
Frontiers in Oncology | www.frontiersin.org

Edited by:
Yusuke Suenaga,

Chiba Cancer Center, Japan

Reviewed by:
Eishu Hirata,

Kanazawa University, Japan
Sabina Quader,

Innovation Centre of NanoMedicine
(iCONM), Japan

*Correspondence:
Fredrik J. Swartling

fredrik.swartling@igp.uu.se

Specialty section:
This article was submitted to

Molecular and Cellular Oncology,
a section of the journal
Frontiers in Oncology

Received: 06 November 2020
Accepted: 09 December 2020
Published: 28 January 2021

Citation:
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Misregulation of MYC genes, causing MYC overexpression or protein stabilization, is
frequently found in malignant brain tumors highlighting their important roles as oncogenes.
Brain tumors in children are the most lethal of all pediatric malignancies and the most
common malignant primary adult brain tumor, glioblastoma, is still practically incurable.
MYCN is one of three MYC family members and is crucial for normal brain development. It
is associated with poor prognosis in many malignant pediatric brain tumor types and is
focally amplified in specific adult brain tumors. Targeting MYCN has proved to be
challenging due to its undruggable nature as a transcription factor and for its
importance in regulating developmental programs also in healthy cells. In this review,
we will discuss efforts made to circumvent the difficulty of targeting MYCN specifically by
using direct or indirect measures to treat MYCN-driven brain tumors. We will further
consider the mechanism of action of these measures and suggest which molecularly
defined brain tumor patients that might benefit from MYCN-directed precision therapies.
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INTRODUCTION

The development of massive sequencing efforts and molecular profiling of malignant brain cancer
biopsies from patients and the strive to characterize them better has transformed the diagnosis of
these tumors (1–5). The augmented conception that malignant brain tumors could no longer be
defined as a rather small selection of histologically defined entities but in fact comprise over a
hundred different molecular subgroups, suggest it is time for a change in how treatment could be
more specialized and tailored. The generation of more clinically relevant models recapitulating such
subgroups, including MYCN-driven brain cancers have helped improved our understanding how
these biologically distinct tumors can be efficiently targeted. Recent single-cell sequencing
technologies can help to further recognize the heterogeneity of the brain cancer (6, 7).
Altogether, this can improve therapies, risk-stratification schemes and reduce recurrences, which
are usually fatal for these types of tumors.

Here, we will describe the prevalence of MYCN alterations in malignant brain cancer in children
and adults. We will also portray current treatment regimens and patient outcomes and reflect on
how targeted treatments of MYCN would improve future therapies for the most common and
aggressive types of brain tumors. In order to develop such targeted strategies, we must first define
what we have learned from the biological properties and regulation of MYCN in normal and
malignant cells. We will specifically address what molecular information we can use from
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appropriate cell systems and animal models of brain cancer in
order to develop better MYCN-targeted treatments.

Brain cancer as compared to other tumors outside of the
central nervous system (CNS) present an obvious hallmark. They
reside in a partially protected compartment that implicates
difficulties and complications concerning drug delivery and
penetrance over the blood-brain barrier (BBB). The difference
in childhood and adult tumors is still evident as well as the fact
that treatment can affect normal brain development and can
cause severe long-term side effects. The translational transfer of
basic molecular findings from the bench into reliable, tailored
drugs for these patients to the bed-side is thus not always
straight-forward and requires careful selection and testing.
DIAGNOSIS AND MOLECULAR
PROFILING OF BRAIN TUMORS WITH
MYC FAMILY ACTIVATION

Brain and other CNS tumors are the most common solid tumors
in children and the most common cause of pediatric cancer
death. Gliomas are the most common brain tumors in children,
with the majority being low-grade gliomas (LGGs). The most
frequently diagnosed single histological type of tumor is pilocytic
astrocytoma, which accounts for 18% of primary brain tumors in
children ages 0–14 years (8). These tumors are clinically classified
as WHO grade I and are almost always associated with single
genetic alterations in the RAS/MAPK pathway (9, 10).

Meningiomas, pituitary tumors, and malignant gliomas are
among the most common primary adult brain tumors (11)
Primary brain tumor incidence is seven to eight times higher
in adults as compared to children in the United States (8). Here,
non-malignant brain tumors are overall more than twice as
common as malignant brain tumors. This review will focus on
the most common types of malignant primary brain tumors in
children and on primarily malignant gliomas in adults
(Figure 1).

High-Grade Gliomas in Children
Pediatric high-grade gliomas (pHGGs) account for approximately
17% of all pediatric CNS tumors (8). pHGGs are a histologically
heterogeneous group of tumors with the most frequent types being
anaplastic astrocytoma (WHO grade III) and glioblastoma (GBM)
(WHO grade IV). The outcome for pHGGs as a whole is poor with
5-year survival rate of 20% (12). In general, HGGs in children are
biologically distinct from their adult counterparts. Molecular
profiling of large cohorts of pHGG patients resulted in discovery
of several genetic and epigenetic subtypes (13). Important molecular
features of pHGGs include recurrent mutations in genes encoding
the histone variants H3.3 and H3.1 with the mutations K27M or
G34R/V defining distinct epigenetic subgroups. The last update
(2016) of the WHO classification of CNS tumors recognizes
established molecular variants of HGG including IDH-wildtype
and -mutant GBM, as well as H3.3/H3.1 K27-mutant diffuse
midline glioma, which were formerly known as diffuse intrinsic
pontine glioma (DIPG). The latter group is associated with the most
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dismal outcome with less than 10% of patients surviving beyond
2 years (14). The H3.3 G34 subtype pHGGs typically occur in
the cerebral hemisphere and upregulated MYCN expression has
been observed in this subgroup (15). Mutations in IDH1, which are
frequent in adult gliomas, are only found in a small proportion of
pHGGs (16). Among the remaining approximately 50% of tumors
that lack histone H3 and IDH1 mutations (H3/IDH1-WT) several
subgroups are emerging. One biologically very aggressive subtype is
characterized by enrichment of MYCN amplifications, whereas
other subgroups are enriched for amplification in receptor
tyrosine kinase genes PDGFRA or EGFR (17). Finally, a specific
malignant type of spinal ependymoma in older children and adults
with poor prognosis and a propensitiy to metastasize, has recently
been shown to contain MYCN amplifications (18).

High-Grade Gliomas in Adults
Due to its critical role in regulating cell cycle and metabolism, MYC
has been found overexpressed in GBM, with a tendency towards
correlation of astrocytic GBM grade with the level of both nuclear
and cytoplasmic MYC (19–21). In addition to increased
immunostaining, authors also demonstrated positive correlation
of astrocytoma grade with the number of MYC copies. MYCN
overexpression and amplification have also been frequently
associated with GBM (in about 40% of tumor samples) (22, 23).

IDH1 mutation is a known predictor of response to
temozolomide (24) and conveys sensitivity to metabolites of
alkylating agents. In a subset of IDH1 mutant GBM, Odia
et al. found a correlation with MYC expression (25), indicating
FIGURE 1 | Location of common brain tumors. Tumor entities with known MYC
involvement are highlighted in bold and their frequency across all age groups is
indicated.
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MYC status as an adverse prognostic factor for IDH-
mutant GBM.

In malignant glioma with primitive neuroectodermal
components (MG-PNET), a rare type of brain tumor that most
likely develops from already existing glioma, about half of the
patients demonstrate mutually exclusive MYC or MYCN
amplifications (26).

MYCN was early found to form extrachromosomal double
minutes in neuroblastoma (NB) (27). Recent sequencing
efforts show that both MYC and MYCN frequently
form extrachromosomal amplifications in GBM (28, 29).
Accumulation of such extrachromosomal DNA is essentially
connected to tumor evolution and is associated with overall
poor prognosis in cancer (30).

Embryonal Tumors in Children
CNS embryonal tumors, including medulloblastoma (MB) and
atypical teratoid/rhabdoid tumors (ATRT), account for 13.1% of
primary CNS tumors in children (8). Nearly two-thirds of
embryonal tumors are diagnosed as MB, which is the most
frequent malignant brain tumor of childhood. Integrative
genomic studies have shown that MB is not a single entity, but
rather a heterogeneous group with distinct clinical and biologic
features (6). Molecular subgrouping of MB into WNT, SHH,
Group 3 and Group 4 tumors, was integrated in the most recent
WHO classification and is currently used for risk stratification
replacing diagnosis and treatment of these entities by
histopathology. MYC amplifications are the most frequently
observed driver events in Group 3, whereas MYCN is
overexpressed or amplified in SHH subtype and some Group 4
MBs (3, 31). ATRTs are a variant of embryonal brain tumors
occurring predominantly in very young children. Despite sharing
the common genetic hallmark of mutations in SMARCB1, recent
studies have revealed three distinct subgroups (TYR, SHH,
MYC) based on methylation and gene expression data (32).
MYC overexpression is the marker of the ATRT-MYC subtype,
which is comprised of mostly supratentorial tumors.

Pineal Brain Tumors in Children
and Adults
Additionally, a MYC-subgroup has recently been identified in
pineoblastoma, a rare but quite frequently metastatic, pediatric
brain tumor of the pineal gland with modest overall survival
despite intensive therapy (33). Interestingly, while pineoblastoma
usually present with molecular profiles distinct from
medulloblastoma some embryonal tumors identified as
pineoblastoma in the pineal region were recently identified as
WNT-driven medulloblastomas using methylation profiling (34).
CURRENT TREATMENT OF
BRAIN TUMORS

There is no current international consensus on the treatment of
neither pediatric nor adult brain tumors. However, most patients
see surgical tumor resection, radiotherapy, and chemotherapy.
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Factors such as diagnosis, grade, location, tumor dissemination,
and age impact how each of these parts are implemented in the
treatment plan. Surgical removal of the tumor mass is always
included when it is possible to do so. Successful surgery depends
on how much of the tumor can be safely resected and is the
biggest prognostic factor for overall survival and deciding
subsequent radiotherapy and chemotherapeutic regimens.

Radiation therapy is often given as a high dose fractioned over
several occasions and directed at the primary tumor site. Patients
with spinal metastases receive radiation therapy to the entire
cranio-spinal axis. For adult brain tumors, radiotherapy is a
major part of standard treatment. In children, MB patients have
great benefits on survival from irradiation (35) and evidence
points to that conclusion also for ATRT tumors (36). Despite the
detrimental side effects radiation therapy has on young patients it
is rarely omitted from treatment unless the patient is younger
than 3–4 years. MB can be further stratified to identify high-risk
MYC/MYCN overexpressed tumors (37). Those patients that
would commonly receive a higher dose of radiotherapy (38).

The youngest patientswith high-grade brain tumors that are not
eligible for radiation and/or surgery are especially negatively
affected by the lack of efficient and safe chemotherapeutics.
Tumor treating fields is a low toxicity, non-invasive, non-
pharmacological treatment of both newly diagnosed and
recurrent GBM, used in combination with standard therapy. It is
electromagnetic fields administered through the skin of the scalp
and its arrangement is individualized to optimize effect at the tumor
site. As it is suggested to target primarily dividing cells during
mitosis and causesDNAdamage in cycling cells, normal cells in the
brain should be spared (39). Data also suggest that tumor treating
fields is both safe and feasible in pediatric patients (40).

Many chemotherapeutics have been used empirically for
decades despite showing substantial effects on prolonging
survival of brain tumor patients. On the other hand, targeted
therapies for primary brain tumors have of yet not lived up to the
expectations and some of these lead to treatment resistance in
recurrent tumors. Due to the inability of current treatment
options to cure or even extensively prolong survival of
patients, both adult and pediatric patients are often enrolled in
multinational clinical trials. Careful stratification of patients into
correct molecular subgroups and repeated biopsying (41) could
help improving the success rate of targeted therapies.

Immunotherapies in brain cancer is a rapidly emerging field.
Checkpoint inhibitors have been intensively tested but
unfortunately shown limited efficacy in glioblastoma patients
(42). It is evident that immunological responses need to be
increased in these patients in order to show better effects.
MYC is known to suppress checkpoint proteins PD-1 and
CD47 (43) and MYC inhibition is found to re-express these
proteins making these immunotherapies effective again (44).
Recent animal studies further suggest that p53 depletion is
suppressing major histocompatibility complex (MHC) class 1
presentation, which mediates T cell immune escape in MYC-
driven medulloblastoma (45).

Chimeric antigen receptor (CAR) T cell transfer is an
interesting option in pediatric brain tumor patients (46) as
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long as severe side effects of cytokine release can be carefully
managed and avoided. It is further known that delivery of CAR T
cell therapies into the cerebrospinal fluid compartment could
provide a better chance for this treatment to reach the tumors.
Such an approach has shown promising results when tested in
animals using PDX models of medulloblastoma (47) and many
clinical trials for children with brain tumors are currently
ongoing and under evaluation.

Finally, dendritic cells are important antigen-presenting cells that
express both MHC class 1 and 2 molecules and can stimulate
antitumor immune responses. Dendritic cell vaccines (48) are
currently tested in clinical trials for GBMs and has shown rather
promising results as theymay increase survival for these patients (49).
MYCN BIOLOGY AND REGULATION IN
NORMAL CELLS

The family of MYC proteins (c-MYC, MYCN, and MYCL) are
basic helix-loop-helix-zipper (bHLHZ) transcription factors,
tightly regulated by extracellular growth stimulatory signals
and an intricate intrinsic mechanism behind expression,
activation, and degradation of MYC proteins (Figure 2). The
MYC family of transcription factors binds Enhancer BOX (E-
BOX) sequences to promote or repress transcription of its
targets. This is enabled and coordinated when the MYC
protein heterodimerizes with MYC Associated Factor X
(MAX) and together bind to the E-BOX (50). Around 20,000
E-BOX sequences are found in the human genome why MYC is
often referred to as a transcriptional master regulator.

MYC and MYCN siblings are similar in structure, and can
often substitute each other’s functions (51). MYC proteins are
often redundant in cancer and showing mutually exclusive
expression patterns of MYC and MYCN in patient samples
(52, 53). Repression of target genes by MYC proteins involves
another co-factor, MYC interacting zinc finger 1 (MIZ1) that
tethers MYC-MAX into a ternary complex to promoter regions
of negative cell cycle regulators like CDKN1A or CDKN2B (54,
55). Still, there are important differences in how MYC members
interact with certain co-factors including MIZ1 (56) and regulate
signaling pathways, revealing an increased complexity in how to
target these factors using direct or indirect therapies. It is also
recognized that MYC proteins interact with chromatin
modifying co-factors in order to remodel chromatin structure
close to their binding sites (57).

The transcriptional output signature of MYC is highly
dependent on the cellular context. The different MYC family
members are very similar but MYCL and MYCN are distinctly
expressed in specific tissues (lung and neuronal tissue,
respectively) unlike c-MYC which is found expressed in most
tissues. MYCN is crucial for normal brain development (58, 59).

A proliferating cell would allow stabilization of the MYC
proteins while a quiescent cell quickly degrades the proteins
through the ubiquitin degradation pathway, dependent on the E3
ubiquitin ligase FBW7. Two phosphorylation sites play major roles
in the life cycle of MYC. These are serine 62 (S62) and threonine 58
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(T58) (60). Consecutive phosphorylation and dephosphorylation at
these sites govern the activity, stability, and degradation of the
protein (61). Several proteins related to mitogenic signaling are
associated with or directly phosphorylates MYCN at serine 62 to
stabilize the protein. Among those are mitogen-activated protein
kinases (ERKs) and cyclin-dependent kinases (CDKs), both
important for cell growth and proliferation (60, 61).
Phosphorylation of this residue causes a conformational change
from cis to trans which increases the affinity for DNA binding and
subsequent transcriptional activity of MYC. On the other hand, it
also makes it recognizable by glycogen synthase kinase 3 beta
(GSK3b), a kinase that will phosphorylate MYC at T58 (60).
Mutations at this site will lead to MYC protein stability and can
also cause MYCN-driven MB emphasizing the importance of this
key event in MYC regulation (62). This is the start of the MYC
degradation process and is followed by dephosphorylation of S62 by
protein phosphatase 2 (PP2A) that only bindsMYCwhen both sites
are phosphorylated (63). The E3 ubiquitin ligase F-box and WD
repeat domain-containing 7 (FBW7) recognizes phosphorylated
T58 and sentence MYC to proteasomal degradation (64). In
normal cells this is a well-functioning machinery tightly
controlled at all levels to avoid neoplastic development. The last
resort of safety checks is MYC’s ability to promote apoptosis when
expressed at high levels (65, 66). In cancer, however, it is often
overcome by mutations in proapoptotic pathways including p53.
This will allow uncontrolled effects of MYC overexpression and
activation leading to rapid proliferation and tumor formation.
DIRECT OR INDIRECT TARGETING OF
MYCN IN BRAIN TUMORS

Genetically Engineered Proof-of-Concept
Inhibition Models of MYCN
MYC proteins play an important role in oncogenesis and
progression of tumors and many reports have shown that
suppression of MYC or MYCN by genetic means results in
growth arrest, induction of apoptosis or senescence leading to
tumor regression. Knockdown of MYC even results in regression
of brain tumors driven by Trp53 and Pten loss in astrocytic
cells (67).

In an attempt to attenuate MYCN expression in NB, Galderisi
et al. (68) utilized antisense MYCN oligonucleotides, where they
demonstrated three-fold decrease in mRNA levels. Subsequently,
the reduction on MYCN led to either differentiation or
apoptosis, depending on the NB cell type. In another study,
von Bueren et al. (69) demonstrated reduced proliferation and
clonogenicity, and induced G1 arrest following siRNA-
mediated MYC downregulation in DAOY MB cells. Although
this may support the idea of tumor cells being addicted to
MYC/MYCN signaling, such strategy should be taken with
caution, as the authors (69) showed increased resistance to
apoptosis and ionizing radiation upon MYC suppression.

Inducible transgenic brain tumor models, where for example
tet-inducible promoter regulates a transgene, can be utilized to
turn on and off cancer genes. We have previously utilized this
January 2021 | Volume 10 | Article 626751
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strategy to first demonstrate the role of MYCN in Group 3 MB
development and subsequently showed that long-term
withdrawal of MYCN results in tumor regression and life-long
remission (70). These tumors likely show robust oncogene
addiction as short-term withdrawal of MYCN further showed
good efficacy regardless of additional p53 mutations (71).

Direct MYC/MYCN Inhibitors
A MYC dominant negative gene product, called Omomyc, has a
capacity to promote MYC-induced apoptosis (72). In ATRT,
Omomyc-mediated MYC suppression led to decreased cell
proliferation in vitro and in vivo, while at the same time
significantly prolonging animal survival (73). Similarly,
expression of Omomyc in well-established mouse model of
glioma (74) prevented tumor formation in vivo, reduced
proliferative and self-renewal capacity of glioma initiating cells,
Frontiers in Oncology | www.frontiersin.org 5
and lead to mitotic crisis in tumor cells (75). A purified peptide of
Omomyc shows further promise in vivo. This mini-protein
shows sufficient biodistribution to suppress tumor growth in
lung cancer models while avoiding toxicity in treated animals
(76). As described above, the MYC-MAX protein-protein
interaction is required for MYC binding to DNA and poses
as a great potential target in MYC and MYCN-driven cancers
(77). Recently a MYC-MAX complex inhibitor, MYCMI-6,
was described by Castell et al. (78) that not only decreases
proliferation and induces apoptosis, but it spares cells with
normal levels of MYC. MYCMI-6 is also described to target
MYCN-MAX interactions and shows great promise in vivo (78).
Another example of MYC-MAX inhibition is MYCi975, found in
a drug screen with rapid in vivo testing for drug efficacy in
prostate cancer (44). This drug affects both MYC-MAX protein
interaction as well as MYC protein stability and was successfully
FIGURE 2 | Drug Targets in MYCN Biology. Proteins that can be targeted pharmacologically and discussed in the current review are marked in color. Drugs with
preclinical data are denominated with group affiliation. A selected set of drugs that have reached the clinical stage (either approved or in clinical trials for the indicated
target) are named. CDK1/2, Cyclin dependent kinase 1/2; MAX, MYC-associated factor X; MIZ1, MYC-interacting zinc-finger protein 1; RNA pol II, RNA polymerase
II; BRD4, Bromodomain-containing protein 4; CYC T/K, Cyclin T/K; PROTACs, Proteolysis targeting chimeras; PI3K, Phosphoinositide 3-kinase; AURKB, Aurora
kinase B; FBW7, F-box and WD repeat domain-containing 7; Ub, Ubiquitin; AURKA, Aurora kinase A; mTORC2, Mammalian target of rapamycin complex 2;
mTORC1, Mammalian target of rapamycin complex 1; AKT, Protein kinase B; PP2A, Protein phosphatase 2; P, phosphorylation.
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used in combination with anti-PD1 therapy. MYCi975 is yet to
be tested in brain tumor models but decreased MYCN protein
levels in a neuroblastoma cell line (44).

The bottleneck for successful treatment of a brain tumor is to be
able to deliver a therapy that can circumvent various barriers and
efficiently reach the tumor cells in the brain (79, 80). Apart from the
normal BBB the brain tumor itself also creates a barrier referred to
as the blood-tumor barrier (BTB) that portrays features of non-
uniform permeability and active efflux of molecules/drugs that are
pumped out (81). It is not clear how well many direct MYC
inhibitors or MYC-MAX interaction inhibitors penetrate the
BBB/BTB and if they will provide efficacy in malignant brain
tumors. Different approaches allowing for more efficient brain
tumor delivery of such drugs exist (82). First, direct local delivery
of the drug by intrathecal or intraventricular delivery means could
be useful were osmotic pumps could provide long-term delivery of
drugs. Second, and especially if tumors are considered inoperable
(like e.g. DIPGs), convection enhanced delivery can be an option
where drugs are directly infused into the parenchyma to promote a
forced bulk convective flow into the tumors. Third, focused
ultrasound pulses that transiently open up the BBB/BTB could
precede delivery of a MYC/MYCN inhibitor. Here, low intensity
ultrasound is often combined with circulating microbubbles (made
up by lipids, albumin, or polymers) that vibrate in response to the
sound to create increased vessel permeability.

MYCN Transcriptional Machinery
MYC-MAX bind E-BOX sequences in promoters and enhancers as
discussed above and recruits the protein complexes needed for
transcription and proximal promoter pause release to start
elongation (83). In more detail, the acetylated lysine residues on
histone tails of open chromatin are bound by bromodomain
containing proteins (BRDs) and coactivators of the BET family.
The BET family of epigenetic readers consists of BRD2, BRD3,
BRD4, and BRDT of which BRD4 is the most studied and
understood (84). BRD4 binding recruits the P-TEFb complex
made up of CDK9 and binding partner cyclin T that
phosphorylates RNA Pol II to engage elongation by pause release
(85). Bromodomain and BET inhibitors are so called epigenetic
drugs and the BET inhibitors JQ1, described a decade ago by
Filippakopoulos et al. (86) and iBET by Nicodeme et al. (87), were
proof-of-principle drugs of MYC transcriptional inhibition. JQ1
shows good efficacy in multiple MYC cancers as well as MYCN
overexpressed CNS tumors such as MBs (88, 89) and NBs (90). JQ1
and iBET are pan-BRD inhibitors but as BRD4 is often the most
dominant BRD in cells these drugs preferentially inhibit BRD4 and
sequentially blocks MYC andMYCN dependent transcription. BET
inhibitors regularly but not always inhibit the transcription of the
MYC/N oncogene itself (91) by competitive binding to the acetyl
binding domains of the BET proteins. Though widely used in a
laboratory setting, JQ1 was found unfit for clinical applications due
to the very short half-life of the drug and numerous efforts have
been made to find improved alternative inhibitors of BET that are
currently investigated in several clinical trials (92, 93). BET inhibitor
resistance is another problem and as for many targeted therapies
intracellular re-routing and compensatory mechanisms are likely
Frontiers in Oncology | www.frontiersin.org 6
causes. Finding the mechanisms will help to choose the appropriate
drug combination to block any likely escape path for the cancer
cells. Targeted nanoparticle delivery of combined JQ1 and
temozolomide across the BBB to GBM cells in vivo prolonged
survival and lowered the systemic drug toxicity in mice (94).
However, as the authors discuss, the efficiency of delivery is
dependent on the specific surface markers on cancer cells and it
requires careful thought and investigation of the individual tumor to
design these ligand-targeted nanoparticles (94).

A new generation of BET inhibitors recently emerged,
specifically targeting only one of two bromodomains (BDs) on
the BRDs (95, 96) in contrast to pan-BRD inhibitors that have equal
affinity for both. iBET-BD1, and not iBET-BD2, was found to have
similar antiproliferative effects on cancer cell lines as a pan-BRD
inhibitor. Also, iBET-BD1 was enough to displace BRDs from
chromatin, even at MYC super enhancers in cancer cells (95). By
contrast, novel iBET-BD2 compounds still showed good efficacy in
MYC-driven pediatric tumors (96). These separate findings need to
be further investigated to understand how these inhibitors could be
used against MYCN-driven brain tumors.

Targeting the transcriptional machinery is not limited to BET
inhibition but there are more traditional strategies using kinase
inhibitors that would offer small molecule drugs able to penetrate
the BBB. Zotiraciclib is an inhibitor with effects against CDKs,
both cell cycle and transcriptional kinases (97) and was recently
given orphan drug status in combination with temozolomide for
treatment of GBM. Its effect is mainly through inhibition of
CDK9, the kinase domain of P-TEFb binding to BRD4 and
phosphorylating RNA polymerase II (98) making it principally
similar to the successful strategy of targeting MYCN through
BET inhibition.

Three-dimensional DNA structures called G-quadruplexes
can form in guanine rich regions and do so also in the MYC
promoter region. They are two or more secondary structures
between tetrads of guanine molecules bound by hydrogen bonds
(99). In the c-MYC promoter, stabilization of G-quadruplexes
using small molecule inhibitors decreases MYC gene
transcription (99–101). Several c-MYC G-quadruplex
stabilizers have emerged (102–107), but it is so far unknown if
these also target MYCN. However, similar to c-MYC, G-
quadruplex structures have been identified near the MYCN
promoter region (108). Enniatin B has been found to
specifically target MYCN G-quadruplexes (109), which is both
promising and discouraging as the more developed drugs
targeting c-MYC might be c-MYC specific. This would indicate
that MYCN-driven brain cancers have a long way to go in this
promising field.

A new strategy deployed for targeting proteins are Proteolysis
Targeted Chimeras (PROTACs). PROTACs are bifunctional three-
parted drugs with one of the units binding to the protein of interest
and one binding to the VHL domain of ubiquitin ligase protein E3.
These two units are tethered by a linker to put the E3 ligase in close
proximity to the targeted protein for ubiquitylation and subsequent
proteasomal degradation (110). The PROTAC compound MZ1
selectively targets BRD4 and fine tuning of this principle lead
another group to developed A1874, which is able to degrade
January 2021 | Volume 10 | Article 626751
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BRD4 and at the same time stabilize p53 by binding specifically to
the E3 ligase MDM2 (111, 112). To the best of our knowledge, the
ability of PROTACs to cross the BBB is not yet known.

Ribosome Biosynthesis
As MYCN plays an important role in protein synthesis, there has
been a growing number of discussions whether the biosynthesis of
ribosomes and thus protein synthesis can be exploited in targeting
MYC/MYCN dysregulated tumors. Two inhibitors, originally
identified as RNA pol I inhibitors, quarfloxin (113) and CX-5461
(114), blocked ribosome synthesis in human MYCN-amplified NB
cells, leading to reduction of MYCN protein levels (114). Authors
furthermore demonstrated the antitumor effect of CX-5461 in vivo
opening a new therapeutic avenue for MYCN-amplified tumors. To
our knowledge, indirect targeting of MYCN via RNA pol I
inhibition has not been evaluated, but given its promising efficacy
in NB (115), it is worth considering in the future.

Cell Cycle and MYCN Stability
Tumor cells proliferate rapidly and hijack cell cycle regulation
through mutation or deregulation of inherent vital cell cycle
promoting and/or safety mechanisms. MYC’s strong correlation
to cell proliferation is well known (116–118) and blocking the
cell cycle of rapidly dividing cancer cells is a reasonable strategy
deployed for treatment of cancer. CDK inhibitors such as
Palbociclib, targeting CDK4/6, have shown great success in
hormone receptor positive, HER2-negative metastatic breast
cancer and have reignited a previous interest in cell cycle
inhibition (119, 120). CDK4/6 inhibition can also be used
against MYCN-driven tumors to cause a G1 arrest and its
effect has been proven in both MB (88) and NB (121, 122).
The ability of CDK4/6 inhibitors to penetrate the BBB has been
under investigation. Of the three clinically approved CDK4/6
inhibitors palbociclib, ribociclib, and abemaciclib, it is
abemaciclib that shows most promise (33). Abemaciclib is now
in clinical trials for high-grade and recurrent brain tumors in
both children and adults (NCT02644460, NCT03220646).

Three decades ago, CDK2 was in the spotlight for promising
drug targets. The interest was dampened when it was shown that
CDK2 inhibition was not sufficient to stop proliferation of cancer
cells and none of the interphase CDKs are necessary for cell cycle
progression as CDK1 was enough to do their job (123, 124). As
inhibitor specificity has improved and more is known about
CDK2 biology the interest in targeting this kinase has sprouted
anew. In addition to CDK2s role in cell cycle commitment it is
also one of several kinases that phosphorylates MYC proteins on
S62 (125). A few CDK2 inhibitors are currently in clinical trials,
however none of these are CDK2 specific. Hence, other CDKs or
even classes of proteins could also be involved in their effects.
Milciclib is a highly selective CDK2 inhibitor that also has affinity
for CDK7/4/5 and tropomyosin receptor kinase A (TrKA) (126).
It has been quite successful in clinical trials and is now on Phase
II for thymic carcinoma (NCT01011439). The dual role of CDK2
in MYCN-driven brain tumors was shown to successfully target
MYCN-driven MB in 2018. Combining milciclib with JQ1 did
indeed prolong survival of MYCN-driven MB bearing mice (88).
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CDK2 was not found to be amplified or overexpressed in the
MYCN-driven MB model GTML emphasizing the potential of
inhibiting MYCN driven brain tumors with this strategy even at
normal levels of CDK2. Also, the aforementioned CDK9
inhibitor zotiraciclib has affinity and inhibitory effects on
CDK2. Both milciclib and zotiraciclib penetrates the BBB
making them highly interesting to study further in MYCN-
driven brain tumors, perhaps even in combination.

Aurora Kinases
A family of serine/threonine kinases, named Aurora, plays an
important role in regulation of key steps in cell division. They are
involved in organization of centrosomes, condensation of
chromatin, chromosome attachment to microtubules, and
establishment of metaphase plate (127). Aurora kinase A
(encoded by AURKA) is aberrantly expressed in many cancers
(128), including GBM (129–132), making it a plausible candidate
for a targeted GBM therapy. Expression of both AURKA and
AURKB (Aurora kinase B) is tightly regulated by MYC
transcription factor (133). Moreover, Aurora kinases A and B
directly phosphorylate MYC to promote its stabilization and
increase its transcriptional activity (134, 135). In pediatric NB and
MB, transcription factor MYCN binds Aurora kinase A, thus
attenuating G2/M arrest and stabilizing MYCN protein (136), and
conversely inhibition of Aurora kinase A promotes MYCN
degradation and cell death (71, 137, 138). These findings highlight
the importance of Aurora kinases as druggable targets, particularly
in tumors which are driven by aberrant MYC/MYCN signaling. In
this section of the review, we will further explore therapeutic
potential of Aurora kinase inhibitors in brain tumor therapy.

Alisertib is a second generation, ATP competitive Aurora
kinase A inhibitor, which inhibits autophosphorylation at T288.
Combined Alisertib and BRD4 inhibition results in synergistic
decrease of viability in high-risk, MYCN amplified NB cells
(139). Alisertib shows also an advantage in pediatric GBM,
where in vitro effects were observed in a number of patient-
derived cells and in vivo, by prolonging mouse survival (140).
However, emergence of AURKA negative and CD133 positive
cells results in relapse in vivo, which suggests a need of dual
inhibition to overcome resistance. We have previously showed
that AURKA inhibition together with BRD4 inhibition
successfully inhibits a number of patient-derived GBM cells
(141). Interestingly, GBM cells that were most sensitive to
AURKA inhibition were those with high level of MYCN
expression, although we must emphasize that the combined
AURKA and BRD4 inhibition shows strong synergistic
antitumor activity in all evaluated GBM cells, irrespective of
MYCN levels (141).

Alisertib inhibition in a MYCN-driven model of group 3 MB
(70) disrupts AURKA-MYCN complex and inhibits cell viability
both in vitro and in vivo (71, 142). The inhibition of tumor
growth was exercised through nearly completed reduction of
MYCN protein expression, cell cycle arrest in G2/M phase, but
not apoptosis, which is indicative of AURKA inhibition.

Aurora kinase A, among other functions, regulates MYC/
MYCN protein stability. Unlike many inhibitors that target
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Aurora A activity, Gustafson et al. (138) developed a
conformation-specific compound CD532 that binds to Aurora
A, destabilizes MYC/MYCN and targets them for proteasomal
degradation. Although developed in MYCN-amplified
neuroblastoma models, this compound shows promising effects
on cell cycle and MYC/MYCN stability.

Upstream Regulation of MYCN via PI3K
and mTOR
Phosphoinositide 3-kinases (PI3K) regulates MYCN stability
through AKT and GSK3b in cerebellar neuron precursors (143,
144), which suggests that MYCN effects can be counteracted by
inhibiting upstream MYCN signaling. Indeed, authors (143)
demonstrated a substantial loss of wild-type MYCN upon
PI3K inhibitor wortmannin, while mutant MYCNT50A and
MYCNS54A levels remained unchanged. Similarly, in MYCN-
driven models of NB, Cage et al. (145) showed ablation of MYCN
following the treatments with two different PI3K inhibitors PIK-
75 and PW-12. Furthermore, in mouse allografts of SHH MB
authors (145) demonstrated uniform absence of MYCN, reduced
proliferation and vascularity, as well as increase of apoptosis
following in vivo treatment with PW-12, altogether resulting in a
significant, more than five-fold decrease in tumor volume.

MYCN is indirectly regulated by upstream signaling mediated
through e.g. mammalian target of rapamycin complexes
Frontiers in Oncology | www.frontiersin.org 8
(mTORC), which regulates cell growth and protein synthesis
(as reviewed in (146). Over the past decade several mTOR
inhibitors have been developed and proven successful in many
different cancer models [as reviewed in (147)]. First generation
mTOR inhibitors rapamycin and its ester analogue CCI-779
(Temsirolimus) not only inhibited growth and induced cell death
in several MYCN-amplified NB cells, but also significantly
reduced MYCN protein levels (148). Similarly, another group
identified dual PI3K/mTOR inhibitor, NVP-BEZ235
(Dactolisib), to specifically destabilize MYCN proteins in
MYCN-dependent tumors (149). More recently, our group has
proved that many of such second generation mTOR inhibitors
are indeed successful in inhibiting MYCN-amplified SHH MB
tumor models both in vitro and in vivo (52). RapaLink-1, a
bivalent third generation mTOR inhibitor, which combines
rapamycin with INK128 (Sapanisertib) by an inert chemical
linker, has also shown great efficacy in MYCN-driven brain
tumor models (150). Several mTOR inhibitors have already
been approved or are currently undergoing clinical trials (151),
making mTOR inhibition a very promising therapeutic avenue
for MYCN-deregulated brain tumors. Especially for SHH-
dependent medulloblastoma where more direct SHH pathway
drugs, including SMO inhibitors, are shown to induce severe side
effects in young children or infants (152). For instance, mTOR
inhibitors, such as everolimus, are well tolerated in children
TABLE 1 | Drugs and compounds for targeting of MYCN signaling.

Inhibitor Tumor type Target Phase Reference

Direct MYC/MYCN inhibitors
Omomyc Glioma, ATRT MYC proteins Preclinical (1–5)
MYCMI-6 Various cancers, NB MYC proteins Preclinical (6)

Inhibitors of MYCN transcriptional machinery
JQ1
I-BET

Various cancers, MB, and NB BRD4 Preclinical (7–10)
(11)

Zotiraciclib GBM CDK9 Clinical orphan drug (12)
Enniatin B N/A MYCN Biochemical (13)
MZ1 N/A BRD4 Biochemical (14)
A1874 Colon cancer, lung cancer, osteosarcoma BRD4 Preclinical (15)

Cell cycle related inhibitors targeting MYCN
Palbociclib MB, NB CDK4/6 Preclinical (9, 16, 17)
Abemaciclib DIPG, brain tumor (NOS), NB, ATRT CDK4/6 Clinical trial (19), NCT02644460, NCT03220646
Milciclib MB CDK2 Preclinical (9)

Thymic carcinoma Clinical trial NCT01011439
Alisertib GBM, MB, NB Aurora A Preclinical (20–23)

High-risk AML Clinical trial NCT02560025

PI3K/AKT/mTOR inhibitors targeting MYCN
PIK-75, PW-12 MB PI3K Preclinical (24)
Rapamycin NB mTORC1 Preclinical (25)
Temsirolimus NB mTORC1 Preclinical (25)

CNS tumors Clinical trial NCT00003712
NVP-BEZ235 MYCN-dependent tumors mTORC1/2, PI3K Preclinical (26)

Breast cancer Clinical trial NCT00620594
Everolimus Breast cancer mTORC1 Clinical trial NCT01783444

Pediatric epilepsy Approved (27)
Sapanisertib MB mTORC1/2, PI3K Preclinical (28)

Ribosome biosynthesis inhibitors targeting MYCN
Quarfloxin, CX-5461 MYCN-driven NB RNA Polymerase I Preclinical (29)
January
A list of a selection of drugs or compounds identified as potential direct or indirect targets of MYC/MYCN-driven CNS/PNS tumors. Compounds in the clinical development for another
tumor type (and not for brain tumors/CNS tumors) are mentioned in cases where they showed promising results in preclinical CNS tumor models.
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treated for epilepsy (153), which is in line with findings of Wu et al.,
where young mice treated with the BBB penetrable mTOR
inhibitor, Sapanisertib showed no toxicity against cerebellar
development (154). In Table 1, we present a list of selected
potential drugs for MYC/MYCN targeted therapy discussed in
this paper where the progress of these in preclinical and clinical
research is summarized.

The OCT4/mTOR Malignancy Axis
mTOR is known to promote octamer-binding transcription
factor 4 (OCT4) levels in embryonic stem cells (155). In
MYCN-driven human brain tumor models generated from
primary embryonic or induced pluripotent stem cell (iPSC)-
derived neural stem cells we could show a significant correlation
of mTOR pathway activation and OCT4 levels (52). When we
overexpressed OCT4 we further found increased mRNA levels of
4EBP1 gene (EIF4EBP1) as well as elevated phosphorylation
of 4EBP1 that marks mTOR pathway activity downstream of
mTORC1. The OCT4/mTOR axis correlated with poor
prognosis in SHH MB patients and OCT4-overexpression
increased the malignancy of these pediatric brain tumors
(Figure 3).

OCT4 has previously been shown to increase metastasis and
malignancy in MB cell lines (156) and malignancy in GBM
where AKT is activating OCT4 (157). OCT4 phosphorylation at
T235 by AKT is increasing OCT4 stability and correlate with
apoptotic resistance and tumor malignancy (158).

OCT4 has an important regulatory role in MYCN-amplified
tumors (Figure 3). In MYCN-driven NB OCT4 was found to
induce increased levels of MYCN by increasing the levels of its cis-
antisense gene NCYM (159). Subsequently, NCYM is stabilizing
MYCN by inhibiting GSK3b to protect MYCN from proteasomal
degradation (160). In this auto-regulatory loop MYCN can again
induce OCT4 and other stem-cell related genes. NCYM correlates
with OCT4 levels and with poor prognosis in MYCN-amplified
tumors. Various inhibitors of mTOR and/or PI3K/AKT can
suppress the OCT4/mTOR axis in malignant brain tumors (52).

At another dimension which might be of importance for
treatment resistance in MYCN-driven cancer, involves OCT4
phosphorylation at S111 via MAPKAP2 that can promote MYC
expression (Figure 3). This might help identifying a therapy-
resistance mechanism in MYCN-driven NB, providing an escape
route driven by OCT4-activated MYC (161) in recurrent tumors.
SUMMARY AND DISCUSSION

MYC family members are found overexpressed in more than half
of all cancers highlighting its role as one of the most important
oncogenes. MYC proteins are involved in brain tumor initiation,
maintenance and progression in both children and adults.
MYCN has an important role also in normal brain
development. It is known that misregulation of its expression
occurs during early development in childhood neoplasms and
that MYCN is likely activated during progression in adult brain
tumors. While several ways of targeting MYCN is approaching
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and show promise, there are still many obstacles regarding
delivery of direct and indirect ways to target this transcription
factor. Better ways and tools to deliver MYCN-targeting drugs
that penetrates the BBB is needed using e.g. chemical
modifications of substances, nano-particles as drug carriers, or
ultrasound technology for temporal opening of the BBB to
mediate efficiently high concentrations of the MYCN drug at
the tumor site.

While many drugs target cMYC it is important to investigate
if they are also relevant for MYCN-driven tumors or if they can
be modified to target MYCN specifically to avoid unnecessary
side effects. Therefore, it is of utter importance that published
data on cMYC targeting also get tested in relevant MYCN-driven
cancer cell and mouse models. Appropriate animal brain tumor
models should not only be used to test and determine efficacy of
novel drugs but will also be valuable in observing tolerability and
evident toxicities of the tested compound in the preclinical
evaluation. These animal models are useful tools for early
detection of side effects from drugs on the normal growth of
animals and on their proper brain development or consideration
of future use in infant and pediatric brain tumor patients.
FIGURE 3 | Targeting of MYCN-dependency via the OCT4/mTOR Axis.
MYCN transcriptionally regulates OCT4 and promotes increased OCT4 levels
that correlate with poor prognosis in various brain tumor entities. OCT4 has
been found to form a positive regulatory loop that induces increased protein
stability of MYCN by increasing the levels of its cis-antisense gene NCYM. In
parallel, mTOR/PI3K/AKT promotes OCT4 levels in both normal and
malignant cells. Here AKT is known to activate OCT4 by phosphorylation
leading to OCT4-dependent upregulation of 4EBP1 and cMYC but also to a
positive loop that again promotes AKT expression. We propose a strategy
where targeting of OCT4 using various mTOR/PI3K inhibitors could regulate
MYCN and suppress MYCN-dependent brain cancer. A few selected
inhibitors tested in the brain tumor papers discussed in the review are
highlighted.
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As many before have suggested, combination treatments are
most likely the best way to circumvent acquired drug resistance.
Understanding the mechanisms behind both the drug effect and
future resistance will help deciding efficient drug combinations.
On this topic, one should also consider that we could shorten the
bench to bedside time frame by including relevant standard
treatments in preclinical testing of potential MYCN drugs. In
vivo testing of MYCN drugs for brain tumors should include
irradiation and chemotherapy similar to what is used in the clinic
to get solid data with a better chance to succeed in affected
patients. By simply getting a drug into clinical trials it could
benefit specific patients. We stay optimistic and believe that any
of these measures will help providing better responses and
hopefully even a cure for these devastating malignancies.
Frontiers in Oncology | www.frontiersin.org 10
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