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The deregulation of the MYC family of oncogenes, including c-MYC, MYCN and MYCL
occurs in many types of cancers, and is frequently associated with a poor prognosis. The
majority of functional studies have focused on c-MYC due to its broad expression profile in
human cancers. The existence of highly conserved functional domains between MYCN
and c-MYC suggests that MYCN participates in similar activities. MYC encodes a basic
helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor (TF) whose central
oncogenic role in many human cancers makes it a highly desirable therapeutic target.
Historically, as a TF, MYC has been regarded as “undruggable”. Thus, recent efforts focus
on investigating methods to indirectly target MYC to achieve anti-tumor effects. This
review will primarily summarize the recent progress in understanding the function of
MYCN. It will explore efforts at targetingMYCN, including strategies aimed at suppression
ofMYCN transcription, destabilization of MYCN protein, inhibition ofMYCN transcriptional
activity, repression of MYCN targets and utilization of MYCN overexpression dependent
synthetic lethality.
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INTRODUCTION

MYCN is a member of the MYC family of oncogenes, which also includes c-MYC and MYCL (1).
MYCN was first reported in 1983 as an amplified gene homologous to v-myc in human
neuroblastoma (2, 3). Like c-MYC, the MYCN gene encodes a basic helix-loop-helix-leucine
zipper (bHLH-LZ) protein named N-Myc or MYCN. MYCN and c-MYC exhibit high-structural
homology, including highly conserved Myc boxes (MB) and a BR-HLH-LZ motif (1, 4, 5). Both
MYCN and c-MYC heterodimerize with MAX to bind to an enhancer-box (E-box) sequence with a
consensus CAC(C/A)TG motif to regulate gene transcription (1, 4–6). MYCN and c-MYC differ in
their expression patterns and regulation. While c-MYC is ubiquitously and highly expressed in most
rapidly proliferating cells throughout development and in adult tissues, MYCN is preferentially
expressed in neural tissues including the forebrain and hindbrain, as well as pre-B cells, cells in the
intestine, heart and kidney during embryogenesis (5, 7). Tissue-specific conditional deletions
demonstrated that c-MYC is necessary for the development and growth of specific hematopoietic
cell lineages, crypt progenitor cells in the intestine and many other types of cells where c-MYC is
expressed (8). MYCN but not c-MYC is essential during neurogenesis for the rapid expansion of
progenitor cells and the inhibition of neuronal differentiation (9). Importantly, investigations at a
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gross level indicate thatMycn can substitute for c-Myc in murine
development (10). For example, transgenic expression of Mycn
from the c-Myc locus (c-MycN/N) rescues the embryonic lethality
associated with the loss of c-Myc. Unlike c-Myc gene that is
expressed throughout lymphocyte development, Mycn is only
expressed in the precursor stage lymphocyte of development (10,
11), but Mycn can replace all c-Myc functions required for
lymphocyte development in the c-MycN/N mice (10). However,
subtle differences between c-MycN/N and normal mice were
observed, such as the observation of periodic skeletal muscle
dystrophy in some newborn c-MycN/N mice (10). This indicates a
general functional similarity between these TFs in regulating
certain lineages of murine cell growth and differentiation during
embryogenesis and late development.

As TFs, bothMYCN and c-MYC directly regulate transcription
of genes that are involved in the control of cell growth, the cell
cycle, proliferation, survival, apoptosis, pluripotency, self-renewal,
DNA replication, RNA biology, metabolism, metastasis,
angiogenesis and immune surveillance to play an oncogenic role
(5, 12). Most studies indicate that MYC regulates differential gene
transcription in the majority of cell types and model systems (4,
12–14). However, instead of regulating differential gene
transcription, it has been shown that in B cells, the high levels of
c-MYC expression results in a global increase in mRNA levels
during the mitogenic stimulation of early B cells (15). Similarly,
the expression of high levels of c-MYC in tumor cells leads to an
increase in total levels of transcripts in each cell (16). These studies
conclude that high levels of c-MYC amplify transcriptional output
(15, 16). Further studies and analyses of existing data reveal that
MYC dependent changes in global RNA levels may occur only
when the cells are cultured under special conditions and/or after
prolonged MYC activation. It is possible that a feedback effect
from MYC-induced physiological and metabolic changes
contributes to a global RNA amplification (4, 12, 13). MYCN
interacts with Transcription Factor IIIC complex (TFIIIC), DNA
topoisomerase II alpha (TOP2A) and the cohesion complex
component RAD21, but in S phase, Aurora-A kinase displaces
these interactors from MYCN to block MYCN-dependent
promoter release of RNA polymerase II to suppress MYCN-
dependent gene transcription (17). MYCN recruits BRCA1 to
promoter-proximal regions, stabilizing mRNA de-capping
complexes. This enables MYCN to suppress R-loop formation in
promoter-proximal regions and prevent MYCN-dependent
accumulation of stalled RNAPII, thus, enhancing MYCN
transcriptional activation (18). The discovery of this non-
canonical transcriptional function of MYCN may explain the
discrepancy between universal binding and the small effects on
relative and/or absolute mRNA levels of most genes that are
bound by the MYC proteins (4, 18).

This review discusses MYCN genetic alterations in different
types of cancers, the structure and transcriptional function of
MYCN and the strategies used to target MYCN indirectly.

MYCN Is an Oncogenic Driver in Many
Types of Cancers
Deregulation ofMYCN occurs in both pediatric cancers and adult
cancers. MYCN amplification has been found in pediatric cancers
Frontiers in Oncology | www.frontiersin.org 2
including neuroblastoma, rhabdomyosarcoma, medulloblastoma,
Wilms tumor and retinoblastoma. Amplification of the MYCN
oncogene is present in 18–20% of all neuroblastomas (40% of
high-risk neuroblastomas) and is an adverse prognostic factor
(19–23). In alveolar rhabdomyosarcoma, amplification of MYCN
is present in 25% of cases and overexpression ofMYCN occurs in
55% of cases (24, 25). Amplification of MYCN is observed in 5–
10% of medulloblastomas and is associated with poor prognosis
(26–28). Copy number gains that include the MYCN locus are
detected in 12.7% ofWilms tumors and 30.4% of diffuse anaplastic
Wilms tumors, andMYCN gain is associated with poorer relapse-
free and overall survival (29). In retinoblastomas, MYCN
amplification is present in <5% of patients, and MYCN gain is
associated with poor prognosis (30, 31). In adult cancers,
amplification of MYCN is present in 40% of neuroendocrine
prostate cancers and 5% of prostate adenocarcinomas (32), 15%-
20% of small-cell lung cancers (33, 34) and 17.5% of basal cell
carcinomas (35). Overexpression of MYCN is present in a subset
of T-cell acute lymphoblastic leukemias (36), glioblastoma
multiforme (37, 38) and breast cancer (39). Importantly, the
amplification or overexpression of MYCN in the majority of
these adult cancers is found to be associated with a poor prognosis.

To investigate whetherMYCN functions as an oncogenic driver,
genetically engineeredmousemodels (GEMM) have been generated
to expressMYCN in specific cell lineages. The transgenic expression
ofMYCN in the neural crest lineage of mice or zebrafish alone, or in
combination with LMO1 or activated ALK gives rise to
neuroblastomas (40–44). The transgenic expression of MYCN in
murine luminal prostate epithelial cells in combination with Pten
knockout results in a GEMM model with neuroendocrine prostate
cancer formation (45). Mice transplanted with bone marrow
expressing MYCN developed clonal and transplantable acute
myeloid leukemias (46). When neural stem cells (NSCs) from
different brain regions are transduced with a protein stabilizing
MYCN(T58A) mutation and transplanted into their homotypic
regions they give rise to distinct tumors. The transplantation of
forbrain MYCN(T58A) NSCs gives rise to gliomas (47), while
cerebellum and brain stem MYCN(T58A) NSCs transplants give
rise to medulloblastoma and primitive neuroectodermal tumors
(47). The enforced expression of MYCN in primary cerebellar
granule neuron precursors isolated from Ink4c(-/-), p53(-/-) mice
also results in medulloblastomas when transplanted into the brains
of immunocompromised mice (48). These studies demonstrate that
MYCN functions as an oncogene and is capable of driving tumor
formation in cells with different lineage specific genetic programs to
give rise to distinct tumor types. Thus, the inhibition ofMYCN will
be an important anti-tumor therapeutic strategy in many different
human cancers with aberrantly over-expressed MYCN.

MYCN Structure: Critical Regions That
Mediate Protein-Protein Interaction and
Transcriptional Activity
MYCN is composed of 464 amino acids (AA) with several
functional domains (Figure 1) derived from sequence homology
to known c-MYC protein functional domains (NCBI reference
number of MYCN, NP_001280157.1 verse c-MYC, CAA25015.2)
and mutagenesis analyses (1, 6). The N-terminal transcriptional
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regulation domain contains two highly conserved regions known
as Myc Homology Box (MB), MBI and MBII. The central region
contains 3 more MBs with a nuclear localization signal that
overlaps MBIV. The C-terminal basic region (BR) is involved in
DNA binding while the HLH-LZ heterodimerizes with Max (1).
Many critical proteins regulating various biological processes do
not have unique structures, but contain intrinsically disordered
regions (IDRs), making this structural region extremely dynamic
(49, 50). IDRs are involved in modulation of the specificity or
affinity of protein binding interactions (49, 50). The IDRs in a
protein can undergo characteristic disorder-to-order transitions
upon interactions with specific binding partners and/or through
post-translational modifications (49). Using a protein intrinsic
disorder region prediction tool PONDR (http://www.pondr.com/)
(51) to analyze MYCN, we find that the majority of MYCN
residues tend to form broad disordered regions (Figure 1), which
indicates that MYCN has the potential to bind to many different
partners. Moreover, the intrinsically disordered character of
MYCN suggests that using it as a direct drug target would be
challenging due to its structural flexibility.

Critical regions within MYC/MYCN proteins have been
implicated in regulating protein stability. Residues Ser62 (S62)
and Thr58 (T58) within MBI are critical phosphorylation sites for
MYC/MYCN protein stability during cell cycle progression. As
Frontiers in Oncology | www.frontiersin.org 3
growth factors stimulate cell progression through the cell cycle,
protein stability is tightly regulated. Phosphorylation at S62 of
MYCN protein is mediated via CDK1, which stabilizes MYCN
and primes T58 for phosphorylation by GSK3b. GSK3b is repressed
by phosphatidylinositol 3-kinase (PI3K) and AKT kinase signaling
(52–57). Dephosphorylation of MYC-S62 via protein phosphatase
2A (PP2A) enables E3 ligase FBXW7 binding to phosphorylated
MYC-T58, targeting it for ubiquitination and subsequent
degradation by the proteasome (58, 59). The regulation of MYCN
protein stability is cell-cycle dependent. In normal neuronal
progenitors, CDK1 phosphorylates MYCN protein at S62 in G1-
phase. As cells enter M-phase, signaling by growth factors declines
leading to activation of GSK3b enabling phosphorylation of MYCN
(T58) which leads to its degradation (52). Two additional ubiquitin
ligases, TRIM32 and HUWE1, are involved in regulation of MYCN
degradation. During late M-phase, the ubiquitin ligase TRIM32 is
bound to the mitotic spindle pole apparatus in conjunction with
MYCN, contributing to its ubiquitination and degradation (60).
HUWE1, a HECT-domain E3 ubiquitin ligase, binds to MYCN
and primes it for MYCN-K48-linked polyubiquitination and
proteasomal-mediated degradation (61, 62).

MYCN protein degradation is antagonized through interactions
with different proteins at distinct MYCN regions (Figure 1). Aurora
A kinase (AURKA) associates with the mitotic spindle poles and
FIGURE 1 | Structure and functional domains of MYCN. Three predictors of the intrinsically disordered region prediction tool PONDR are used to identify intrinsically
disordered regions of MYCN (top section). Functional domains of MYCN defined by comparing c-MYC and mutagenesis assay (middle section). Examples of known
MYCN protein partners and the regions of MYCN that contributed to the interaction (bottom section). Notes: Color boxes on the MYCN protein diagram: brown box,
Myc homology Box (MB) I-IV; yellow box, Basic Region (BR); green box, Helix-Loop-Helix-Leucine Zipper (HLH-LZ); red box, nuclear localization signal (NLS). Gray
shade box on the disorder score graph and MYCN protein diagram, regions of MYCN with relatively low disorder score. AA: amino acid.
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interacts with the N-terminus of MYCN in cells over-expressing
MYCN and in this way interferes with FBXW7-mediated
degradation leading to MYCN stabilization (17, 56, 63). The
ubiquitin-specific protease HAUSP binds to a partially
overlapping region of MBIII and MBIV in MYCN, but not c-
MYC (Figure 1), to specifically deubiquitinate MYCN, which
results in MYCN protein stabilization (64). The proliferation-
associated 2AG4 protein (PA2G4) directly binds to and stabilizes
MYCN by protecting it from ubiquitin-mediated proteasomal
degradation (65). Co-immunoprecipitation results show that a
MYCN deletion mutant (AA82–254) binds strongly to PA2G4,
and further studies show that a 14 AA MYCN oligopeptide
(AA246–259) sequence contributes to this protein-protein
interaction (65). Additionally, MYCN has been found to be
methylated at R160, R238 and R242; protein arginine
methyltransferase 5 (PRMT5) physically interacts with MYCN
and increases MYCN protein stability, possibly by methylating
MYCN at R242 (66). The identification of different signaling
pathways and proteins regulating MYCN protein stability
provides additional modes for indirect targeting of MYCN.

TFs, co-repressors and co-activators interact with different
regions of MYCN (Figure 1), enabling MYCN to activate or
repress gene transcription. MYC family proteins directly interact
with MAX through HLH-LZ to form a heterodimer and activate
transcription by binding to E-box elements (1, 6). Activation
involves the recruitment of multiple coactivators and protein
complexes to E-box elements. The TIP60 acetyltransferase
complex and the histone acetyltransferase GCN5 are bound to
MYC indirectly through the TRRAP adaptor protein that
interacts with MBII of the MYC protein (67–70). Two other
proteins, TIP48 and TIP49, found in the TIP60 complex, are
involved in chromatin remodeling and bind to the N-terminus of
MYCN (67). Recent studies show that target gene recognition by
c-MYC and MYCN depends on its interaction with the histone
H3-K4-methyl-associated protein WDR5 and their interaction is
mediated through the MBIIIb region of c-MYC (71, 72). MYCN
interacts with the H3K9me3/me2 demethylase KDM4B through
the region between AA96-300 and when overexpressed MYCN
recruits KDM4B to E-box regions to decrease H3K9me3 levels
(73). Thus, MYCN may also activate gene transcription by
relieving transcriptional repression. Moreover, MYCN AA1-
137 also interacts with TFIIIC and RAD21 to regulate the
pause release of RNA Polymerase II (17). BRCA1 interacts
with MYCN and enables MYCN to suppress R-loop formation
in promoter-proximal regions, thus enhancing transcription
(18). When MYCN functions as a transcriptional repressor, it
interacts with SP1 and MIZ1 to repress gene transcription (74–
77). The region between MYCN AA82-136 that includes the
MBII domain specifically interacts with SP1 in pull down
experiments, whereas MYCN AA400-464 that includes the
HLH-LZ domain interacts with MIZ1 (74). These MYCN/SP1/
MIZ1 interactions repress gene transcription by recruiting
HDAC1 (74). MYCN, via MBIII, associates with EZH2, a
methyltransferase and member of the polycomb repressor
complex 2, to suppress gene transcription (78). Similarly,
MYCN physically binds lysine-specific histone demethylase 1A
Frontiers in Oncology | www.frontiersin.org 4
(KDM1A/LSD1) through MBIII to repress gene transcription
(79). The above studies show how MYCN interacts with the
epigenome to regulate gene transcription.

Targeting MYCN Transcription
Many mechanisms have been identified to be involved in the
transcriptional regulation of MYCN (Figure 2). Soon after the
discovery of theMYCN gene, it was found that retinoic acid (RA)
treatment of NB cells resulted in a down-regulation of
MYCN expression at the mRNA level, and this preceded cell
cycle arrest and implementation of a differentiation program
(80). This indicated that MYCN down-regulation, at least
partially, contributes to the biological effect of RA on NB cells.
A classic RA response element (RARE) was not implicated in RA
regulation of MYCN transcription, as studies showed that RA
exerts its effects across multiple regulatory regions within the
MYCN promoter, distally or even on different chromosomes
(81). Retinoid repression of MYCN transcription was a major
motivation for the inclusion of 13 cis-retinoic acid during the
consolidation phase of treatment for high-risk neuroblastomas
(82). Retinoid regulation of MYCN represents one of the first
strategies developed to target MYCN gene transcription and
provides an example of indirect targeting of MYCN.

Gene transcription is mediated by cis-regulatory elements such
as enhancers and promoters. Enhancers are distal regulatory
elements in the genome that play an important role in driving
cell-type-specific gene expression and are frequently mis-regulated
in cancer (83, 84). Super-enhancers (SEs) are composed of a
cluster of enhancers that are central to the maintenance of cell
identity in normal development and disease (85). SEs were found
to be associated with various oncogenic molecules including both
c-MYC and MYCN; this makes them putative therapeutic targets
for cancer therapy (86–89). Histone deacetylases (HDACs) have
an important function in regulating both DNA packaging in
chromatin and gene transcription. Treatment of NB cells with
HDAC inhibitors such as MS-275, BL1521 or SAHA resulted in a
decrease in MYCN mRNA levels accompanied by cell apoptosis
(90–92). Although not directly demonstrated, recent studies have
shown that HDAC inhibition results in enhancer remodeling and
suppression of oncogenic SEs possibly through disruption of
normal chromatin-looping and TFs depletion on the SEs (93,
94). This may be involved in the HDAC inhibitor mediated
repression of MYCN transcription (Figure 2).

MYC-driven tumors are especially sensitive to inhibition of BET
bromodomain containing proteins (BRD1–4) (95). BRD4 belongs
to family of proteins that contain variable numbers of
bromodomains and a central ET domain and function as
chromatin “readers” by binding to acetylated lysine residues
(Figure 2). BRD4 has also been implicated in regulating RNA-
PolII transcriptional activity (96). BET inhibitors downregulate c-
MYC transcription, suppress MYC-dependent target genes and
inhibit myeloma cell proliferation (95). An unbiased screen of 673
genetically characterized tumor-derived cell lines shows that
neuroblastoma cell lines with MYCN amplification are more
sensitive to JQ1 treatment compared to MYCN-wild-type tumors.
BRD4 knock-down phenocopied these effects, indicating that BRD4
February 2021 | Volume 10 | Article 623679
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functions as a transcriptional regulator ofMYCN. Importantly, BET
bromodomain-mediated inhibition of MYCN suppresses
neuroblastoma growth both in vitro and in vivo (97). Similarly,
OTX015 (Oncoethix), a small molecule that prevents BRD2/3/4
from binding to acetylated histones, also represses MYCN
transcription. This study showed that BRD4 binds to super-
enhancers (SEs) and MYCN target genes, while OTX015
treatment disrupts BRD4 binding and transcription of MYCN as
well as its target genes (98), which is consistent with the finding that
bromodomain inhibitor treatment selectively inhibits oncogenes by
Frontiers in Oncology | www.frontiersin.org 5
disrupting their SEs (99). Importantly, bromodomain and extra-
terminal domain inhibitor (BETi), GSK525762, is under phase I
clinical trial for solid tumors including NB (100). In addition to
MYC, many tumor-associated genes such as RUNX1, FOSL2, BCL3
and ID2 are driven by SEs in diverse tumor types (99). However, SEs
drive many cell identity genes essential for normal cell development,
such as Oct4, Sox2 and Nanog in embryonic stem cells (101), so as
with many cytotoxic agents a therapeutic window is needed when
using BETi for the treatment of cancer patients to minimize side
effects. Recent studies showed that the combination of a
FIGURE 2 | Transcriptional regulation of MYCN. The schematic illustrates the presumed looping between the super-enhancer (SE) and the promoter of MYCN
gene. In cancer cells, MYCN is driven by SEs that are marked by stretches of acetylated lysine 27 of histone 3 (H3K27Ac). BRD4 is a chromatin ‘reader’ that
binds to acetylated lysine residues (AcK) and activates MYCN transcription. CDK7 is a TFIIH subunit that phosphorylates the carboxy-terminal domain of RNA
Pol II (RNAPII) to initiate MYCN gene transcription. CDK9 is a pTEFb subunit that phosphorylates the carboxy-terminal domain of RNAPII to regulate MYCN
transcriptional elongation. The enrichment or activation of these components of the transcriptional machinery in cancer cells results in aberrantly elevated
transcription of MYCN (top panel). The treatment of cells with HDAC inhibitors (HDACi) inactivates MYCN SEs possibly through disrupting normal looping and
depleting transcription factors (TFs) that bind to the SEs; BRD4 inhibitors (BRD4i) impact the ‘reader’ function of BRD4 to inactivate MYCN gene transcription;
CDK7 inhibitors (CDK7i) and CDK9 inhibitors (CDK9i) treatment impedes the phosphorylation of RNAPII to inhibit MYCN gene transcription initiation and
elongation; RA treatment inactivates MYCN transcription in a RA response element independent manner (bottom panel). Notes: circled ‘Ac’ represents
H3K27Ac; circled ‘p’ represents phosphate at the RNAPII tail.
February 2021 | Volume 10 | Article 623679
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bromodomain inhibitor with a CDK7 inhibitor, an AURKA
inhibitor or an HDAC inhibitor is significantly more effective in
suppressing MYCN-driven NB tumor growth than either drug
alone (88, 102, 103). This highlights the importance of
combinatorial therapeutic approaches for cancer treatment.

To regulate gene transcription, the RNA polymerase II
(RNAPII) transcription initiation apparatus needs to be recruited
to promoters by specific DNA binding transcription factors.
Promoter-proximal pausing of RNAPII is a post-initiation
regulatory event, and c-Myc plays a key role in release of Pol II at
many actively transcribed genes in ES cells (104). Cyclin-dependent
kinases (CDKs) are important in regulating the transcription cycle
of RNAPII. The TFIIH subunit CDK7 and the pTEFb subunit
CDK9 phosphorylate the carboxy-terminal domain of RNAPII,
facilitating efficient transcriptional initiation, pause release and
elongation. This suggests that the inhibition of these CDKs would
be expected to block MYC-driven transcriptional amplification.
Indeed, THZ1, a covalent inhibitor of CDK7, was found to
selectively target MYCN-amplified NB cells, leading to global
repression of MYCN-dependent transcriptional amplification and
reductions in expression of SE-associated oncogenic drivers
including MYCN itself and suppression of NB tumor xenograft
growth (87). CYC065, an inhibitor of CDK9 and CDK2, was found
to selectively target MYCN-amplified NB cells by leading to a
selective loss of nascent MYCN transcription (105). These studies
indicate that the inhibition of CDK7 or CDK9 can be exploited to
disrupt aberrantMYCN-driven transcription and to repressMYCN
gene transcription as a therapeutic for MYCN-driven cancers
(Figure 2).

DNA G-quadruplexes (G4s) are noncanonical DNA structures
that are formed by guanine-rich DNA sequences. They often occur
in the promoter regions of oncogenes and regulate their expression
(106–108). An early study identified a specific G4 structure formed
in the c-MYC promoter region. Although a cationic porphyrin
TmPyP4, which binds non-selectively to G4s in vitro was able to
inhibit the transcription of c-MYC (108), a recent study identified
a small molecule DC-34 that more specifically binds to the c-MYC
G4 in vitro. In a G4-dependent mechanism, DC-34 plays a more
potent and selective role in downregulating MYC gene
transcription compared to other G4 containing oncogenes in
leukemia cells. Moreover, the treatment of cancer cells with DC-
34 results in a G0-G1 arrest and a reduction of cell viability (106).
Although not yet reported, the identification and targeting of G4s
within the MYCN promoter and regulatory regions would be
another approach to inhibit MYCN gene transcription.

Many TFs have been validated as oncogenes in human
cancers and their dysregulated transcriptional programs result
in a high dependency of cancer cells on these gene expression
regulators (109). Importantly, RA, inhibitors of HDACs, BET
bromodomain containing proteins, CDK7, CDK9 and small
molecules that bind to G4s have been demonstrated to be
effective for the treatment of many types of cancers by
targeting their dysregulated transcriptional programs (109,
110). Thus, targeting MYCN at branch points involved in its
oncogenic regulation of transcription (Figure 2) is an important
therapeutic approach for MYCN-driven cancers.
Frontiers in Oncology | www.frontiersin.org 6
Targeting MYCN Protein Stability
MYCN is a short-lived protein whose stability is tightly
regulated by different signaling pathways that target it for
ubiquitin-mediated degradation by the proteasome (52, 55,
111) (Figure 3). A major signaling pathway affecting MYCN
protein stability occurs upon activation of PI3K. PI3K activates
Akt which phosphorylates GSK3ß, suppressing GSK3ß kinase
activity. This results in decreased phosphorylation of MYCN-
T58 which is critical for targeted degradation by the proteasome
(55) (Figure 3). As expected, inhibitors of PI3K destabilize the
MYCN protein and suppress tumor growth in the TH-MYCN
GEMM NB model (53, 112). In NB cells, AURKA interacts with
MYCN by interfering with the FBXW7 subunit of the ubiquitin
protein ligase complex to impede MYCN ubiquitination and
subsequent degradation (56) (Figure 3). Treatment with
AURKA inhibitors decreases MYCN protein levels resulting in
suppression of NB tumor growth, making AURKA a suitable
target for MYCN-driven cancers (32, 113–117). Due to the
promising preclinical results, the oral AURKA inhibitor
MLN8237 is under clinical evaluation for multiple cancers
including relapsed NB (118). PLK1 is a serine/threonine
kinase formally known as the polo-like kinase. The PLK1
inhibitor BI 2356 exhibits strong antitumor activity in NB
cells in vitro and in vivo (119). PLK1 does not directly bind to
the MYCN protein. Rather, it increases MYCN protein stability
by destabilizing the FBXW7 ubiquitin ligase complex to
counteract FBXW7-mediated degradation of MYCN (120)
(Figure 3). Importantly, MYCN-amplified tumor cells in
neuroblastoma and small cell lung cancer are more sensitive
to treatment with PLK1 inhibitors than tumors with normal
MYCN copy number, indicating that PLK1 inhibitors are
potential therapeutics for MYCN-overexpressing cancers (120).

Components of the proteasome targeting and degrading system
contribute to MYCN protein regulation. The ubiquitin-specific
peptidase HAUSP (also known as USP7) binds to and
deubiquitinates MYCN leading to its stabilization (64) (Figure 3).
HAUSP is highly expressed in tumors from NB patients with poor
prognoses. Silencing of HAUSP expression in NB cells destabilizes
MYCN and results in an inhibition of MYCN mediated functions.
Importantly, the HAUSP inhibitor P22077 markedly suppresses the
growth of MYCN-amplified human neuroblastoma cell lines in
xenograft mouse models (64).

Although first identified as an RNA binding protein, the
proliferation associated 2G4 protein, PA2G4, directly binds
and stabilizes MYCN by protecting MYCN from proteasomal
degradation (65). When PA2G4 is silenced in NB cells using
siRNAs or a small molecule inhibitor WS6, MYCN protein levels
are markedly reduced (65). WS6 treatment of NB cell lines
completely blocked PA2G4-MYCN protein binding, and this
competitive chemical inhibition results in a delay of
tumorigenesis in the TH-MYCN NB mouse model (65).

Protein methylation is a post-translational modification
recently identified to regulate protein stability. The protein
arginine methyltransferase 5 (PRMT5) interacts with both MYC
and MYCN proteins (66, 121). Silencing of PRMT5 in MYCN‐
overexpressing NB cells or MYC-driven medulloblastoma cells
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leads to a decrease in MYCN and MYC protein levels and cell
growth inhibition (66, 121). Tandem mass spectrometry analysis
of immunoprecipitated MYCN protein in NB cells reveals several
potential sites of arginine dimethylation on MYCN protein,
suggesting that MYCN may be methylated by PRMT5 as a
protection from proteasomal degradation (66). Treatment with
the PRMT5 inhibitor EPZ015666 results in a decrease of MYC
protein levels and medulloblastoma cell growth, which suggests
that PRMT5 inhibitors are potential therapeutics for MYC- and
MYCN-driven cancers.

Targeting MYCN Cofactors/Coregulators
We have described critical regions that are needed for MYCN
interactions with its cofactors/coregulators in the previous section
and in Figure 1. As a TF, MYCN cooperates with other TFs to
bind to DNA and recruit cofactors/coregulators to activate or
repress gene transcription, making these protein partners
potential targets to disrupt the transcriptional activity of MYCN
(Figure 4). The enzymatic activity of many co-regulators makes
them attractive drug targets.

The first identified mechanism through which MYCN
functions as a TF is via heterodimerization with MAX. MYC-
MAX complexes recognize E-box DNA sequences, and binding
of the heterodimer to gene promoters activates transcription
of downstream MYCN-related genes. Small-molecule inhibitors
Frontiers in Oncology | www.frontiersin.org 7
of MYC-MAX dimerization illustrate the importance of
dimerization to MYC function (Figure 4). For instance, the
peptidomimetic compound IIA4B20 exerts a strong inhibitory
effect on MYC-MAX dimerization and DNA binding to
functionally inhibit MYC-induced fibroblast transformation
(122). The compound 10058-F4 binds to AA402-409 of MYC,
which disrupts MYC-MAX dimerization of either c-MYC or
MYCN. The treatment ofMYCN-amplified NB cells with 10058-
F4 leads to neural differentiation (123–125). Another known
inhibitor of MYC-MAX dimerization is OmoMYC, a c-MYC
derived mutant bHLH-LZ domain protein generated by
substituting four amino acids within the c-MYC leucine zipper.
When overexpressed, OmoMYC competes with MAX for
binding to either c-MYC or MYCN and prevents MYC/MYCN
proteins from binding to E-boxes and activating transcription
(126, 127). The recently discovered MYC inhibitor 361
(MYCi361) binds to the HLH region of the MYC protein
(AA366-378), disrupts MYC/MAX heterodimerization,
enhances degradation of both MYC and MYCN, and
suppresses MYC-dependent tumor cell growth in vitro and in
vivo (128). The asymmetric polycyclic lactam, KI-MS2-008
stabilizes MAX homodimers, resulting in decreased MYC
protein levels (129). Treatment of cancer cells with
KI-MS2-008 suppresses MYC-dependent tumor growth in vivo.
This is another example whereby altering the ability of MAX
FIGURE 3 | The regulation of MYCN protein stability. CDK1 phosphorylates MYCN at serine 62 (S62) to stabilize MYCN and prime threonine 58 (T58) for
phosphorylation via GSK3b. AKT phosphorylates GSK3ß inactivating its kinase. After dephosphorylation of S62 possibly through PIN1/PP2A, MYCN is poly-
ubiquitinated by the ubiquitin ligase FBXW7 and undergoes proteolytic degradation via the proteasome. AURKA binds to and stabilizes phosphorylated and poly-
ubiquitinated MYCN to protect MYCN from degradation. PLK1 destabilizes FBXW7 to counteract FBXW7-mediated degradation of MYCN. The ubiquitin-specific
protease HAUSP deubiquitinates MYCN to stabilize it. Thus, the treatment of cells with PI3K, AURKA, PLK1 or HAUSP inhibitors (PI3Ki, AURKAi, PLKi or HAUSPi)
leads MYCN proteasomal degradation. Notes: circled ‘p’ represents phosphate; circled ‘Ub’ represents ubiquitin.
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to dimerize with MYC functionally targets MYC (129). It will
be interesting to evaluate whether either of these approaches
affects MAX/MYCN interactions to inhibit the growth of
MYCN-driven cancers.

MYCN has been shown to recruit several druggable cofactors
with methylase and demethylase activity to regulate gene
transcription, and cofactor inhibition provides a way to
indirectly target MYCN (Figure 4). The histone H3K4
methyltransferase complex subunit WDR5 forms a protein
complex with MYCN at the MDM2 promoter that results in
histone H3K4 trimethylation and activation of MDM2
transcription (72). Treatment of NB cells with the WDR5
antagonist OICR9429 reduces MYCN/WDR5 complex
formation and the expression of MYCN target genes, resulting
in the inhibition of cell growth (72). When MYCN is
overexpressed, it interacts with the H3K9me3/me2 demethylase
KDM4B and recruits KDM4B to E-box containing regions to
decrease H3K9me3 levels (73). Functional studies demonstrate
that KDM4B acts as a MYCN co-activator to regulate MYCN
signature genes. Knockdown of KDM4B decreases NB cell
proliferation in vitro and NB xenograft growth in vivo, which
provides proof-of-concept for the potential therapeutic efficacy
of inhibiting KDM4B to target oncogenic MYCN signaling
in cancers (73). MYCN has also been found to recruit
co-repressors to suppress gene transcription. MYCN associates
with EZH2, a methyltransferase and a member of the polycomb
repressor complex 2 (PRC2) to repress the NB tumor suppressor
Frontiers in Oncology | www.frontiersin.org 8
gene CLU through a bivalent modification of the chromatin at
the CLU promoter (78). The prevalence of this activity has not
been evaluated. In MYCN-amplified tumors, MYCN increases
levels of EZH2 and components of the PRC2 complex leading to
increased activity of PRC2-mediated transcriptional repression
primarily of differentiation associated genes. Genomic or
pharmacologic inhibition of EZH2 suppresses NB growth in
vitro and in vivo (130–132). MYCN also binds the lysine-specific
histone demethylase 1A (KDM1A/LSD1) to repress gene
transcription. LSD1 co-localizes with MYCN on promoter
regions of CLU and CDKN1A, and the treatment with an
LSD1 inhibitor restores the expression of these genes and
suppresses NB cell growth (79). c-MYC interacts with histone
methyltransferase EHMT2 to repress gene transcription, and
knockdown of EHMT2 results in decreased tumor volume (133).
EHMT2 is essential in NB cells and inhibition of EHMT2 using
BIX-01294 decreased proliferation of NB cells and induced
apoptosis (132, 134).

Acetylation and deacetylation of histones are key regulatory
features of gene transcription and are potential targets that
regulate MYCN transcriptional activity. MYCN recruits many
HDACs (HDAC1, HDAC2 and HDAC5) to repress gene
transcription (74, 135, 136). The histone acetyltransferase,
GCN5, binds to MYC and MYCN proteins (67–69). In vitro
luciferase assays show that MYC recruits GCN5 to activate gene
transcription (70); however, few GCN5 specific inhibitors are
available and have limited testing in NB cells (137).
FIGURE 4 | Targeting MYCN transcriptional activity. MYCN heterodimerizes with MAX to bind to the cis-genomic elements in DNA. MYCN interacts with cofactors
WDR5 and KDM4B to activate gene transcription, while interacts with LSD1, EZH2 and HADCs to repress gene transcription through affecting chromatin status.
Inhibitors such as 10058-F4, OmoMYC and MYCi361 disrupt the dimerization between MYCN and MAX to inhibit the DNA binding of MYCN. The treatment of cells
with MYCN cofactor inhibitors (WDR5i, KDM4Bi, LSD1i, EZH2i or HDACi) inactivates MYCN transcriptional activity through regional epigenetic modification and/or
opening or closing chromatin.
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Targeting MYCN Downstream Targets
As a TF, MYCN regulates many target genes but the critical ones
that mediate MYCN tumor initiating functions are not clear.
One of the MYCN downstream targets that is under clinical
evaluation is ornithine decarboxylase 1 (ODC1), the rate-limiting
enzyme involved in polyamine synthesis (138, 139). In
neuroblastoma, the expression levels of MYCN are strongly
correlated with those of ODC1, and high levels of ODC1 driven
by MYCN amplification and overexpression are strongly
associated with poor clinical outcome in NB patients (138).
Treatment of TH-MYCN transgenic mice with the ODC
inhibitor a-difluoromethylornithine (DFMO) prevents
oncogenesis in hemizygous mice, while delaying tumor
development in homozygous mice. Transient Odc ablation in
hemizygous TH-MYCN mice permanently prevented tumor
onset. This work indicates that ODC mediates an oncogenic
function of MYCN that is important in tumor initiation and
demonstrates the therapeutic potential of polyamine depletion
strategies in NB (138, 139). A recent Phase II study of single
agent DFMO as maintenance therapy in NB showed increased
survival compared to historical controls for high-risk NB
patients (140, 141).

The FACT (facilitates chromatin transcription) complex is
another potential MYCN downstream target that is druggable.
FACT facilitates transcriptional elongation on chromatin
templates by binding and displacing the H2A/H2B dimer from
nucleosomes, a process that is believed to be required for RNA
polymerase II to pass through a nucleosomal barrier (142). MYC
is confirmed to interact with a component of the FACT
complex, the transcription elongation factor SSRP1 (4). SiRNA
knockdown experiments demonstrate that expression of
FACT and MYCN is controlled in a forward feedback loop,
which drives MYCN transcription and protein stability (143).
Inhibition of FACT using the small molecule curaxin compound
CBL0137 results in a decrease of MYCN and SSRP1 expression,
as well as a markedly reduced NB tumor initiation and
progression in the TH-MYCN mice especially when combined
with standard chemotherapy (143).

Targeting MYCN Synthetic Lethal
Approach
Synthetic dosage lethality (SDL) is a genetic interaction in which
the alteration of one gene, combined with the reduction in
function of a second gene, results in lethality (144). SDL is an
attractive therapy for cancer because inhibition of such a gene
will only induce cell death in cells carrying the specific gene
alteration. MYCN activates both proliferative and apoptotic
cellular responses. Whether it promotes a net proliferative
response is dependent on cooperating apoptotic factors such as
the antiapoptotic protein BCL2 (145, 146). It has been
demonstrated that MYCN-amplified neuroblastoma cells are
highly sensitive to BCL2 inhibitors ABT-263 (navitoclax) and
ABT-199 (venetoclax) (147). When screening for enhancers of
ABT-199 sensitivity in MYCN-amplified NB, researchers found
that the Aurora Kinase A inhibitor (alisertib) cooperates with
Frontiers in Oncology | www.frontiersin.org 9
ABT-199 to induce widespread apoptosis. This drug
combination was more effective in killing MYCN-amplified NB
cells in vitro and in vivo than either compound alone (147).
Moreover, in MYCN-amplified NB, Polo-Like Kinase 1 (PLK1)
and MYCN create a positive, feedforward activation loop
essential for maintaining their high levels of expression (120).
BCL2 antagonists have been shown to synergize with inhibitors
of PLK1, such as BI6727 or BI2356 and may be an effective drug
combination for NB over-expressing MYCN (120).

One of the mechanisms through which MYCN exerts its
tumorigenic effect in NB is to activate transcription of genes
involved in proliferation, including checkpoint kinase 1 (CHK1),
an important regulator of the G1/S and G2/M checkpoints. This
mechanism may contribute to the ability ofMYCN-amplified NB
tumors to become refractory to standard chemotherapy (148).
Conversely, tumor cells lacking DNA damage checkpoints
during tumorigenesis or during cytotoxic therapy are highly
sensitive to additional genomic instability (149). MYCN
induces replication stresses and DNA damage through
excessive replication-fork firing. MYCN-overexpressing tumors
are more sensitive to CHK1 inhibition (150, 151). Another
cell cycle related synthetic lethality protein identified in
MYCN-amplified NB is cyclin-dependent kinase 2 (CDK2)
(152). Knockdown of CDK2 or treatment with the CDK2
inhibitor roscovitine induces apoptosis in MYCN-amplified
neuroblastoma cell lines but not in those with MYCN single
copy. Thus, inhibition of CDK2 is synthetically lethal to NB cells
with overexpressed MYCN (152).

NB arising in adolescents and young adults is frequently
associated with loss of function mutations in the alpha
thalassemia X-linked (ATRX) gene (153, 154). Interestingly,
ATRX mutations and MYCN amplification have never been
observed in the same NB tumor, suggesting a potential synthetic
lethal condition (153, 154). Doxycycline-induced overexpression
ofMYCN in ATRX-mutant NB cell lines showed a marked loss of
tumor cells. Moreover, in the LSL-MYCN GEM of NB tumors
failed to develop when LSL-MYCN : Dbh-iCre NB mice were
crossed with ATRXflox mice demonstrating synthetic lethality
between mutant ATRX and high levels of MYCN (154). This is
an example of rare synthetic lethality between an inactivated
tumor suppressor and an activated oncogene. MYCN has been
shown to play an apoptotic role in cancer cells under certain
circumstances (155). Thus, it is possible that under the stress of
DNA replication, when ATRX is inactivated, high levels ofMYCN
induce an apoptotic cellular response. Therefore, ATRX targeting
may be a therapeutic approach in MYCN-amplified NB tumors.
Alternative strategies that increase MYCN protein levels may lead
to an SDL situation in ATRX-mutant NB cells. Increasing MYCN
levels may be achieved by interfering with critical components in
the MYCN protein degradation pathway, such as HUWE1.
HUWE1 ubiquitinates and directs MYCN degradation to the
proteasome (61). Knockdown of the HUWE1 gene impedes
MYCN degradation and increases MYCN protein levels in NB
cells (61). HUWE1 inhibitors such as BI8622 and BI8626 have
been generated, but not tested in this situation.
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Complementing experimental approaches to the identification
of SDL in tumor cells, a recent computational approach utilized
accumulating tumor genomic data to identify candidate SDL
networks in various cancers (156). Synthetic lethality or ‘oncogene
addiction’ offers an attractive therapeutic strategy forMYCN-driven
cancers. Both bioinformatic analysis and high throughput drug
screening can be used to identify novel-druggable synthetic lethal
genes to which MYCN expressing cells are ‘addicted’.

Prospect of Directly Targeting MYCN
Once considered undruggable, recent advances in chemistry
and chemical genomics have begun to directly target
transcription factors. Covalent reaction with their protein
targets through cysteine residues is a known mechanism for
many covalent drugs (157). A recent in vitro study that screened
a library of cysteine-reactive covalent ligands, consisting of
acrylamides and chloroacetamides, identified EN4. EN4
directly and covalently modifies the pure full-length c-MYC
protein at cystine 171 (C171) of its intrinsically disordered
region (158). In cells EN4 targets MYC interfering with MYC
transcriptional activity. This reactive C171 on c-MYC is not
conserved in MYCN. However, a similar screening approach
could be used to identify small molecules that target cysteine
residues in MYCN.

Proteolysis targeting chimeras (PROTACs) induced protein
degradation is a recently developed therapeutic strategy,
especially for undruggable targets (159). PROTACs are
composed of three chemical elements: 1) a ligand binding to a
target protein, 2) a ligand binding to E3 ubiquitin ligase, and 3) a
linker for conjugating these two ligands (159). The small
molecules 10058-F4, 7954-0035-G5, 10074-G5, JKY-2-169,
MYCi361 and MYCi975 have been shown to bind to the HLH
domain of MYC protein with some binding to MYCN protein as
well (125, 128, 160). It may be possible to use these small
molecules to develop PROTACs reagents to directly target and
degrade the MYC/MYCN proteins (Figure 5). Intrinsically
disordered region analysis of MYCN indicates that the MB II
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domain of MYCN is the most ordered region of MYCN having
less flexibility and interacts with TRRAP (Figure 1). A small
molecule or peptide screen to identify binders to the MBII region
of MYCN would be another strategy to identify components
needed to construct a MYCN PROTAC.

MiRNA are small RNA molecules that regulate their target
gene expression at the post-transcriptional level and via their
effects on the epigenetic machinery. Many miRNAs such as
miR-34a, miR-375, miR-393-5p and let-7 are found to inhibit
MYCN mRNA translation or target MYCN mRNA for
degradation to suppress tumor cell growth (161–164). With
more and more effective drug delivery systems for small
interference RNA (siRNA) and miRNA being developed (165),
directly targeting MYCN mRNA using miRNAs or siRNAs is a
another approach for the treatment of MYCN-driven tumors.
Indeed, the recent clinical findings which showed the systemic
administration of a next generation antisense targeting the
STAT3 TF decreased nuclear STAT3 levels in tumors are proof
of principle that direct mRNA targeting of a transcription factor
is feasible (166).

Targeting DNA amplification is another possible way to
directly target MYCN. The genome-editing tool CRISPR-Cas9
is able to cut DNA at a targeted location and lead to cancer cell
death if the targeted regions contain copy number gains.
Whether this is clinically translatable is unknown. Pyrrole-
imidazole (PI) polyamides when conjugated with DNA-
alkylating agents could induce sequence-specific DNA
alkylation to suppress target gene expression. A recent study
showed that aMYCN-targeting PI- polyamide, MYCN-A3, binds
to and alkylates DNA within theMYCN transcript, resulting in a
decrease in MYCN copy number, downregulation of MYCN
expression and suppression of NB growth in vitro and in
xenografts (167). This indicates that the direct targeting of
amplified MYCN at a genomic level is feasible. However, the
feasibility of developing targeting approaches in pre-clinical
models is only the first and sometimes the easiest step in the
drug development pipeline.
FIGURE 5 | PROTAC strategy to directly target MYCN. The schematic illustrates the mode of action of a proteolysis targeting chimera (PROTAC) targeting MYCN.
First of all, a bio-conjugatable analog of a MYCN binding ligand (such as modified 10058-F4 or MYCi361) will be conjugated to E3 ubiquitin ligase binding ligand
through a linker to synthesize a MYCN PROTAC. The formation of MYCN-PROTAC-E3 ubiquitin ligase complex will result in a transfer of ubiquitin (Ub) to the lysine
residues of MYCN by E2 ubiquitin-conjugating enzyme. Afterwards, the PROTAC will be released and reutilized, and the poly-ubiquitinated MYCN will undergo
proteasome degradation. Notes: circled ‘Ub’ represents ubiquitin.
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CONCLUSION

The oncogenic amplification and/or overexpression of MYC
family genes occur in most human cancers, making MYC
family oncogenes one of the most sought-after therapeutic
targets. Here we specifically reviewed multiple pharmacological
approaches to target MYCN by interfering with pathways that
MYCN uses to drive oncogenesis. Indirect inhibitors of MYCN,
such as the BET bromodomain inhibitor, the CDK7 inhibitor,
the AURKA inhibitor, the HAUSP inhibitor and the ODC
inhibitor have clearly shown benefit in suppressing MYCN-
amplified tumor growth in the preclinical studies, and a few of
these inhibitors including bromodomain inhibitor GSK525762,
AURKA inhibitor MLN8237 and ODC inhibitor DFMO are being
evaluated in the clinic for MYCN-driven cancers. Once again it is
possible that combinatorial strategies that integrate these new
approaches with standard chemo- and immunotherapy will lead
to improved tumor control with less toxicity for patients.
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