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Purpose: To examine the ability of computed tomography radiomic features in
multivariate analysis and construct radiomic model for identification of the the WHO/
ISUP pathological grade of clear cell renal cell carcinoma (ccRCC).

Methods: This was a retrospective study using data of four hospitals from January 2018
to August 2019. There were 197 patients with a definitive diagnosis of ccRCC by post-
surgery pathology or biopsy. These subjects were divided into the training set (n = 122)
and the independent external validation set (n = 75). Two phases of Enhanced CT images
(corticomedullary phase, nephrographic phase) of ccRCC were used for whole tumor
Volume of interest (VOI) plots. The IBEX radiomic software package in Matlab was used to
extract the radiomic features of whole tumor VOI images. Next, the Mann–Whitney U test
and minimum redundancy-maximum relevance algorithm(mRMR) was used for feature
dimensionality reduction. Next, logistic regression combined with Akaike information
criterion was used to select the best prediction model. The performance of the
prediction model was assessed in the independent external validation cohorts. Receiver
Operating Characteristic curve (ROC) was used to evaluate the discrimination of ccRCC in
the training and independent external validation sets.

Results: The logistic regression prediction model constructed with seven radiomic
features showed the best performance in identification for WHO/ISUP pathological
grades. The Area Under Curve (AUC) of the training set was 0.89, the sensitivity comes
to 0.85 and specificity was 0.84. In the independent external validation set, the AUC of the
prediction model was 0.81, the sensitivity comes to 0.58, and specificity was 0.95.

Conclusion: A radiological model constructed from CT radiomic features can effectively
predict the WHO/ISUP pathological grade of CCRCC tumors and has a certain clinical
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generalization ability, which provides an effective value for patient prognosis and
treatment.
Keywords: computed tomography, multicenter study, WHO pathological grade, radiomic features, radiological
model, clear cell renal cell carcinoma (ccRCC)
INTRODUCTION

Renal cell carcinoma (RCC) is one of the most common primary
malignancies, and clear cell renal cell carcinoma(ccRCC)is the
most common subtypes accounting for 60–85% of renal
malignancies (1, 2). ccRCC exhibits have high invasive
potential. The pathologic nuclear grade of ccRCC is strongly
correlated with the 5-year survival rate (3). A higher pathologic
nuclear grade implies a worse prognosis. Nuclear grades are an
independent prognostic factor for renal tumors (4, 5).

The Fuhrman grading system was the widely used pathology
grading system previously, which individual the Fuhrman grade
by the cell nucleus size of tumor cells, cell nuclear morphology,
and nucleolar prominence. These three parameters are used to
classify RCC into four grades (6, 7). However, there has always
been a controversy over the Fuhrman grading system. First, this
grading system uses three parallel parameters but these
parameters may contradict each other in clinical practice.
Second, there exists subjective bias on nuclear morphology and
nuclear diameter resulting in low repeatability for nuclear
grading between pathologists (8, 9).

In order to solve the problems associated with the Furhman
grading system, the World Health Organization and
International Society of Urological Pathology proposed the
WHO/ISUP grading system. This grading system only
evaluates nucleolar prominence and classifies tumors into
grades I-IV. The determination criteria are simplified and
clear, which increases the accuracy of grading kidney cancer
(10, 11). Dagher et al. compared the new and old grading system
and found that the WHO/ISUP grade is a better independent
prognostic factor (12).

Previous ccRCC studies found a correlation between image
characterization and Furhman grading (13), but the current
clinicopathological nuclear grading criteria have changed, and
thus there is a need to reevaluate Radiological studies related to
the new grading system. We collected ccRCC image data from
many hospitals aimed to create a prediction model based on CT
radiomic features with predicting the WHO/ISUP pathological
grade of ccRCC. The generalization of the external data build the
independent external validation and evaluation model offered
preoperative prediction of WHO/ISUP grade and improves
patient prognosis.
MATERIALS AND METHODS

Patients
This retrospective study was approved by the Hospital Review
Board. The requirement for informed consent was waived. This
2

study included the CT examination of 197 patients with ccRCC
confirmed by two pathologists biopsy or surgical resection above
four hospitals from January 2018 to August 2019. Of these, 122
patients’ data in the First Hospital of Zhejiang Province were
used as the training set, and 75 cases from other three hospitals
(Ningbo First Hospital/Zhejiang Cancer Hospital/Yijishan
Hospital of Wannan Medical College) were used for external
independent external validation (Table 1).

The inclusion criteria were: (1) All patients received enhanced
kidneys CT examination before surgical resection including plain
scans, corticomedullary phase, and nephrographic phase; (2)
There are at least 7 layers in the CT lesion axial image; (3) All
tumors underwent surgical resection or percutaneous biopsy and
were pathologically confirmed ccRCC; (4) No patients received
any treatment before the CT examination. Patients whose image
data influenced significantly by artifacts presenced in CT
examination were exclusion criteria. In previous studies,
WHO/ISUP grades I–II were classified as low-grade and grades
III–IV were high-grade.

CT Technique
CT examtions were obtained from four hospital’s different CT
scanners. Patients were given the peripheral intravenous
injection of iohexol (300mg/ml non-ionic contrast agent) via a
high-pressure injector at a flow rate of 2.5–3.0 ml/s and a total
dose of 80–100mL (1.0 ml/kg). The scanning range is from the
adrenal region to the kidney’s inferior pole. after The
corticomedullary phase (CMP) of relative enhanced scan was
TABLE 1 | Patient characteristics and image features in the training and
validation cohorts.

Characteristic
and feature

Training
(N = 122)

Validation
(N = 75)

p-
value

Tumor Size (cm) 5.2 ± 1.5 5.3 ± 1.7 0.820
Age
Range(year) 16–78 18–75 0.364

Sex (number) 0.420
Male 64 48
Female 58 27

WHO/ISUP Grade 0.943
Low Grade (I, II) 80 50
High Grade (III, IV) 42 25

Location (number) 0.203
Left kindey 74 51
Right kindey 48 24

Calcification (number) 1.000
Without 60 37
With 62 38

Number of Tumors 0.451
Single 100 65
Multiple 22 10
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started 25–28 s after the contrast agent injected from,
The enhanced scan for the nephrographic phase (NP) of the
kidneys was started 65–70s after intravenous infusion. The CMP
and the NP began 25–28 s and 65–70 s after contrast injection,
respectively. The scanning and reconstruction parameters of
the four CT scanners are shown in Table 2.

Demographic and Clinical
Characteristic Analysis
The Chi-square test was used to compare the qualitative variables
while the t-test was used for comparison of continuous variables.
R software version 3.3.2 (http://www.R-project.org) was used for
statistical analysis of the data.

Process of Radiomics Analysis
The IBEX software package in Matlab was used for tumor
separation and extraction of radiomic features (14). We
manually outlined the tumor boundaries layer-by-layer in CT
images of the CMP and the NP. The first and last layers were
discarded, and the remaining layers were combined to obtain the
volume of interest (VOI). The lesion boundaries cannot be
accurately identified in the tumor boundary and were not used
in this study. At the early stage of the study, we randomly
selected images from 20 patients and two radiologists with 10 or
more years of work experience; independently outlined the VOI.
The intra-class correlation coefficient (ICC) was used to evaluate
consistency. The VOI extraction of the remaining images was
carried out by one radiologist. The features with low repeatability
were discarded and features with ICC>0.85 were retained.

The radiomic feature include six major types: intensity
histogram, intensity direct, gray level co-occurrence matrix,
neighbor intensity difference, gray level run length matrix,
morphology and size. The 760 radiomic features were
extracted from every VOI. Different computer tomography and
scanning parameter will affect the texture parameters. Orlhac
et al. proved that the COMBAT compensation algorithm was
used to calibrate radiomic data from multiple centers which is
entirely data-driven and does not require resampling of CT
images in advance (15).

To reduce the number of unrelated and redundant radiomic
features, the Mann-Whitney U test was first used on the training
set to evaluate the statistical ability of high/low grade for every
feature region; features with p<0.05 were retained. Next, the
minimum redundancy–maximum relevance score (mRMR) was
Frontiers in Oncology | www.frontiersin.org 3
used to sort potential features and obtain the feature subset.
Finally, the Akaike information criterion (AIC) was used as a
stop criterion and stepwise logistic regression was used to select
final features and construct the best radiomic prediction
model (16).

Performance Evaluation
Discrimination, clinical translational value, and calibration were
used for detailed evaluation of the prediction model for the
training set. Receiver operating characteristic curves (ROC) were
used to evaluate the discrimination of the prediction model for
low/high ccRCC grade. The decision curve was used to observe
whether the model has clinical effectiveness. Next, the model was
further valuated by external validation data.
RESULTS

The baseline characteristics of the patients are shown in Table 1.
There were no significant statistical differences between the
demographic or clinical characteristics between the training set
and the independent external validation set (p > 0.05). Of the
1520 radiomic features in the CMP and NP phases, 1338 had
good repeatability (intraclass correlation coefficient of ≥0.85),
and the dimensionality reduction section was based on these
features. First, with the minimum redundancy–maximum
relevance score (mRMR) algorithm applied, 20 features was
used to select the best subset. Second, AIC-based stepwise
logistic regression was exploited in further filtering of features.
Finally, six features were retained: Three were CMP features, and
three were NP features. The feature selection results are
summarized in Table 3. Table 3 lists the contribution of every
prediction variable in the 2 models and the performance of the
model in the training/validation set.

The AUC of the prediction model in the training set was 0.89,
sensitivity was 0.85, and specificity was 0.84. In the independent
external validation set, the AUC of the prediction model was
0.81, sensitivity was 0.58, and specificity was 0.95, discrimination
was a bit decreased versus the training set (Figure 1). As shown
in Figure 2, the decision curves of the predictive model in the
training and independent external validation sets. The Figure 3
shows that the predictive model has good clinical net benefit
threshold probabilities of 10–100% in the training set. In the
independent external validation set, the clinical net benefit range
TABLE 2 | The protocols of the CT scan for the patients with a renal mass.

CT scanner CT256 CT64 CT64 CT320

Scanner model Brillance-Ict Revolution EVO Definition Flash Aquilion ONE
Manufacturer Philips General Electric SIEMENS Toshiba
Tube voltage (Kv) 120 120 120 120
Tube current(mAs) 300-350 Automas,300-350 CAREDose4D 350 AIDR 3D 350
Collimation (mm) 128*0.625 64*0.625 64*0.6 160*0.625
Kernel Stardand(B) Standard B30f Fc10
Slice thickness (mm) 5 5 5 5
Field of view (mm2) 350 × 350 350 × 350 350 × 350 350 × 350
Matrix 512 × 512 512 × 512 512 × 512 512 × 512
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has threshold probabilities of 10–85%. In addition, the net
benefit of the training set model was higher than the
independent external validation set.

The calibration curve of the training set shows very good
consistency between the prediction probability and observed
Frontiers in Oncology | www.frontiersin.org 4
frequency. The goodness of fit between the prediction
probability and observed frequency in the calibration curve of
the validation set is not as good as the training set. The prediction
model shows good prediction performance in the training and
validation sets. However, in comparison, the prediction
FIGURE 1 | ROC graph. Receiver operating characteristic curves (ROC) were used to evaluate the discrimination of the prediction model for low/high grade CCRCC.
FIGURE 2 | DCA graph. See attached clinical decision curve: training set validation set, the decision curve was used to observe whether the model has clinical effectiveness.
TABLE 3 | Risk factors for the differentiation of high from low grade ccRCC.

Variable Feature Class Coeffcient OR (95% CI) p value

Intercept 1.35 0.44
Sum Average (CMP) Gray Level Cooccurence Matrix (n = 594) -0.018 0.982(0.953, 1.016) 0.08
Contrast (CMP) Neighbor Intensity Difference(n = 10) -0.015 0.984(0.972, 0.998) 0.02
50 Percentile Area(CMP) Intensity Histogram(n = 48) -0.15 0.864(0.731, 0.985) 0.04
Local StdMedian (NP) Intensity Direct(n = 56) -0.56 0.575(0.513, 0.626) <0.001
Busyness (NP) Neighbor Intensity Difference -1.56 0.213(0.182, 0.245) 0.04
Coarseness (NP) Neighbor Intensity Difference 1.5 4.486(2.712, 7.347) 0.04
F
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performance of the training set was better and performance
decreased in the independent external validation set.
DISCUSSION

We constructed new CT radiomic prediction models for new
ccRCC pathologic nuclear grades. The model not only
demonstrates outstanding ability to discriminate low/high
WHO/ISUP grades in the training set but also offered good
performance in the external independent test data at the same
time. Many past studies demonstrate that imaging characteristics
have potential value in distinguishing Fuhrman grades. Zhu et al.
found that low enhancement at the CMP is an independent
predictor for high-grade tumors. Huhdanpaa et al. (17) found
that the interquartile range of histogram parameters at the NP
can distinguish low/high Fuhrman grades. Radiomic studies
employ and screen image feature parameters, and use machine
Frontiers in Oncology | www.frontiersin.org 5
learning algorithms to construct nuclear grade classification
models. The results of these studies are better than early
researchs. Shu et al. (18) employed radiomics for Fuhrman
grade prediction to set a CMP radiomic model, a NP phase
radiomic model, and a combination of the two phases, the result
of AUC was 0.77, 0.81, and 0.82, respectively. Ding et al. (19) find
when only texture parameters were used in Fuhrman grade
prediction, the original of AUC comes to 0.84, and that
increased to 0.87 after some non-texture parameters were
added. Good results were shown in these prior studies.
However, due to the the classification confusion stardand, we
cannot avoid the reality that the Fuhrman grading system has
been abandoned in clinical practice.

Studies based on the new WHO/ISUP grading system will
undoubtedly have important practical and clinical significance.
Currently there are relatively few radiological studies based on
the WHO/ISUP grading system: Sun et al. (20) similarly used a
combined the CMP and the NP phase model to predict the
FIGURE 3 | Calibration curve. Calibration data show the relationship between predicted risk and actual risk.
February 2021 | Volume 11 | Article 543854

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Radiological Model Predict Pathological Grade
WHO/ISUP pathological grade. The highest AUC was 0.88 while
sensitivity and specificity were 0.83 and 0.89, respectively. Shu
et al. also simultaneously compared the performance of multiple
machine learning algorithms in predicting the WHO/ISUP
grade; the AUC basically remained above 0.90. Our results are
similar to other studies while the performance of radiomic
models for WHO/ISUP grading is slightly better than the
previous Fuhrman grading results. This may be related to the
more accurate WHO/ISUP grading Indeed, in our case review of
ccRCC patients, we often encounter inaccurate Fuhrman grades
such as pathological reports of Fuhrman II or Fuhrman III
grades. These ambiguous results will inevitably lead to
problems in studies on Fuhrman grades.

We note that many past nuclear grade radiomic studies only
offered internal independent external validation in which data
were simply divided into a 7:3 ratio, into a training set and
validation set; all data were obtained from a single instrument in
a single center. The good results were only based on a single
center’s data for ignoring the acquisition parameters in varying
degrees always affect radiomic features. Therefore, these models
will inevitably have different degrees of overfitting. Thus, a
single-center study has limitations, and an independent
external validation data is required for predictive models that
accurately evaluate generalization.

The strength of this study is data from three other hospitals
were collected to construct the independent validation dataset.
The AUC of the predictive model in independent external
validation decreased, but the decrease is small; the AUC was
still 0.80 with a good model performance. The independent
external validation decreased to 0.58, We speculated that there
are differences in the data from the three hospitals, and the ratios
of low/high grades in the data are not identical. This can decrease
the independent external validation performance. However, this
fits closer to actual clinical practice data and shows that the
predictive model in this study can be generalized.

The early diagnosis rate of ccRCC has been significantly
improved, but a kidney cancer patient with tumor diameter
<4 cm may have potential metastasis at initial diagnosis. Even if
radical nephrectomy or partial nephrectomy was carried out in
early stage kidney cancer, 20–30% of patients still develop local
or distal metastasis. The pathologic nuclear grade of ccRCC is
correlated with metastatic potential and affects patient prognosis.
Therefore, the early prediction of the nuclear grade is extremely
important which is of great significance for clinical decisions and
improving the long-term survival and quality-of-life.

This study has several limitations: (1) Although independent
external validation was carried out, the sample size was still
relatively small and the sensitivity of the prediction model was
relatively low. The reason may be mainly attributed to the fact
that our external validation set is actually a combination of
different data from three different hospitals acquired with
different equipment. Therefore, it is understandable that the
radiomics parameters may vary to some extent. Although the
COMBAT algorithm was used to correct the data, the ability of
this algorithm may still not strong enough to overcome the data
variation. (2) The predictive model in this study was limited to
Frontiers in Oncology | www.frontiersin.org 6
only distinguish high/low-grade ccRCC. However, in clinical
practice, it is more important to identify the malignancy of
RCC. (3) We did not include subjective image features as they
are affected by the experience of radiologists. We also did not
include the clinical characteristics in our model. The main
reason may due to that several studies have indicated the
relatively low specificity of clinical features in predicting the
grade of CCRCC. (4) Our study did not include plain CT scans
because, it is difficult to identify the boundaries of certain
ccRCC tumors based on experience. However, some reports
claimed that plain CT texture analysis can still be used to
predict the nuclear grade of CCRCC. We believe in the future,
there will be new semi-automated software identify
RCC boundaries.
CONCLUSION

In the era of precision medicine, nuclear grade prediction will aid in
clinical decision-making and prognosis. Multicenter internal/external
validation proved that CT radiomics can accurately predict the
WHO/ISUP grade which means the CT radiomic prediction
model can be used as an auxiliary tool for prediction of the WHO/
ISUP grade in ccRCC and aid in personalized treatment.
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