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Objective: Triple negative breast cancer (TNBC) is an aggressive subtype of

breast cancer, characterized by extensive intratumoral heterogeneity. We aimed to

systematically characterize the tumor heterogeneity of TNBC.

Methods: Single-cell RNA sequencing (scRNA-seq) of TNBC cells were obtained from

the GSE118389 and GSE75688 datasets. After integration of the two datasets, cell

clustering analysis was performed using the Seurat package. According to the marker

genes of cell cycle, cell cycle of each cell cluster was determined. Then, function

enrichment analysis of marker genes in each cell cluster was performed, followed

by ligand–receptor signaling network analysis. CIBERSORT was used to estimate the

proportion of 22 immune cells in each sample based on RNA-seq data of 58 normal

adjacent tissues and 101 TNBC tissues. After that, prognostic value of immune cells

was assessed.

Results: In the integrated datasets, five cells types including B cells, myeloid cells,

stromal cells, T cells, and tumor cells were clustered. Functional enrichment analysis

revealed the functional heterogeneity of genes in each cell. Intercellular communication

networks were conducted based on ligand–receptor pairs. The heterogeneity in the

fractions of 22 immune cells was found in TNBC tissues. Furthermore, there was a

significant difference in the fractions of these immune cells between adjacent normal

tissues and TNBC tissues. Among them, M2 macrophages and neutrophils were

significantly associated with clinical outcomes of TNBC. Moreover, the fractions of T

cells CD4 memory resting, monocytes, neutrophils, M1 macrophages, and T cells CD4

memory activated were significantly correlated with clinical characteristics of TNBC. As

shown in PCA results, these immune cells could significantly distinguish TNBC tissues

into adjacent normal tissues.

Conclusion: Our findings characterized the tumor heterogeneity of TNBC, which

deepened the understanding of the complex interactions between tumor cells and their

microenvironment, especially immune cells.

Keywords: triple negative breast cancer, single-cell RNA-seq, immune cells, heterogeneity,

tumor microenvironment
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INTRODUCTION

TNBC is an aggressive subtype of breast cancer (accounting for
12–18%) (1). TNBC patients are often more likely to develop
local recurrence and distant metastases than other types (2).
As expected, patients with TNBC have worse clinical outcomes.
Due to lack of estrogen receptor (ER), progesterone receptor
(PR) and HER2 receptors, patients with TNBC are not sensitive
to hormone or anti-Her2 therapy. But TNBC is more sensitive
to chemotherapy, thus, chemotherapy has become a critical
treatment. Yet, as a heterogeneous disease, biomarkers are
still lacking for individualized treatment of TNBC, especially
immunotherapy (3). Given the high heterogeneity of TNBC,
an understanding of the molecular pathogenesis is crucial for
developing novel therapeutic strategies.

Single-cell RNA-seq has confirmed the extensive intratumoral
heterogeneity in TNBC, which may become a promising
clinical application for TNBC therapy. As previous studies,
through single-cell RNA-seq, genes resistant to neoadjuvant
chemotherapy have been detected for TNBC (4). With the
development of single-cell RNA-seq, tumor cells can be
monitored to assess tumor heterogeneity and sensitively detect
early recurrent tumors as well as rare cell populations. Accurate
characterization of tumor transcriptome heterogeneity and
gene expression profile of tumor and microenvironment may
assist determine sensitive prognostic markers and therapeutic
targets (5). Research on tumor heterogeneity may promote
the development of molecular targeted therapy of TNBC.
The tumor microenvironment composed of cancer-related
fibroblasts and immune cells plays a key role in the occurrence,
development, and treatment resistance of TNBC (2, 6, 7).
The tumor microenvironment has a profound impact on the
immunotherapy of TNBC. Thus, the characterization of tumor-
infiltrating immune cells may provide better strategies to
overcome immunosuppression.

Collectively, in this study, we analyzed the intratumoral
heterogeneity and cell-to-cell communication in TNBC.
Furthermore, immune cell compositions and their clinical
implications were explored. Our study provided a deeper
understanding of the heterogeneity of TNBC.

MATERIALS AND METHODS

Acquisition of Single-Cell RNA-seq Data
Single-cell RNA-seq data of 205 TNBC cells from five TNBC
patients were obtained from the Gene Expression Omnibus
database (GEO; accession: GSE75688) (5). Furthermore, single
cell RNA-seq of 1,534 cells in six fresh TNBC tumors from the
GSE118389 dataset was also downloaded.

Abbreviations: TNBC, triple negative breast cancer; scRNA-seq, single-cell

RNA sequencing; ER, estrogen receptor; PR, progesterone receptor; UMI,

unique molecular identifiers; PCA, principal component analysis; PCs, principal

components; UMAP, Uniform Manifold Approximation and Projection; tSNE, t-

distributed stochastic neighbor embedding; FC, fold change; GO, Gene Ontology;

BRCA, breast invasive carcinoma; TCGA, The Cancer Genome Atlas; BP,

biological process; CC, cellular component; MF, molecular function.

Quality Control
Because the GSE118389 dataset had been quality controlled,
quality control was only presented on the GSE75688 dataset.
The DropletUtils package in R was used to detect the gene
expression of each cell, and no barcoded expression was filtered
out (8). According to the number of unique molecular identifiers
(UMI) of each cell, cells were filtered out again. Using the
calculatQCMetrics in the scater package, the gene expression in
each cell was counted (9). Then, cells were filtered out with the
threshold of the ratio of mitochondrial genes≤5% and ribosomal
genes ≥10%. The NormalizeData in the Seurat package was used
to normalize the expression matrix of each cell after filtering (10).

Principal Component Analysis (PCA)
The first 2,000 genes with the most significant differences among
cells were identified through the FindVariableFeatures in the
Seurat package. Focusing on these genes in downstream analysis
helps highlight biological signals in single-cell RNA-seq. The
ScaleData in the Seurat package was then used to linearly scale
the single-cell RNA-seq data, which regressed the heterogeneity
associated with cell cycle stages or mitochondrial contamination
[pbmc <- ScaleData(pbmc, vars.to.regress = “percent.mt”)].
Next, linear dimensionality reduction analysis was presented by
the RunPCA in the Seurat package.

Cell Clustering and Identification of Marker
Genes
First, the principal components (PCs) with larger standard
deviations (cumulative standard deviation >70%) were selected
out. The Seurat package was used to standardize the expression
matrix of the GSE118389 dataset after filtration and conversion.
The two datasets were merged to obtain a total of 1,687 cells.
The integration method of the two datasets was as follows:
The TPM expression matrices of the two datasets were first
loaded separately. After taking the intersection of the genes of
the two datasets, “SeuratObject” was constructed, respectively.
The GSE75688 dataset was defined as “reference” and the
GSE118389 dataset was defined as “query”. “NormalizeData”,
“FindVariableFeatures,” and “ScaleData” were separately
performed on the data of the two datasets. The “anchor”
of the GSE75688 reference dataset was determined through
“FindTransferAnchors.” Then, based on the “anchors” of the
reference dataset, the cell type of the “query” dataset was
scored and predicted, and the type of each cell of the “query”
dataset was defined. The “anchors” of the two datasets was
determined through FindIntegrationAnchors. Then based on
the “anchors,” the two datasets were merged. The FindNeighbors
and FindClusters in the Seurat package were used for cell cluster
analysis.Via the runUMAP in the Seurat package, dimensionality
reduction (Uniform Manifold Approximation and Projection,
UMAP) and non-linear dimensionality reduction (t-distributed
stochastic neighbor embedding, tSNE) analyses were presented.
Through the FindAllMarkers in the Seurat package, marker genes
for each cell cluster according to the following screening criteria:
|log fold change (FC)| ≥1 and adjusted p-value (according to the
default false discovery rate adjustment) ≤0.05.
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Cell Cycle Analysis
According to the marker genes of cell cycle, the cell cycle of each
cell cluster was counted using the Seurat package (11). Then,
all cells were divided into G1, G2M, and S phases based on
their scores.

Function Enrichment Analysis and
Ligand–Receptor Signaling Network
Analysis
Based on the Gene Ontology (GO) database and KEGG
pathway database, functional enrichment analysis of marker
genes (log2FC ≥ 1, adjusted p ≤ 0.05) of each cell type was
performed to explore their potential biological functions and
pathways (12, 13). GO terms contained biological process (GO-
BP), cellular component (GO-CC) and molecular function (GO-
MF). p < 0.05 was considered significantly enriched. The ligand–
receptor pairs in markers of each type of cells were evaluated
based on published literature (14). Based on the ligand receptor
network diagram of the cell type, the detailed relationship
network diagram of the ligand receptor in each cell type and the
relationship network diagram of the designated ligand receptor
and each cell group were separately constructed. Moreover, the
number of ligand–receptor relationship pairs was counted.

RNA-seq Data
Level 3 RNA-seq data of 1,097 breast invasive carcinoma
(BRCA) samples were downloaded from The Cancer Genome
Atlas (TCGA; https://cancergenome.nih.gov/) database. TNBC
samples were screened as follows: (1) ER (–), PR (–), and HER2
(–); (2) complete clinical information. Finally, a total of 113
adjacent normal samples and 112 TNBC samples were obtained
for this study. Clinical information of patients is shown in

TABLE 1 | Clinical characteristics of patients with TNBC in the TCGA datasets.

Clinical characteristics Groups Patient n (%)

Survival status Alive 100(89.3)

Dead 12(10.7)

Age ≤65 94(83.9)

> 65 18(16.1)

Pathologic stage Stage I 19(16.9)

Stage II 72(64.3)

Stage III 19(16.9)

Stage IV 2(1.8)

Pathologic T T1 26(23.2)

T2 71(63.4)

T3 12(10.7)

T4 3(2.7)

Pathologic M M0 96(85.7)

M1 2(1.8)

Mx 14(12.5)

Pathologic N N0 73(65.2)

N1 25(22.3)

N2 10(8.9)

N3 4(3.6)

Table 1. The differences in expression of key genes were analyzed
between TNBC and normal tissues via Wilcoxon rank-sum test.
p < 0.05 was considered statistically significant.

Estimation of Immune Infiltration
CIBERSORT (http://cibersort.stanford.edu/), a deconvolution
algorithm developed by Newman et al., was used to estimate
the abundance of cell types in mixed cell populations based on
TNBC RNA-seq data (8). The proportion of 22 immune cells in
each sample was calculated and an algorithm was run on 1,000
permutations with the LM22 feature matrix. For each sample, the
sum of the proportion of all immune cell types was equal to 1.

Prognostic Value of Immune Infiltration
To assess the prognostic value of immune cells, cox regression
analysis was used to evaluate the correlation between immune
cell proportion and survival time. In addition, we investigated
the correlation between immune cell proportion and clinical
characteristics including stage and pathologic TNM by Spearman
test. p < 0.05 was considered statistically significant.

RESULTS

Quality Control and Preprocessing of
Single-Cell RNA-seq
Single-cell RNA-seq data of 205 TNBC cells in the GSE75688
dataset were quality controlled in this study. We calculated
each barcode corresponding to each cell using the barcodeRanks
function in the DropletUtils package. All cells were ranked by
total UMI count (Figure 1A). With the emptyDrops function,
barcodes without any gene expression were filtered out, which
might not contain any cells. To further filter our cells with low
quality, genes expressed in each cell were counted using the
calculatQCMetrics in the scater package (Figure 1B). Herein,
we filtered out cells with the threshold of the proportion of
mitochondrial genes≤5% and ribosomal genes≥10%. Also, cells
expressing <100 genes were filtered out. Then the proportion
of mitochondrial and ribosomal genes expressed in each cell
was counted again (Figure 1C). Cells with mitochondrial gene
expression >5% and ribosomal gene expression <10% were
filtered out. After that, the number of cells was counted based
on genes again (Figure 1D). No cells were finally removed in
this study. The top 20 genes with high number of expressed cells
such as MT-CO2, B2M, MT-CO1, and MT-CO3 were displayed
in Figure 1E. Intriguingly, genes that encode mitochondrially
encoded cytochrome c oxidase were obviously expressed in
almost all cells. These data indicated that apoptotic cells could
express mitochondrial genes and export these transcripts to the
cytoplasm, thereby increasing the proportion of mitochondrial
transcripts detected.

PCA-Based Classification
PCA, one of the most extensive dimensionality reduction
techniques, can quantify and visualize variability in large
data sets. Based on normalized data, the first four PCs
were visualized in the GSE75688 (Figure 2A) and GSE118389
(Figure 2B) datasets. As shown in Figures 2C,D, PCA analysis
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FIGURE 1 | Quality control and preprocessing of single-cell RNA-seq of TNBC cells in the GSE75688 dataset. (A) Cell ranking according to the total UMI count. (B)

The proportion of mitochondrial genes and ribosomal genes in each cell using the calculateQCMetrics of the scater package. (C) The ratio of mitochondrial and

ribosomal genes expressed in each cell after filtering out cells with expressed genes < 100. (D) After filtrating cells with the proportion of mitochondrial genes > 5%

and ribosomal genes < 10%, the number of cells was counted. (E) The top 20 genes with the high number of expressed cells.
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FIGURE 2 | PCA-based classification for single-cell RNA-seq of TNBC cells in the GSE75688 and GSE118389 datasets. (A, B) The first four principal components of

the normalized data in the GSE75688 and GSE118389 datasets. (C, D) The PCA results of all TNBC cells and normal cells in the two datasets. Each dot represents a

cell. (E, F) Heat maps showing the expression patterns of the top 10 marker genes among different cells in the first nine principal components from the GSE75688

and GSE118389 datasets.

of all genes was separately performed in the two datasets.
Since PCA is a linear dimensionality reduction model, the
differences between cells were not very significant. Furthermore,
we separately showed the top 10 marker genes in the
first nine PCs in the GSE75688 (Figure 2E) and GSE118389
(Figure 2F) datasets.

Cell Clustering Analysis
By UMAP, five cell clusters were visualized based on UMI data,
including B cells, myeloid cells, stromal cells, T cells, and tumor

cells in the GSE75688 and GSE118389 datasets, respectively
(Figure 3A). Then, we integrated the two datasets and Figure 3B
displayed the five cell clusters. Supplementary Tables 1–5 listed
the marker genes for each cell cluster. Heat map depicted the top
10 marker genes for each cell cluster in the integrated datasets
(Figure 3C).

Cell Cycle of Each Cell Cluster
To further analyze the cell cycle status, G1, S, and G2/M phase
markers were used to score cell cycle of each cell using the Seurat
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FIGURE 3 | Cell clustering analysis for single-cell RNA-seq of TNBC cells in the GSE75688 and GSE118389 datasets. (A) UMAP visualizing the cluster of immune

cells (B cells, myeloid and T cells), stromal cells and tumor cells from the GSE75688 and GSE118389 datasets, respectively. Different colors represent different cell

clusters. Red: B cells; light green: myeloid cells; dark green: stromal cells; blue: T cells; purple: tumor cells. (B) Cell clustering results after integrating the GSE75688

and GSE118389 datasets. (C) Heat map showing the expression patterns of the top 10 marker genes in each cell cluster of B cell, myeloid and T cell, stromal cell,

and tumor cell after integrating the two datasets.

package in the integrated GSE75688 and GSE118389 datasets. As
shown in Figure 4A, we visualized the cell cycle status in each cell
cluster. In all cell clusters, the number of cells in G1 phase was the
largest. Thus, B cells, myeloid cells, stromal cells, and tumor cells
were primarily in G1 phase indicating the high invasiveness of
TNBC. Figure 4B displayed the top 10 cell cycle-related markers
for each cell cluster. Furthermore, the expression levels of cell

cycle-related marker genes in S, G2M, and G1 were visualized in
Figure 4C.

Functional Enrichment Analysis of Genes
in Each Cell
GO and KEGG functional enrichment analyses of genes
in B cells, myeloid cells, stromal cells, T cells and tumor
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FIGURE 4 | Cell cycle of each cell cluster for single-cell RNA-seq of TNBC cells in the integrated GSE75688 and GSE118389 datasets. (A) The distribution of cell

cycle phases (G1, G2M, and S) in each cell cluster. (B) The heat map depicting the top 10 marker genes of each cell cycle and cell cycle score for each cell cluster.

(C) Ridge plot visualizing the expression levels of marker genes in different cell cycle phases.

cells were performed. As expected, the results showed that
genes in B cells were significantly associated with plasma
membrane and immune response (Figures 5A,B). The genes
in myeloid cells were mainly enriched in immune system
response (Figures 5C,D). For stromal cells, the genes were in
association with organism development and extracellular matrix
(Figures 5E,F). As shown in Figures 5G,H, the genes in T
cells were significantly related with T cell receptor signaling
pathway. GO functional enrichment analysis results showed

that the genes in tumor cells were mainly enriched in tissue
or cell development (Figure 5I). Furthermore, according to
KEGG enrichment analysis results, these genes were significantly
associated with estrogen signaling pathway, which could be
involved in the development of TNBC (Figure 5J).

Ligand–Receptor Signaling Network
Intercellular communication networks were conducted based on
ligand–receptor pairs. Herein, ligand was known as sender and
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FIGURE 5 | Functional enrichment analysis of marker genes from the integrated GSE75688 and GSE118389 datasets. (A, B) GO and KEGG enrichment analysis of

marker genes in B cells. (C, D) GO and KEGG enrichment analysis of marker genes in myeloid cells. (E, F) GO and KEGG enrichment analysis of marker genes in

stromal cells. (G, H) GO and KEGG enrichment analysis of marker genes in T cells. (I, J) GO and KEGG enrichment analysis of marker genes in tumor cells.

receptor as receiver. Using the above five cell lineages including
B cells, T cells, tumor cells, stromal cells, and myeloid cells,
we calculated the number of major signal pairs that could
communicate within and across lineages (Figure 6A). Detailed
network diagram of ligand receptors in each cell type is shown
in Figure 6B. After excluding relationships with the count = 1
and the genes that were not directly related to the cell and had no
ligand–receptor relationships a sub-network was constructed, as
shown in Figure 6C.

Correlation Between Tumor-Infiltrating
Immune Cells and TNBC Patients’
Prognosis
Through estimation of the abundance cell types in mixed cell
populations based on TNBC RNA-seq data using CIBERSORT,
the proportion of 22 immune cells in each sample was

calculated. With the threshold of p < 0.05, immune cells
from 58 normal adjacent tissues and 101 TNBC tissues
were obtained. In Figure 7A, the relative percent of different
immune cells was shown. We found that the distribution of
various types of immune cells was different between different
TNBC tissues, indicating the heterogeneity among different
tissues. The heatmap depicted the difference in expression
patterns of different immune cells between adjacent normal
tissues and TNBC tissues (Figure 7B). As shown in correlation
analysis results, positive correlation between NK cell resting
and monocytes (r = 0.54), positive correlation between M2
macrophage and mast cell resting (r = 0.57), negative correlation
between M0 macrophage and mast cell resting (r = −0.51) and
negative correlation between T cells follicular helper and M2
macrophage (r = −0.50) were found (Figure 7C). In Figure 7D,
we found that the fractions of B cell memory (p = 0.023), T
cells CD4 memory activated (p < 0.001), T cells follicular helper
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FIGURE 6 | Ligand–receptor signaling networks. (A) A cell type-based ligand receptor network. The semicircle represents ligand and the arrow points to the receptor.

The number on the side indicates the number of ligand–receptor relationship pairs. The color of the edge and the corresponding cell type refer to the cell type to which

the ligand gene belongs. The depth of the color represents the number of ligand–receptor relationships. (B) A detailed network of the ligand receptors in each cell

type. The arrows from the ligands point to the receptors. The color of the edge corresponds to the cell type to which the corresponding ligand type refers to the ligand

gene. The color of the edges of the nodes indicates that the log2FC of the marker genes. (C) A network diagram showing the relationship between the designated

ligand receptor and each cell. The semicircle represents the ligand, and the arrow points to the receptor. The numbers on the edges indicate the number of

ligand–receptor relationships, and the shades of the edges represents the number of ligand–receptor relationships. Diamond nodes represent ligands and V nodes

represent receptors.

(p < 0.001), T cells regulatory (Tregs; p < 0.001), macrophages
M0 (p < 0.001), macrophages M1 (p < 0.001) were significantly
higher in TNBC tissues than those in adjacent normal tissues.
Furthermore, the fractions of plasma cells (p = 0.012), T cells
CD4 memory resting (p < 0.001), monocytes (p < 0.001),
macrophages M2 (p < 0.001) and mast cells resting (p < 0.001)
were significantly lower in TNBC tissues compared to those in
adjacent normal tissues.

To explore the prognostic value of these immune cells
for TNBC patients, we performed overall survival analysis.
Among 22 immune cells, the high fractions of M2 macrophages
(p = 0.002) and neutrophils (p = 0.002) were significantly
associated with shorten survival time than their low fractions
(Figures 7E,F). Moreover, we found that the fractions of T cells
CD4 memory resting were significantly associated with stages (p
= 0.016; Figure 7G). The fractions of monocytes significantly

increased as pathological T stage (p = 0.021; Figure 7H).
Compared to other pathological T stages, neutrophils had
the highest fractions in pathological T3 stage (p = 0.006;
Figure 7I). Furthermore, the fractions of M1 macrophages (p
= 0.05; Figure 7J) and T cells CD4 memory activated (p =

0.025; Figure 7K) were significantly associated with pathological
N stage.

Our PCA results showed that these immune cells could
significantly distinguish TNBC tissues into adjacent normal
tissues (Figure 7L). The ConsensusClusterPlus in R package was
used for tumor stages based on immune cells. Based on the elbow
and gap statistics methods, the optimal number of clusters was
determined. For a balanced partition, k was set as 2. As shown
in Figure 7M, the samples were sorted according to cluster, T, N,
M, stage, age, and survival status, furthermore, the fractions of
immune cells among different groups were displayed. Moreover,
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FIGURE 7 | Correlation between tumor-infiltrating immune cells and TNBC patients’ prognosis. (A) Histogram showing the fractions of 22 tumor-infiltrating immune

cells in 58 normal adjacent tissues and 101 TNBC tissues. Different colors in the column represent different immune cells. The height of the column indicates the

(Continued)
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FIGURE 7 | fractions of each immune cell. The higher the height, the higher the proportion of the immune cells in the tissue. (B) Heatmap showing the fractions of

different immune cells in TNBC tissues and adjacent normal tissues. Green indicates a low percentage and red indicates a high percentage. (C) Heatmap depicting

the correlation between different immune cells. Red represents positive correlation and blue represents negative correlation. The darker the color, the stronger the

correlation. (D) Violin plots showing the difference in fractions of these immune cells between TNBC tissues and adjacent normal tissues. Red suggests TNBC tissues

and blue suggests adjacent normal tissues. Overall survival for TNBC patients between high and low fractions of M2 macrophages (E) and neutrophils (F). The

differences in fractions of T cells CD4 memory resting (G), monocytes (H), neutrophils (I), macrophages M1 (J) and T cells CD4 memory activated (K) in all TNBC

patients. (L) The PCA results of immune cells. Red dot represents normal samples and blue represents TNBC samples. (M) Heatmap depicting the fractions of

immune cells in the two clusters, TNM, stage, age, and Fustat. (N) Histogram showing the fractions of 22 tumor-infiltrating immune cells in cluster1 and cluster2.

FIGURE 8 | Validation of the expression of marker genes between TNBC and normal tissues from TCGA database. (A) B2M (p = 0.15); (B) TCCL5 (p < 2.22e–16);

(C) CD3D (p < 2.22e– 16); (D) CD3G (p < 2.22e–16); (E) CXCL10 (p < 2.22e–16); (F) FN1 (p < 2.22e–16); (G) HLA-A (p = 5.8e–15); (H) PLAUR (p < 2.22e–16); and

(I) SDC4 (p = 5.3e–07).
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there were significant differences in the fractions of different
immune cells between cluster1 and cluster2 (Figure 7N).

Validation of Marker Genes in TNBC From
TCGA Database
The expression of marker genes was validated between TNBC
and normal tissues fromTCGA database. In Figure 8A, there was
no statistical significance in B2M expression between TNBC and
normal tissues (p = 0.15). The expression of TCCL5 (p < 2.22e–
16; Figure 8B), CD3D (p < 2.22e–16; Figure 8C), CD3G (p <

2.22e–16; Figure 8D), CXCL10 (p < 2.22e–16; Figure 8E), FN1
(p < 2.22e–16; Figure 8F), HLA-A (p = 5.8e–15; Figure 8G),
PLAUR (p < 2.22e–16; Figure 8H) and SDC4 (p = 5.3e–07;
Figure 8I) were distinctly highly expressed in TNBC tissues in
comparison to normal tissues.

DISCUSSION

Most TNBCs possess shared histological and molecular
characteristics. Nevertheless, TNBC is characterized by
inter-tumor and intra-tumor heterogeneity (15). Multiple
evidences suggest that the intratumoral diversity of
TNBC is not only involved in the pathogenesis, but also
affects chemotherapy resistance, metastasis, and poor
clinical outcomes (4, 16, 17). Due to the heterogeneity
of TNBC at the molecular level, identification of
effective prognostic markers and therapeutic target is
challenging. In this study, to explore the intercellular
heterogeneity in TNBC, we analyzed single-cell RNA-
seq data of TNBC cells by integrating the GSE75688 and
GSE118389 datasets.

Our single-cell RNA-seq analysis results showed that TNBC
was composed of different proportions of tumor cells, stromal
cells, and immune cells (B cells and T cells), which was
consistent with previous studies (18). Single-cell RNA-seq
provides support for characterizing the different functional
states of a single cell. It has been accepted that scRNA-seq
could be used to detect and quantify transcriptional changes
at a single cell level (19). Cell cycle is a main driving
force of transcriptional heterogeneity and cell-fate decisions.
G1 phase is a sensitive period of cell fate. In addition,
the cell cycle is known to be involved in various biological
processes, such as cell differentiation (20) and tumorigenesis
(21, 22). Therefore, we accurately identified the cell cycle
phases of each cell. Different cell clusters exhibit different
cell cycles, revealing that TNBC was indeed heterogeneous,
and the different cell clusters participated disproportionately in
the tumor.

It has been confirmed that cell differentiation and cell-
fate decision may be controlled via communicating with
neighboring cells (14). In cancers including TNBC, intercellular
communication mediates the activities of different cell
types are involved in complex biological processes, such
as invasion, cell cycle, and immune response (18, 23, 24).
It has been widely accepted that most cells can express
a variety of ligands and receptors to conduct a highly

connected ligand–receptor signaling pathway network. In
this study, we constructed ligand–receptor signaling networks
for TNBC based on marker genes of five types of cells. In
this study, we compiled ligand–receptor relationship pairs
based on literature support and constructed an intercellular
communication network, which revealed extensive and
interlineage signals.

It is recognized that changes in the composition of cells are
the basis for the various physiological states of complex tumor
tissues. Especially in malignant tumors, the level of invasive
immune cells is closely related to tumor progression and clinical
outcome (8). Thus, in this study, we used CIBERSORT to
accurately assess the relative scores of different immune cell types
in TNBC tissues. Compared to current methods for studying
cell heterogeneity (such as immunohistochemistry and flow
cytometry), CIBERSORT is free of limited phenotypic markers
or cell loss or damage due to tissue breakdown. The heterogeneity
in the fractions of 22 immune cells was found in TNBC tissues.
As expected, there was a significant difference in the fractions of
these immune cells between adjacent normal tissues and TNBC
tissues. The intratumoral heterogeneity may affect prognosis of
TNBC. Therefore, we analyzed the prognostic value of these
immune cells. We found that M2 macrophages and neutrophils
were significantly associated with clinical outcomes of TNBC.
As previous studies, M2 macrophages could regulate PD-1/PD-
L1 expression in the tumor microenvironment, thereby affecting
the effect of targeted treatment (25). A retrospective study found
that an increase in the ratio of neutrophils to lymphocytes was
associated with a poor prognosis in TNBC patients undergoing
chemotherapy (26). Furthermore, the fractions of T cells (27),
monocytes (28), neutrophils (29), and M1 macrophages (30)
were significantly correlated with clinical characteristics of
TNBC. More importantly, our PCA results showed that these
immune cells could significantly distinguish TNBC tissues
into adjacent normal tissues. These findings revealed the
prognostic value of the tumor immune microenvironment
for TNBC.

In this study, we systematically characterized the tumor
heterogeneity of TNBC based on single-cell RNA-seq and
transcriptome RNA-seq. Despite the limitations of retrospective
studies, our study gained a deeper understanding of the complex
interactions between tumor cells and their microenvironment
(especially immune cells).

CONCLUSION

In this study, we unraveled the heterogeneity of tumor
cells and their microenvironment. Furthermore, clinical
implications of tumor microenvironment components were
characterized for TNBC. Our study may provide an evidence for
TNBC immunotherapy.
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