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The immune response plays a critical role in gastric cancer (GC) development, metastasis,
and treatment. A better understanding of the tumor-immune system interactions in gastric
cancer may provide promising diagnostic, prognostic, and therapeutic biomarkers for
patients with this disease. In the present study, we aimed to identify a prognostic signature
of GC through a comprehensive bioinformatics analysis on the tumor-immune interactions
as well as the molecular characteristics. We firstly identified two immunophenotypes and
immunological characteristics by employing multiple algorithms, such as the single sample
Gene Sets Enrichment Analysis and Cell type Identification By Estimating Relative Subsets
of RNA Transcripts. Next, we developed a six-immune-gene signature as a promising
independent prognostic biomarker for GC using Lasso Cox regression and verified it via
the external validation set and systematically correlated the immune signature with GC
clinicopathologic features and genomic characteristics. Finally, a nomogram was
successfully constructed based on the immune signature and clinical characteristics
and showed a high potential for GC prognosis prediction. This study may shed light on the
treatment strategies for GC patients from the perspective of immunology.

Keywords: gastric cancer, ssGSEA, CIBERSORT, tumor immunity, immune signature
INTRODUCTION

Despite the significant decreases in incidence and mortality during the last decades, gastric cancer
(GC) remains the third leading cause of cancer-related deaths worldwide. There were over one
million newly diagnosed GC patients and 783,000 deaths from this heterogeneous disease in 2018
(1). The GC incidence rates for men are twice as high as that of women. Besides, the GC incidence
rates are generally low in Northern America and Northern Europe but markedly high in Eastern Asia
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(e.g., Japan, the Republic of Korea, and China) (2, 3).
Histopathologic and epidemiologic features of GC vary widely
between Asian andWestern populations (4, 5). Also, the behavior
and outcomes of patients with GC proved to be different
comparing Asian and Caucasian patients (3, 6). Most GC
patients are often diagnosed at the advanced stage and 25–50%
of cases will develop metastases during the course of this disease.
Surgical resection associated with neoadjuvant and adjuvant
therapies remain the primary treatment option for GC patients,
but there is an unfavorable prognosis (7). Therefore, this is an
unmet need to focus on developing effective diagnostic and
therapeutic approaches for GC.

To date, there are two widely accepted histological classification
systems for GC: Lauren’s classification that categorizes intestinal
and diffuse type (8) and the World Health Organization
(WHO) classification dividing GC into adenocarcinoma,
papillary adenocarcinoma, tubular adenocarcinoma, mucinous
adenocarcinoma, poorly cohesive carcinoma, and mixed
carcinoma (9). However, these two classifications are unable to
provide specific therapeutic strategies for GC. Recent studies
focusing on the molecular classifications of GC have established
different molecular subtypes of this disease based on the multi-
omics landscape, indicating that GC is a far more complex disease
than previously recognized (10).

The Cancer Genome Atlas (TCGA) research group has
proposed a molecular classification of four GC subtypes,
including Chromosomal instability (CIN), Microsatellite
instability (MSI), Genomic stability (GS), and Epstein Barr
virus (EBV)-associated, which provide a basis for patient
stratification and the development of immunotherapeutic
strategies (11). The Asian Cancer Research Group (ACRG)
has also defined a similar classification associated with
distinct survival: MSI, Microsatellite stable (MSS)/Epithelial-
mesenchymal transition (EMT), MSS/TP53+, and MSS/TP53-

(12). Furthermore, the comprehensive proteogenomic
analyses have identified four distinct subtypes of diffuse GC,
which are associated with proliferation, immune response,
metabolism, and invasion, respectively (13). Further studies are
warranted to validate these molecular classifications as well as
their respective therapeutic strategies in larger clinical trials in
the future.

Recent studies have been performed to systematically
investigate the immune characteristics of GC patients, which
have adequately demonstrated high prognostic potential and
clinical guidance values relative to the conventional clinical
characteristics or risk models (14–17). These studies have
assessed the immunological characteristics of GC mainly from
the perspective of immune cell infiltration. However, there is a
lack of investigation regarding the tumor-immune interactions
and their prognostic potential in GC. In the present study, we
concentrated our efforts on exploring the tumor-immune
interaction‐associated molecular characteristics and their
prognostic potential. Consequently, we established an immune
signature associated with prognosis and demonstrated the
stability and reproducibility of this signature in independent
datasets by a machine learning approach.
Frontiers in Oncology | www.frontiersin.org 2
METHODS
Data Collection and Organization
We systematically searched the available public transcriptomic
cohorts for GC with corresponding clinical information.
Normalized gene expression data from RNA-sequencing
(RNA-seq; Fragments Per Kilobase Million [FPKM] value) and
somatic mutation data and the relevant clinical data of
TCGA stomach adenocarcinoma (TCGA-STAD) cohort were
downloaded from the University of California Santa Cruz
(UCSC) Xena (18). Then, the tumor mutation burden (TMB)
per megabase of each sample was calculated as the total number
of mutations counted in the exome content. In addition, we
retrieved clinical data and normalized gene expression data from
the Gene Expression Omnibus (GEO); accession number is
GSE62254 and GSE29274. Data were analyzed with R (version
4.0.2) (Figure 1).

Estimation of Immune and Stromal
Content, the Proportions of Immune
Cell Subsets
We utilized the Estimation of STromal and Immune cells in
MAlignant Tumor tissues using Expression data (ESTIMATE)
algorithm via the R package “estimate” to evaluate the degree of
infiltration of tumor cells and different normal cells so as to
determine the StromalScore, ImmuneScore, and EstimateScore
(19). We used Cell type Identification By Estimating Relative
Subsets of RNA Transcripts (CIBERSORT) to calculate the
abundance of 22 human infiltrating immune cells for each
sample (20).

Single Sample Gene Sets Enrichment
Analysis (ssGSEA) and Hierarchical
Clustering Analysis
We employed the ssGSEA algorithm via R packages (GSVA,
GSEABase, and limma) to comprehensively evaluate the
immunological characteristics of each sample included in the
study based on 29 immune gene sets, including genes related to
different immune cell types, functions, pathways, and
checkpoints (21). We transformed each ssGSEA score xi into
xi′ by deviation standardization. Then, the subtypes of the GC
patients were identified by using hierarchical clustering analysis
based on Euclidean distance and Ward’s linkage. The T‐
distribution stochastic neighbor embedding (tSNE) algorithm
was used via the Rtsne package to confirm the accuracy and
discrimination of the subtypes of the GC patients (22).

Differential Expression and Prognosis-
Associated Immunity Gene Analyses
We screened the differentially expressed genes (DEGs)
(screening conditions: |log2 fold change| > 0.58 and FDR <
0.05) based on the limma package between Immunity High/Low
groups and then identified the differentially expressed immunity
genes (DEIGs) which were both in the DEGs and Tumor‐
associated immune genes downloaded from ImmPort (23, 24).
We next performed univariate Cox proportional hazards
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regression analysis with the survival package in R and considered
a gene with P < 0.05 as prognosis‐associated immunity genes
(PIGs) from the DEIGs.

Functional Annotation and Regulation
Network Analysis
We conducted a gene-set enrichment analysis of the TCGA-
STAD cohort by Gene Set Enrichment Analysis (GSEA, version
4.1.0) to reveal the critical signaling pathways involving the DEGs
(25, 26). This analysis identified the Kyoto Encyclopedia of Genes
(KEGG) pathways that were upregulated in Immunity_H and
Immunity_L, respectively. FDR<0.01 was set as the threshold for
screening. Further analysis and visualization were carried out
with R (version 4.0.2). Then, we obtained transcription factors
related to tumorigenesis and development of GC from the
CISTROME project and extracted the differentially expressed
transcription factors (DETFs) from the total DEGs and then
employed the Pearson’s correlation coefficient analysis to
construct the regulatory network of PIGs and DETFs (27, 28).
∣r∣ > 0.3 and FDR < 0.01 were set as the cutoffs for a significant
correlation. Protein-protein interaction (PPI) analysis was carried
out with STRING (string-db.org/).

Construction and Validation of Immunity
Gene-Associated Prognostic Model
We applied the Cox regression model with LASSO based on the R
package “glmnet” to construct an optimal immunity gene‐associated
Frontiers in Oncology | www.frontiersin.org 3
prognostic model (IGPM) for GC by using the PIGs. The Risk
score was calculated with the following formula: The risk   score =
Sn
i=1   (coefi � Expri), where Expri represents the expression level of

gene i and coefi represents the regression coefficient of gene i in the
signature. We grouped all patients into low- or high-risk groups
according to the median value of IGPM‐based risk signature and
performed survival analysis with Kaplan-Meier method. The
logrank test was used to compare the difference in the survival
status between the high‐ and low‐risk groups. To reflect the
prediction ability of the IGPM‐based risk signature, we generated
the time-dependent receiver operating characteristic curve (ROC)
and calculated the area under the curve (AUC) for 1-year, 3-year,
and 5-year overall survival (OS). The Kaplan-Meier, log‐rank, ROC
curve, and calibration analyses were all performed and visualized
by the “timeROC”, “rms”, “survival”, and “survminer” packages.
The relativity between IGPM‐based risk signature and clinical
factors, immune cell infiltration, immune checkpoint molecules,
and TMB were analyzed using Pearson’s correlation or Spearman
correlation with the corrplot package. P < 0.05 were set as the
cutoffs for a significant correlation. Finally, we subjected the IGPM‐
based risk signature and other clinicopathological characteristics to
univariate and multivariate cox regression analyses to confirm the
independence of the IGPM‐based risk signature. Then, we used the
above factors to establish a nomogram with the R packages “rms”,
“nomogramEx”, and “regplot”. Next, ROC and calibration curves
analysis were used to determine whether our established
nomogram was suitable for clinical use.
FIGURE 1 | Study flowchart.
February 2021 | Volume 10 | Article 629909
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RESULTS

Immunogenomic Profiling Identifies Two
Subtypes of GC
To comprehensively evaluate the immunological characteristics in
GC, we analyzed 375 tumor samples from the TCGA-STAD
cohort using the ssGSEA algorithm along with 29 immune gene
sets. Based on the single sample Gene Sets Enrichment Analysis
(ssGSEA) scores and hierarchical clustering algorithm, all samples
were clearly clustered into two categories: Immunity_H (High)
and Immunity_L (Low) (Figures 2A, B). According to the results
of ESTIMATE, the tumor microenvironment characteristics
between these two subtypes were identified. We found that the
Immunity_H had higher levels of EstimateScore, ImmuneScore,
and StromalScore, whereas Immunity_L had the lower levels of
these scores (Wilcox test, P < 0.001) (Figure 2C).

The degrees of immune cell infiltration were determined
using the CIBERSORT algorithm. We found that the
infiltration degrees of CD8+ T cells, activated memory CD4+ T
cells, resting memory CD4+ T cells, gamma delta T cells, memory
B cells, activated NK cells, resting NK cells, M0 macrophages, M1
macrophages, activated mast cells, resting dendritic cells, and
plasma cells were significantly different between Immunity_H
and Immunity_L groups (Figure 2D). We further used the tSNE
algorithm to confirm the immune level clustering of the GC
patients, and the same classification results were obtained
(Figure 2E). We also examined the expression of HLA genes
in these two subtypes and found that most HLA genes showed
significantly higher expression levels in Immunity_H but
significantly lower expression levels in Immunity_L (Wilcox
test, P < 0.05) (Figure 2F). Taken together, these results
indicated that the immunophenotyping of GC patients was
successfully performed.

Molecular Characteristics and
Multidimensional Functional Annotation
Describing the Tumor-Immune
Interactions and Their Potential Use for
Prognostic Prediction
We further investigated the molecular characteristics of tumor-
immune interactions and their prognostic potential in GC patients
stratified by immunophenotype. After the preliminary screening, a
total of 1,086 genes were identified as DEGs. Of these, 1,036 genes
were upregulated and 50 genes were downregulated in the
Immunity_H group. All DEG expression levels in GC patients
were shown in Figure 3A. Subsequently, 608 genes were identified
as DEIGs based on the ImmPort database, of which 603 genes
were upregulated and five genes were downregulated (Figure 3B).
Finally, 16 PIGs were identified using univariable Cox
proportional hazards regression analysis, and the hazard ratio
(HR) was calculated (Figure 3C). Of these, 15 genes (IGHJ3,
IGLV6-57, TNFRSF17, IGLV2-18, IGHD3-22, IGHV3-64, IL2RG,
IGHJ1, IGLV4-60, IGLV5-48, IGLC7, IGHA2, IL33, GKN1,
CCL25) were upregulated and only 1 gene (BMP7) were
downregulated in the Immunity_H group. BMP7, bone
morphogenetic protein 7, can regulate immune cell responses
Frontiers in Oncology | www.frontiersin.org 4
and are immunosuppressive in cancer, which can act as a potential
immunotherapeutic target (29). The log2 fold change values in the
DEGs, DEIGs, PIGs, and their FDR values in both Immunity_H
and Immunity_L groups were shown in Figure 3D.

To gain insight into the global patterns of the effects of
immune gene expression on the biological processes in GC, the
GSEA was performed to identify the pathways involved in the
DEGs. We obtained several biologically sensible themes enriched
in Immunity_H, which proved that the DEGs were mainly
involved in the immune‐related biological processes or
signaling pathways. For the Hallmark gene sets (Figure 4A
and Supplementary Table 1.1), typically, the first group relates
to the immune response, including complement, IL2-STAT5
signaling, allograft rejection, inflammatory responses, IL6-JAK-
STAT3 signaling, interferon gamma response, TNF-a signaling
via NF-kB, and interferon alpha response. The second group
relates to cell growth and death, including apoptosis, p53
pathway, and transduction pathways such as KRAS signaling
and PI3K-Akt signaling.

As for the KEGG pathways (Figure 4B and Supplementary
Table 1.2), the immune-associated pathways were highly active
in Immunity_H and included antigen processing and
presentation pathways, Th1 and Th2 cell differentiation, Th17
cell differentiation, and hematopoietic cell lineage. Besides, we
identified various immune disease-associated pathways that were
hyperactivated in Immunity_H, including asthma, systemic
lupus erythematosus, graft-versus-host disease, allograft
rejection, autoimmune thyroid disease, inflammatory bowel
disease, and rheumatoid arthritis. Several pathways related to
infectious diseases such as Staphylococcus aureus infection,
leishmaniasis, tuberculosis, and human T-cell leukemia virus 1
infection were also enriched in Immunity_H.

Considering DEGs used in enrichment analysis were
calculated based on 29 immune gene sets, we excluded the
genes in the 29 gene sets and reran the enrichment analysis.
The results were showed in the Supplementary Table 2, which
were consistent with the above conclusion (Figures 4A, B and
Supplementary Table 1). In summary, the GSEA result
confirmed the elevated immune activity in Immunity_H and
showed that the activation of various cancer-associated pathways
positively correlated with immune activation.

To elucidate the role of the multidimensional regulatory
network of immune molecules in the process of tumorigenesis
and development of GC, we first explored the upstream
mechanisms of the PIGs. The transcription factors related to
the development of GC were identified by combining differential
expression analysis and data from the CISTROME database. A
total of 23 upregulated transcription factors in the Immunity_H
group were identified. Then, the regulatory relationships of the
GCTF-PIGs were revealed based on the correlation analysis and
all GCTFs were positively correlated with the corresponding
PIGs except BMP7 (Supplementary Table 3). The regulatory
network of the GCTF-PIGs was shown in Figure 4C. To suspect
the significant correlations between the GCTF and PIGs, we
further performed the PPI analysis and confirmed that there
were interactions between them (Figure 4D).
February 2021 | Volume 10 | Article 629909
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Construction and Validation of the
IGPM-Based Risk Signature
To develop a gene signature based on GC immunophenotype, the
PIGs were submitted to LASSO Cox regression analysis for
dimension reduction. Consequently, an IGPM‐based risk
signature including six genes to predict OS in the TCGA-STAD
Frontiers in Oncology | www.frontiersin.org 5
cohort was constructed. The formula was determined as follows:
0.142 * expression of IL2RG + 0.104 * expression of IGLV5-48 +
0.147 * expression of BMP7 + 0.110 * expression of IL33 + 0.010 *
expression of GKN1 + 0.045 * expression of CCL25 (Figure 5A).

We calculated the risk score of each GC patient and divided all
patients into the high‐ and low‐risk groups according to a median
A B

D

F

E

C

FIGURE 2 | Hierarchical clustering of GC patients discovered two immunophenotypes. (A) Hierarchical clustering divided GC patients into Immunity_H and
Immunity_L based on the ssGSEA results. (B) Landscape of the immune characteristics and tumor microenvironment in the TCGA-STAD cohort. (C) Comparison of
ESTIMATE_Score, Stromal_score, and Immune_score between two subtypes. (D) Comparison of the immune cell infiltration levels between two subtypes. (E)
Validation of immunophenotype via tSNE. (F) Comparison of the expression levels of HLA genes between two subtypes. *P < 0.05, **P < 0.01, ***P < 0.001.
February 2021 | Volume 10 | Article 629909

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Guan et al. Tumor-Immune Interactions in Gastric Cancer
risk score (Figure 5B). Compared with the low‐risk group, the
survival time of patients in the high‐risk group was shorter and the
incidence of death was higher (Figure 5C). The correlation
analysis showed that the risk score had a significant negative
correlation with the survival time, indicating that the survival
times of GC patients gradually decrease with an increasing risk
score (Figure 5D). The Kaplan-Meier curve was employed for the
survival analysis of GC patients and the results showed that the
high-risk group was significantly associated with poorer OS, while
the low-risk group was associated with better OS (Log-rank test, P
< 0.0001, Figure 5E). To assess the predictive ability and accuracy
of the IGPM-based risk signature, we performed a time-dependent
ROC curve analysis, and the AUCs of the 1‐, 3‐, and 5‐year
predictions were 0.63, 0.7, and 0.794, respectively (Figure 5F). The
discriminative ability of the IGPM‐based risk signature was
measured by determining the calibration plot, which showed
Frontiers in Oncology | www.frontiersin.org 6
that the predicted value of the IGPM‐based risk signature was in
a good agreement with the actual value (Figure 5G).

We further measured the robustness of the IGPM‐based risk
signature by validating its performance in other independent
cohorts. We accessed the GEO database recently and did not find
a data set that contained both clinical data and all kIGs. To verify
the signature more accurately, a bootstrap method was used to
obtain the validation cohort with a sample size of 500 from the
TCGA-STAD cohort. Survival analysis based on the Kaplan-
Meier method showed that there was a significant difference
between the high‐risk group and the low‐risk group, suggesting
that the IGPM‐based risk signature worked well in the validation
cohort (Figure 5G). The survival analyses of the kIGs in the
ACRG and GSE29272 cohorts were used to validate the
predictive ability of the IGPM‐based risk signature once again.
The high and low expression groups of IL2RG, CCL25, or IL33
A B

C D

FIGURE 3 | DEGs, DEIGs, and PIGs expression and their prognostic value analysis. (A) Landscape of all DEGs between two subtypes. (B) Landscape of all DEIGs
between two subtypes. (C) Forest plot based on univariable Cox proportional hazards regression analysis shows the PIGs and their hazard ratios. (D) Volcano plot
of all DEGs, DEIGs, and PIGs shows the log2 (fold change) and FDR value of each gene. Differentially expressed genes to be exhibited in heatmap graph with |fold
change| >1.5 and FDR<0.05. DEG, differentially expressed gene; DEIG, differentially expressed immunity gene; PIG, prognosis-associated immunity gene.
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had significantly different survival probabilities (Figure 5I–L),
and the results and trends were consistent with the outcomes of
OS prediction for the TCGA-STAD cohort.

Interrelation of the Risk Score, Clinical
Features, Immune Cell Infiltration, Immune
Checkpoint Molecules, and TMB
We examined the pairwise correlations of the risk score with
clinical features, immune cell infiltration, immune checkpoint
molecules, and TMB, respectively (Figure 6A). Our results
showed that GKN1 had a significant negative correlation with
American Joint Committee on Cancer (AJCC) Stage, which
indicated that the kIGs might affect the prognosis of GC
Frontiers in Oncology | www.frontiersin.org 7
patients. In terms of the immune microenvironment, BMP7 had
a significant negative correlation with the resting NK cells and
monocytes, whereas CCL25 had a significant positive correlation
withmonocytes. Besides,GKNI had a positive correlation withM1
macrophages. IGLV5-48 had a positive correlation with naïve B
cells and activated CD4 memory T cells, but it showed a
significant negative correlation with M2 macrophages.

Next, we aimed to explore whether the risk score could predict
immunotherapeutic benefits in GC patients. We selected 14
immune checkpoint-related candidate genes (BTLA, GITR,
TNFRSF14, IDO, LAG-3, PD-1, PD-L1, PD-L2, CD28, CD40,
CD80, CD137, CD27, and CTLA-4) to assess their relationships
with the risk scores. The results showed that the risk scores were
A

B

D

C

FIGURE 4 | Identification of subtype-specific pathways and networks. (A) Hallmark gene sets enrichment analysis of DEGs. (B) KEGG enrichment analysis of DEGs.
(C) Alluvial diagram of the GCTFs and PIGs revealed their regulatory network. (D) PPI network between GCTFs and PIGs. Network nodes represent proteins and
edges represent protein-protein associations, including both functional and physical protein associations. Line thickness indicates the strength of data support. The
thicker line represents the higher confidence. KEGG, Kyoto Encyclopedia of Genes and Genomes; GCTF, gastric cancer transcription factors; PIGs, prognosis‐
associated immunity genes.
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A D

B

C

F

I J K L

G H

E

FIGURE 5 | Construction and validation of the IGPM-based risk signature. (A) 10-fold cross-validation for tuning parameter selection in the LASSO model. (B, C)
Distribution of the risk score, survival time, and survival status in the TCGA-STAD cohort. (D) Correlation analysis of the risk score and survival time in the TCGA-
STAD cohort. (E) Kaplan-Meier survival analysis based on the IGPM-based risk signature in the TCGA-STAD cohort. (F) The ROC curve and AUC of the
predictions for 1, 3, and 5 years of the IGPM-based risk signature for TCGA-STAD cohort. (G) The calibration plot of IGPM-based risk signature for TCGA-STAD
cohort. (H) Kaplan-Meier survival analysis based on the IGPM-based risk signature of the validation cohort that was constructed using the bootstrap method.
(I–L) Kaplan-Meier survival analysis of the kIGs IL2RG, CCL25, or IL33 in the ACRG and GSE29272 cohort. IGPM, immunity gene-associated prognostic model;
ROC, curve receiver operating characteristic curve; AUC, area under the curve; kIG, key PIG involved in the construction of the IGPM.
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A B

C

D E

F G

FIGURE 6 | Relationship of the IGPM-based risk signature with kIGs, clinical characteristics, immune microenvironment, and TMB. (A) Heatmap showing correlation of
the IGPM-based risk signature with kIGs, clinicopathological factors, and immune cell infiltration. The red indicated positive correlation while blue indicated negative
correlation. (B) Scatter plots depicting correlation between the IGPM-based risk signature and gene expression of TNFRSF14. (C) Scatter plots depicting correlation
between the IGPM-based risk signature and gene expression of CD40. (D) Scatter plots depicting correlation between the IGPM-based risk signature and TMB.
(E) Comparison of TMB between IGPM-High and IGPM-low groups. (F) Kaplan-Meier survival analysis based on the TMB in the TCGA-STAD cohort. (G) Kaplan-Meier
survival analysis for four groups stratified by combining the TMB and the IGPM-based risk signature in the TCGA-STAD cohort. *P < 0.05, **P < 0.01. NS, not significant.
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negatively associated with the expression of the critical immune
checkpoints (TNFRSF14 and CD40) (Figures 6B, C), indicating
that the poor prognosis of high IGPM patients might be due to the
tumor immunosuppressive microenvironment.

We further found that there was no significant correlation
between the risk score and TMB representing nonsynonymous
variants (Figure 6D). Also, there was no significant difference in
TMB between patients with high IGPM and low IGPM (Figure
6E). However, we found that high TMB was associated with good
OS (Log-rank test, P < 0.05, Figure 6F). Considering that the
TMB predictive value was not very high in the TCGA-STAD
cohort, we explored whether the combination of IGPM and TMB
could be a more powerful predictive biomarker for the prognosis.
We integrated IGPM and TMB to stratify all the samples into
high TMB/low IGPM, low TMB/low IGPM, high TMB/high
IGPM, and low TMB/high IGPM groups. As shown in Figure
6G, significant differences were found among all groups (Log-
rank test, P < 0.0001), and patients in the high TMB/low IGPM
group exhibited the best OS. These results together strongly
demonstrated that the risk score was positively correlated with
tumor malignancy.

Establishment and Validation of a
Nomogram Combined With Clinical
Characteristics
As the risk score was significantly correlated with high
malignancy, we examined whether the IGPM‐based risk
signature could serve as an independent prognostic factor for
GC patients through univariate and multivariate Cox regression
analysis. The IGPM‐based risk signature, together with age,
gender, AJCC stage, and Lauren classification were enrolled as
covariates to perform the analysis. The results demonstrated that
the p value of the IGPM‐based risk signature was less than
0.0001, confirming that the IGPM‐based risk signature could be
utilized to predict the prognosis of GC patients (Table 1).

Combining the above factors, we constructed a nomogram to
broaden the clinical application and usability of the IGPM‐based
Frontiers in Oncology | www.frontiersin.org 10
risk signature (Figure 7A). Every patient was assigned with a
total point value by adding the point for each prognostic
parameter. Higher total points corresponded to a worse clinical
outcome of patients. The ROC curve indicated that the
nomogram had good predictive ability and accuracy for
survival status (Figure 7B). Furthermore, the calibration plot
showed that the nomogram had similar performance to that of
an ideal model (Figure 7C).
DISCUSSION

In recent years, GC classification on the basis of multi-omics
profiling has been extensively investigated, and these efforts might
lay the foundation for developing new biomarkers and drug targets
for GC (30, 31). It has also been demonstrated that the stratification
of GC patients based on immunological characteristics may
improve the survival rates of patients (32); however, the tumor-
immune interactions were not considered sufficiently in these
studies. In the present study, we identified two immune-
related GC subtypes, Immunity_H and Immunity_L using
immunogenomic profiling, and characterized the subtype-specific
molecular features, including genes, pathways, and networks.

Immunity_H had stronger immune cell infiltration and higher
expressed HLA genes, indicating stronger immunogenicity
compared to Immunity_L. The Immunity_H subtype was not
only enriched in immune-related signatures but also many cancer-
associated pathways, including apoptosis, p53 signaling, PI3K-Akt
signaling, and KRAS signaling. These results are consistent with
previous reports showing that diverse immune signatures are
positively correlated with the JAK-STAT3 and PI3K-Akt
signaling pathways (33, 34). Importantly, our results revealed
the potential associations between pathway activities and
immune activities in GC.

Based on the expression of six immune genes, we developed the
IGPM-based risk signature, a novel prognostic tool for predicting
survival in GC, and demonstrated its predictive value of prognosis
TABLE 1 | Univariable and multivariable Cox analyses for clinical characteristics and IGPM in the TCGA-STAD cohort.

Variables Univariable Cox analysis Multivariable Cox analysis

Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value

Age 1 (1–1) 0.01 1.04 (1.01–1.06) 0.002
Gender
Female 1
Male 1.3 (0.91–1.8) 0.15 1.2 (0.76–1.89) 0.431

AJCC Stage
Stage I 1
Stage II 1.55 (0.78–3.08) 3e-04 1.98 (0.77–5.08) 0.157
Stage III 2.39 (1.26–4.52) 5e-04 2.88 (1.23–6.75) 0.015
Stage IV 3.83 (1.85–7.90) 3e-04 8.86 (3.44–22.79) 6.07e-06

Lauren Classification
Diffuse 1
Intestinal 0.84 (0.55–1.3) 0.43 0.68 (0.43–1.07) 0.093

IGPM
High 1
Low 0.43 (0.31–0.61) 1.6e-06 0.39 (0.25–0.61) 3.13e-05
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in three independent datasets by a machine learning approach. The
results showed a clear separation of OS curves between patients with
high- and low-risk scores. The predictive value of the IGPM-based
risk signature was also consistent with that of clinical variables and
immune cell infiltrates.

Among six genes used to construct the IGPM-based risk
signature, five of them have been reported to contribute to
carcinogenesis and may be promising therapeutic targets. IL2RG
(interleukin-2 receptor subunit gamma), a gene encoding the IL2
gamma receptor (Il2Rg) is overexpressed in pancreatic
intraepithelial neoplasia and induces pancreatic cancer growth
by activating the JAK/STAT pathway (35). IL33 (interleukin 33)
induces the phosphorylation of c-Jun N terminal kinase (JNK),
recruits macrophages into the cancer microenvironment, and
promotes the carcinogenesis of colon cancer (36). CCL25
(chemotactic cytokines 25) can promote the proliferation by
activating the AKT signaling and intratumoral delivery of
CCL25 may enhance immunotherapy (37). BMP7, a member of
the TGFB superfamily, inhibits the MAPK14 signaling pathway
and induces resistance to anti-PD1 therapy (29). Gastrokine 1
(GKN1) has been found to suppress GC cell growth by activating
Frontiers in Oncology | www.frontiersin.org 11
the p16/Rb pathway (38). IGLV5-48 (Immunoglobulin Lambda
Variable 5-48) is a protein coding gene; however, its function and
molecular mechanism are not clear. This prompted us to further
investigate the molecular mechanisms of these genes in GC in
future studies.

Of note, we observed two immune checkpoint genes
TNFRSF14 and CD40 had a significant negative correlation
with the IGPM-based risk signature, which is consistent with
previous studies. It has been reported that TNFRSF14 loss results
in microenvironmental changes that support lymphoma growth
and the expression of TNFRSF14 plays a role in the pathobiology
and prognosis in follicular lymphoma (39, 40). Moreover, CD40
activation plays a critical role in generating T cell immunity,
especially in combination with chemotherapy, checkpoint
inhibitory antibodies, and other immune modulators (41).

In this study, we concluded that GC patients with higher
TMB had a better prognosis compared with those with lower
TMB. Similar results have been obtained in other cancer types,
emphasizing that TMB could be an independent biomarker to
guide more effective immunotherapy strategies and bring out
improved prognosis (42, 43). However, we did not observe a
A

B C

FIGURE 7 | The construction and verification of the nomogram. (A) Nomogram constructed in conjunction with the IGPM-based risk signature and clinical
characterization. (B) The ROC curve and AUC of the predictions for 1, 3, and 5 years of the nomogram for TCGA-STAD cohort. (C) The calibration plot of the
nomogram for TCGA-STAD cohort.
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significant correlation between the IGPM-based risk signature
and TMB. The stratified survival analysis combining TMB and
the IGPM-based risk signature revealed that the TMB status did
not interfere with the prognostic value of the IGPM-based risk
signature. These findings together indicated that the IGPM-
based risk signature might help facilitate the measurement of
the response to immunotherapy.
CONCLUSION

In summary, we have elucidated the comprehensive landscape of
tumor-immune interactions in GC and established the IGPM-
based risk signature to predict the prognosis of GC patients with
the help of several computational algorithms. As all patients in this
study were selected retrospectively, the six-gene signature should
be further validated in prospective cohorts of high-quality clinical
samples to reduce the potential bias derived from unbalanced
clinicopathological features with treatment heterogeneity. Further
investigations on detailed molecular mechanisms are needed to
facilitate the precision immunotherapy, as well as the accurate and
reliable applications in the clinic.
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