean of ADC, FA, and FD differences between the healthy and pathological hemispheres with respect to healthy segments only (A),
pathological segments only (B) and tumor–healthy WM interface for tumor external (C) as well as internal segments (D).
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and advanced neuroimaging highlights the need to optimize raw
data acquisition in order to leverage advanced neuroimaging
modalities and methods into the clinical workflow (22, 25).

Our results demonstrate the feasibility of FD along-tract
analysis as a tool to describe subject-and tract-specific tumor-
induced changes. Moreover, our results demonstrate the addition
of further information to that obtained only via ADC or FA.
Earlier fixel studies, designed for group wise analysis of
pathology-related effects, demonstrated that fixel-analyses are
sensitive to WM changes in a variety of pathologies (7, 24). In
this study, we focused on subject-specific analyses, which showed
higher sensitivity for ADC and FA, but higher specificity for FD.
These findings are in line with other studies (23, 46). The higher
specificity of FD in relation to correctly predict healthy segments
is particularly relevant for presurgical analysis and intraoperative
navigation in relation to risk assessment, but also for
retrospective evaluation or outcome prediction models.

ADC, FA, and FD Characteristics in Brain
Tumor Patients
In both cases subject-specific differences between the healthy and
pathological hemispheres can be seen in the tumorous segments.
Furthermore, differences between the non-pathological and
pathological area can be seen as well in non-tumorous segments.
This result may indicate a global effect of gliomas on the entire
Frontiers in Oncology | www.frontiersin.org 10
CST and neural connectivity, affecting diffusion and voxel-wise
white matter architecture modeling, especially in regard to FD.
The results are consistent with the expected behavior of the
different diffusion measures: ADC was higher in the pathological
hemispheres which is attributed to the damaged tissue leading to
increased diffusion. This finding might reflect the tumor-related
degression of WM integrity, the edema surrounding the tumor
and related increase of free-water (23). FA and FD showed lower
values in the pathological hemispheres compared to the
corresponding segments in the healthy hemispheres. This result
is consistent with the effect of the glioma-related loss of coherence
in the preferred main diffusion directions (FA) and reduced fiber
density (FD). This might be explained by the tumor infiltration or
edema affecting the CST (23). The ADC and FD values show a
higher overlap of the healthy and pathological hemispheres in the
non-peritumoral area.

Limitations
Tractography suffers from a range of limitations that make its
routine use problematic (47). It is well known that tractograms
contain false positive (48) and false negative (49) streamlines. In
addition, tractography cannot distinguish between afferent and
efferent connections, and streamlines may terminate improperly
(18). The dMRI data used for this study consists of a typical
clinical single-shell acquisition, and is thus suboptimal for fiber
A

B

FIGURE 8 | Single subject line plots depicting ADC, FA, and FD along the CST of both hemispheres for case A (A) and B (B). The black lines indicate the
peritumoral segments.
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density measurement due to incomplete attenuation of apparent
extra-axonal signal (44). In this study we focused on the CST. For
other white matter pathways, our results might be different.
Further studies could integrate a variety of fiber bundles to
investigate the need for FD in along-tract statistical analysis.
CONCLUSIONS

Our results show that the direct comparison between healthy and
pathological hemispheres is sensitive to glioma-induced changes
in structural integrity of the CST measured by different dMRI
derived metrics. In contrast to our hypothesis, according to our
data and analysis, FD did not outperform FA or ADC, and all
three metrics showed similar results for indicating tumor-
induced changes of the CST. This finding highlights the need
for better scans in clinical routine if one wants to introduce
advanced neuroimaging modalities into clinical workflows.
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