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The mPA RNA methylation modulators play a crucial role in regulating hepatocellular
carcinoma (HCC) progression. The circular RNA (circRNA) regulatory network in regulating
m°A RNA methylation modulators in HCC remains largely unknown. In this study, 5
prognostic m®A RNA methylation modulators in HCC were identified from The Cancer
Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) projects. The
differentially expressed microRNAs (DEmiRNAs) and circRNAs (DEcircRNAs) between
paired tumor and normal tissues were screened out from TCGA and or Gene Expression
Omnibus (GEO) database to construct the circRNA-miRNA- m®A RNA methylation
modulator regulatory network, which included three m°A RNA methylation modulators
(HNRNPC, YTHDF1, and YTHDF2), 11 DEmiRNAs, and eight DEcircRNAs. Among the
network, hsa-miR-139-5p expression was negatively correlated with YTHDF1. Hsa-miR-
139-5p low or YTHDF1 high expression was correlated with high pathological grade,
advanced stage and poor survival of HCC. Additionally, cell cycle, base excision repair,
and homologous recombination were enriched in YTHDF1 high expression group by
GSEA. A hub circRNA regulatory network was constructed based on hsa-miR-139-5p/
YTHDF1 axis. Furthermore, hsa_circ_0007456(circMAP2K4) was validated to promote
HCC cell proliferation by binding with hsa-miR-139-5p to promote YTHDF1 expression.
Taken together, we identified certain circRNA regulatory network related to m°A RNA
methylation modulators and provided clues for mechanism study and therapeutic targets
for HCC.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most common
malignant tumors worldwide, accounting for 75%-85% of
primary liver cancer (1). Despite advances in diagnosis and
therapeutic strategies in recent years, the prognosis of HCC is
still not ideal. Therefore, there exists an urgent need to identify
sensitive and specific biomarkers and therapeutic targets for the
early diagnosis and treatment of HCC (2).

Among the chemical modification of RNA, Né6-
methyladenosine (m°A) methylated at the N6 position of
adenosine is viewed as the most common, abundant and
conservative internal transcriptional modification for various
kinds of RNA. The m°A modifications are involved in RNA
processing, transporting, translation and metabolism (3). Based
on the different functions of m®A RNA methylation modulators,
they are usually classified into “writers”, “erasers”, and “readers” (4).
The “writers” catalyze the formation of m°A, including
Methyltransferase-like 3 (METTL3) (5), METTL14 (6), Wilms
tumor 1-associated protein (WTAP) (7), RNA Binding Motif
Protein 15 (RBM15) (8) and KIAA1429 (9). The “erasers”,
removing m°A modification from RNA, compose of fat mass and
obesity-associated protein (FTO) (10) and alkB homologue 5
(ALKBH5) (11). The m°A readers YT521-B homology (YTH)
domain-containing proteins (YTHDF1/2 and YTHDC1/2)
function as m®A binding proteins that recognize m°A
methylation and generate a functional signal (12). Accumulating
evidence has demonstrated that m®A modifications participate in
the progression of cancers, such as glioma, breast cancers and
hepatocellular carcinoma (HCC) (13).

Circular RNA (circRNA) is a class of covalently closed single-
stranded circular RNA molecules formed by back-splicing.
CircRNA is considered as the RNA with tissue-, developmental
stage- and disease-specificity (14). Notably, it is well documented
that circRNAs play crucial roles in cancer by acting as microRNA
(miRNA) sponge to modulate the miRNA-mRNA regulatory
axis, thereby affecting the initiation and progression of cancer
(15). However, whether circRNAs can serve as miRNA sponge to
affect the miRNA in the regulation of m°A RNA methylation
modulators in HCC has not been reported yet.

The flowchart of this study design was shown in Figure S1.
Briefly, we identified prognostic m®A RNA methylation
modulators in HCC patients from The Cancer Genome Atlas
(TCGA) and International Cancer Genome Consortium (ICGC)
projects. According to the differentially expressed (DE)
circRNAs and miRNAs between paired normal and tumor
tissues, the circRNA-miRNA-mRNA regulatory network was
constructed based on the m°A RNA methylation modulators.
Among the 3 co-expressed miRNA-m°A RNA methylation
modulators pairs, hsa-miR-139-5p low or YTHDF1 high
expression was significantly correlated with high pathological
grade, advanced stage and poor survival of HCC. Therefore, a
hub circRNA regulatory network was constructed based on hsa-
miR-139-5p/YTHDF1 axis. Among this hub network,
circMAP2K4 was validated to promote HCC cell proliferation
by binding with hsa-miR-139-5p to promote YTHDF1
expression. These findings indicate certain circRNA regulatory

network is involved in the regulation of m°A RNA methylation
modulators and provide clues for mechanism study and
therapeutic strategy development for HCC.

MATERIAL AND METHODS

Data Collection

Regarding the expression data of m6A RNA methylation
modulators, we obtained transcriptome data of TCGA-LIHC
project from TCGA data portal (https://tcga-data.nci.nih.gov/
tega/) and ICGC-LIRI-JP project from ICGC data portal (https://
dcc.icge.org/), respectively. Regarding the miRNA data, in order
to maintain the consistency of data sources, we downloaded
miRNA-seq data from the TCGA-LIHC project for subsequent
difference and co-expression analysis. For the verification of the
prognostic value of miRNA, we searched the Gene Expression
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/gds/)
with “microRNA”, “hepatocellular carcinoma”, and “survival”
as keywords. In order to ensure the reliability of the results, we
only selected datasets with more than 100 cases for analysis, and
finally included the GSE31384 into this study. Regarding the
circRNA data, we searched the GEO database with “circular
RNA”, “hepatocellular carcinoma”, and “microarray” as
keywords, and finally included GSE94508, GSE97332 and
GSE78520 into this study. Criteria for study inclusion were: 1)
The disease was diagnosed as HCC. 2) HCC caused by different
etiologies was acceptable. 3) The case had a complete expression
profile. 4) The case had clinical information. Criteria for study
exclusion were: 1) The survival data was unknown or survival
time was less than 30 days. 2) The clinical staging and or
pathological grade was unknown. The analysis flowchart of
HCC cases with complete expression data was shown in
Figure S2.

Identification of DERNAs

The mRNA expression level of 13 m°A RNA methylation
modulators were compared between 50 or 199 paired tumor
and non-tumor samples from TCGA and ICGC projects by
Mann-Whitney-Wilcoxon Test, respectively. And the prognostic
value of the m°A RNA methylation modulators in both TCGA
and ICGC were further assessed by univariate Cox regression
survival analyses. Finally, those prognostic m®A RNA
methylation modulators in both TCGA and ICGC were
identified for the following network construction. The
DEmiRNAs were screened out from 49 paired tumor and non-
tumor samples from TCGA by using R package “Bioconductor
Limma”. The adjusted P value (false discovery rate, FDR) of each
gene was calculated by Benjamini Hochberg method and the
threshold for DEmiRNA selection was FDR <0.05 and | log2FC |
> 1. Finally, DEmiRNA is visualized by volcano graph and fold
change (FC) filtering. According to the significance scores <0.01
and | log2FC |> 2, the DEcircRNAs between tumor and non-
tumor cases from multiple studies was determined by a robust
rank aggregation method (16). And the DEcircRNAs were
visualized by heatmap.
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Construction of CircRNA-miRNA Network
Involved in Regulating m®A RNA
Methylation Modulators

The miRNAs potentially targeting m®A RNA methylation
regulators were predicted by microRNA Data Integration Portal
(miRDIP), which integrated more than 20 miRNA related
databases for miRNA target or miRNA prediction (17). Among
the DEmiRNAs, the potential miRNAs targeting m°A RNA
methylation regulators were selected with the very high score (top
1%) in miRDIP. Next, the DEcircRNAs targeted miRNAs were
predicted by Cancer-Specific CircRNA Database (CSCD, https://
http://gb.whu.edu.cn/CSCD/). As the sponge of miRNA, the
expression level of circRNA usually does not influence the
expression of miRNA. In addition, some miRNAs may inhibit
highly expressed mRNA in a compensatory elevated expression
manner (18). Therefore, the selection of circRNA-miRNA or
miRNA-mRNA pairs was not limited by their expression patterns
that must be reversed. Finally, the circRNA-miRNA-mRNA
regulatory network was constructed after taking the intersection
of DEcircRNA-miRNA pairs and DEmiRNA-m®A RNA
methylation regulator pairs. The regulatory network was
visualized using Cytoscape 3.4.0 (http://cytoscape.org/).

Gene Set Enrichment Analysis (GSEA)

The HCC samples from TCGA or ICGC were divided into high-
and low-expression groups according to the expression level of
YTHDFI, respectively. GSEA (http://software.broadinstitute.
org/gsea/index.jsp) was carried out to compare the potential
biological pathways between two groups. The annotated gene set
list c2.cp.kegg. v5.2.symbols.gmt was utilized as the reference
gene set. The cut-off criteria were defined as FDR < 0.25 and a
nominal P < 0.01. The gene sets with top 5 normalized
enrichment score (NES) in high- and low-expression groups
were selected for visualization.

Cell Culture and Transfection

Human HCC cell lines Huh7, Hep3B, MHCC97H, HCCLM3, and
normal LO2 cells were gained from Shanghai Advanced Research
Institute, Chinese Academy of Sciences. Cells were cultured in
Dulbecco’s Modified Eagle’s Medium (DMEM) (pH 7.4)
supplemented with 10% (v/v) fetal bovine serum (Gibco).
YTHDF1 siRNA, hsa-miR-139-5p mimics, circRNA
overexpressing plasmid and their corresponding negative control
were purchased from GenePharma (Shanghai, China). The cells in
24-well plates were transfected with 1ug plasmid, 50 nM mimics or
siRNA by using Lipofectamine 3000 reagent (Invitrogen) according
to the manufacturer’s recommendation. The specific siRNA
sequences for YTHDF1 were provided in the Table S1. Three
independent experiments were carried out for cell transfection.

Quantitative Reverse Transcription
Polymerase Reaction (QRT-PCR) Analysis
Total RNA were isolated from cells using TRIzol reagent
(Invitrogen) and cDNA were synthesized by utilizing the
Prime Script RT reagent kit (Takara Bio, Shiga, Japan). The
SYBR® Premix Ex TaqTM (Takara) were used for qRT-PCR

detection through real-time detection system (ABI7500, USA).
The primer sequences for detection were provided in Table S2.
GAPDH was used as an internal standard control. Gene
expression level was quantified using 2 AALC method. The
results were obtained from three independent experiments.

Western Blot

Protein was extracted using RIPA (Beyotime, China) and
separated on 10% SDS-PAGE gels and transferred onto
polyvinylidene fluoride membranes (Millipore, USA). The
primary antibodies of anti-YTHDF1 (#86463) and anti-
GAPDH (#2118) were purchased from Cell Signaling
Technology (Danvers, MA, USA). After incubating with the
primary antibodies at 4°C overnight, the membranes were then
subjected to HRP-conjugated secondary antibody (Cell Signaling
Technology, USA) at room temperature for 1 h. The blots were
visualized using an imaging system (Bio-Rad, USA).

Agarose Gel Electrophoresis Analysis

Total RNA isolation and cDNA synthesis were mentioned as
above. Total DNA was extracted using the SteadyPure Universal
Genomic DNA Extraction Kit (Accurate Biology Co. Ltd.,
Changsha, China). The specific divergent primers and
convergent primers for circMAP2K4 were used for
amplification. The primer sequences were listed in Table S2.
Then the amplification products were detected in 2% agarose gel
electrophoresis. And those products amplified by divergent
primers were used for Sanger sequencing to detect the junction
site of circMAP2K4. Three independent experiments were
carried out for agarose gel electrophoresis analysis.

Cell Proliferation Assay

The transfected cells were seeded in 96-well plates at a density of
2,000 cells per well. Cell viability was accessed from 12 to 120 h by
using the Cell Counting Kit-8 (CCK-8) according to the
manufacturer’s recommendation (Dojindo, Kumamoto, Japan).
The optical density (OD) was recorded at 450 nm by an automatic
microplate reader (Synergy4; BioTek, Winooski, VT, USA). The
results were obtained from three independent experiments.

Luciferase Reporter Assay

The wild type or mutated circRNA sequence containing hsa-
miR-139-5p binding site, the wild type or the mutated 3’
untranslated region (UTR) of YTHDF1, were respectively
synthesized and inserted into pmiR-RB-REPORT" vector
(RIBOBIO, Guangzhou, China). The above vectors and hsa-
miR-139-5p mimics or negative control were co-transfected into
cells using Lipofectamine3000 (Invitrogen). 48 h after
transfection, the cells were harvested for firefly and renilla
luciferase activities detection by using the dual-luciferase
reporter assay system (Promega, Massachusetts, USA). Renilla
luciferase served as the internal control for luciferase activity.
The results were obtained from three independent experiments.

Statistical Analysis
OS differences between high and low expression groups were
evaluated by Kaplan-Meier survival analysis and log-rank test.
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The differences of gene expression between each clinicopathological
characteristics were evaluated by Mann-Whitney-Wilcoxon Test.
Data differences between in-vitro experimental groups were
analyzed by Student’s t-test or one-way analysis of variance
(ANOVA). All tests were analyzed using R software version 3.4.2
and P < 0.05 was considered statistically significant.

RESULTS

Most m°A RNA Methylation Modulators
Are Up-Regulated and Correlated With the
Prognosis of HCC

In TCGA project, all m°A RNA methylation modulators were
up-regulated in HCC, but the expression difference of METL14
and ZC3HI13 were not statistically significant (Figure 1A). In
ICGC project, most m°A RNA methylation modulators except
ZC3H13 were up-regulated in HCC, but the up-regulation of
METTL14 was not statistically different (Figure 1B). Next, we
analyzed the prognostic values of 11 commonly DE m°A RNA
methylation modulators in both TCGA and ICGC. High
expression of YTHDF2, YTHDF1, KIAA1429, HNRNPC,
WTAP, METTL3, or RBM15 was correlated with the poor
survival of HCC in TCGA project by univariate Cox regression
survival analysis (Figure 1C). While in ICGC project, high
expression of METTL3, YTHDF2, HNRNPC, YTHDFI,
YTHDC2, RBM15, or ALKBH5 was associated with poor
survival of HCC (Figure 1D). Thus, the commonly prognostic
m°A RNA methylation modulators, namely METTL3, YTHDE2,

HNRNPC, YTHDF1 and RBM15, in both TCGA and ICGC were
used for the following study.

Construction of CircRNA-miRNA- m°®A
RNA Methylation Modulator Regulatory
Network in HCC

By screening of miRNA-seq data from paired tumor and adjacent
non-tumor tissues in TCGA HCC cases, a total of 121 DEmiRNAs
(29 up and 92 down) were obtained (Figure 2A). From the
circRNA microarray data of paired tumor and adjacent non-
tumor tissues in 3 GEO datasets, a total of 22 DEcircRNAs (eight
up and 14 down) were identified (Figure 2B). 209 miRNA-m°®A
RNA methylation modulators pairs and 1260 circRNA-miRNA
pairs were predicted by miRDIP and CSCD, respectively. After
taking the intersection of these RNA pairs, 3 m®A RNA
methylation modulators (HNRNPC, YTHDF1, and YTHDEF2),
11 DEmiRNAs, and eight DEcircRNAs were utilized to construct a
circRNA-miRNA-m°A RNA methylation modulator regulatory
network. This network contained 16 circRNA-miRNA pairs and
11 miRNA-mRNA pairs (Figure 2C). In order to verify the
expression stability of DEmiRNAs and DEmRNAs in the
regulatory network, we further analyzed the expression of
DEmiRNAs in HCC by using dbDEMC 2.0, a database of
differentially expressed miRNAs in human cancers (19) and the
expression of DEmRNAs in HCC by using HCCDB, a database of
hepatocellular carcinoma expression atlas (20), respectively. The
results showed that most DEmiRNAs had the same expression
trend in multiple GEO datasets, which were consistent with the
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hepatocellular carcinoma (HCC) and normal tissues from The Cancer Genome Atlas (TCGA) (A) and International Cancer Genome Consortium (ICGC) (B). The
univariate Cox regression analysis of m6A RNA methylation modulators for OS of HCC cases from TCGA (C) and ICGC (D).
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results from TCGA and ICGC (Table S3). Especially, hsa-miR-
139-5p was down-regulated in HCC tissues from even six datasets.
Similarly, in accordance with the TCGA and ICGC results, the
expression of YTHDF1, HNRNPC or YTHDF2 was up-regulated
in HCC from seven, six, or four datasets, respectively (Table S4).

Co-Expression and Clinicopathological
Characteristics Correlation Analysis

of miRNA

In order to identify the most potentially interactive miRNA-
mRNA pairs, co-expression status between 11 DEmiRNAs and 3
m°A RNA methylation modulators were performed by Pearson
correlation analysis. Three co-expressed miRNA-m°A RNA
methylation modulator pairs were identified. As shown in
Figure 3A, hsa-miR-139-5p expression was negatively
correlated with YTHDF1 (r=-0.399, P<0.001), while hsa-miR-
335-5p was positively correlated with HNRNPC (r=0.189,
P<0.001) and hsa-miR-767-5p was positively correlated with
YTHDF1 (r=0.224, P<0.001). Additionally, high expression of
hsa-miR-139-5p but neither hsa-miR-335-5p nor hsa-miR-767-
5p was significantly correlated with the low pathological grade in

TCGA project (Figure 3B). Similarly, the higher the hsa-miR-
139-5p expression, the earlier the TNM stage (Figure 3C).

Clinicopathological Characteristics
Correlation and GSEA of m°A RNA
Methylation Modulators

In accordance with the negative correlation of hsa-miR-139-5p
and YTHDF1 expression, the expression of YTHDF1 were
higher in high pathological grade and advanced TNM stage in
TCGA project (Figure 4A). While the expression of HNRNPC
were significant different between different pathological grades
but not between early and advanced TNM stage in TCGA project
(Figure 4B). The relationships between YTHDF1 or HNRNPC
expression and clinicopathological characteristics could not be
fully investigated due to the lack of data about pathological grade
in ICGC project. The expression of YTHDF1 or HNRNPC was
significantly higher in the advanced TNM stage of HCC from
ICGC project (Figure S3A). Based on the clinical significance of
YTHDF1 in both TCGA and ICGC, we further performed GSEA
to explore whether biological pathways differ between high and
low YTHDF1 expression groups. Among top five gene sets based
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on NES, cell cycle, base excision repair and homologous
recombination were enriched in YTHDF1 high expression
group in both TCGA and ICGC (Figure 4C, Figure S3B).
While fatty acid metabolism, retinol metabolism, complement
and coagulation cascades were enriched in YTHDF1 low
expression group in both TCGA and ICGC (Figure 4C,
Figure S3B).

Prognostic Value of the hsa-miR-139-5p
and YTHDF1 Signature and Hub circRNA
Network Construction

Based on the co-expressed results of miRNA and m°A RNA
methylation modulators, we further explored the prognostic value
of 3 miRNA. Survival analysis revealed that only the hsa-miR-139-
5p expression status was correlated with the OS for HCC patients
(Figure 5A). Similar results were observed in GSE31384 (Figure
5B). According to the results that hsa-miR-139-5p high or

YTHDFI low expression was associated with the better OS of
HCC, we further evaluated the prognosis of HCC patients with
hsa-miR-139-5p high and YTHDF1 low expression. The results
showed that HCC patients with hsa-miR-139-5p high and
YTHDF1 low expression had longer OS time than those with
contrast expression level (Figure 5C). Based on the clinical
significance of hsa-miR-139-5p and YTHDF1, a hub circRNA-
miRNA-mRNA regulatory network was constructed finally.
This hub network contained two regulatory axes, namely
hsa_circ_0007456/hsa-miR-139-5p/YTHDF1 and
hsa_circ_0091570/hsa-miR-139-5p/YTHDF1 (Figure 5D).

CircMAP2K4 Promotes HCC Proliferation
by Modulating hsa-miR-139-5p/YTHDF1
Two potentially dysregulated circRNAs were predicted to involve
in regulating hsa-miR-139-5p/YTHDF1 axis in this study. We
further analyzed the potential interaction of circRNA and
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miRNA through miRanda v3.3a, a microRNA target scanning
algorithm. The result showed that hsa_circ_0007456 is predicted
to has a score of 140 and energy of -19.98 kCal/Mol to interact
with hsa-miR-139-5p, which is favorable for hsa_circ_0007456
serving as hsa-miR-139-5p sponge. But no predicting results
were provided for the interaction of hsa_circ_0091570 and hsa-
miR-139-5p. Thus, we selected the hsa_circ_0007456 for the
following study. Hsa_circ_0007456 (circMAP2K4) derived from
mitogen activated protein kinase kinase 4 (MAP2K4) gene and
its position is located in chr17:11984672-12016677. The
expression of circMAP2K4 or hsa-miR-139-5p was the highest
in Huh7; moderate in Hep3B and MHCC97H; and lowest in
HCCLM3 (Figure S4A). In contrast, the mRNA and protein
expression of YTHDF1 were the highest in HCCLM3; moderate
in Hep3B and MHCC97H; and lowest in Huh7 (Figure S4A).
Agarose gel electrophoresis results showed that the amplified
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product of divergent primers for circMAP2K4 could be detected
in cDNA but not in gDNA. (Figure S4B). Sanger sequencing also
confirmed the junction site of circMAP2K4 provided by Circular
RNA Interactome (Figure S4C). These results indicated that
circMAP2K4 was a covalently closed-loop RNA. In order to
explore the function of YTHDFI, two siRNAs were designed to
knockdown the expression of YITHDF1 in MHCC97H and
HCCLM3 cells. The results showed that these two siRNAs
could effectively decrease the mRNA and protein expression of
YTHDF1 in MHCC97H and HCCLM3 cells (Figure S4D).
Transfection of YTHDF1 siRNAs significantly inhibited the
proliferation of MHCC97H and HCCLM3 cells (Figure 6A).
Next, we explored the function of circMAP2K4 on regulating
hsa-miR-139-5p/YTHDF1 axis. Transfection of hsa-miR-139-5p
mimics or circMAP2K4 expressing plasmid could effectively
increase the expression of hsa-miR-139-5p (Figure S4E) or
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circMAP2K4 (Figure S4F), respectively. The luciferase assay
showed that the luciferase activity was inhibited when co-
transfection of hsa-miR-139-5p mimics and reporter plasmids
containing circMAP2K4 wide type sequence with hsa-miR-139-

5p binding site. While the luciferase activity had no obvious
change when co-transfection of hsa-miR-139-5p mimics and
reporter plasmids containing circMAP2K4 mutant sequence
(Figure S4G). Using the miRanda algorithm, we found that
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YTHDFI contains miRNA response element of hsa-miR-139-5p.
Similarly, the luciferase activity of YTHDFI wide type reporter
plasmids was significantly inhibited by transfection of hsa-miR-
139-5p mimics (Figure S4G). Transfection of hsa-miR-139-5p
mimics significantly down-regulated the mRNA and protein
expression of YTHDFI in HCC cells, whereas these effects
were reversed by circMAP2K4 overexpression (Figure 6B).
Moreover, enforced hsa-miR-139-5p expression significantly
inhibited the proliferation of HCC cells. However, additive
circMAP2K4 overexpression partly abrogated the inhibitory
effect of hsa-miR-139-5p on cell proliferation (Figure 6C).
These results suggested that circMAPK4 acts as has-miR-139-
5p sponge to regulate the expression and activity of YTHDFI.

DISCUSSION

The m°A RNA modification is a dynamic and reversible process,
which is related to various diseases such as obesity, infertility and
cancer (21). Numerous studies have confirmed that circRNAs act
as miRNA sponges to modulate the pathogenesis of cancer,
which facilitates them to serve as diagnostic and prognostic
biomarkers and even therapeutic targets for tumors, including
HCC (22). In the present study, we demonstrated that most m®A
RNA methylation modulators are up-regulated and correlated
with the prognosis of HCC. Based on the prognostic m°A RNA
methylation modulators, a circRNA-miRNA-mRNA regulatory
network was constructed. Among this network, hsa-miR-139-
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5p/YTHDFI1 axis was illustrated to be associated with
clinicopathological characteristics and prognosis of HCC.
Moreover, circMAP2K4 could serve as the hsa-miR-139-5p
sponge to up-regulate YTHDFI expression and promote
HCC proliferation.

In this study, METTL3, YTHDF2, HNRNPC, YTHDFI, and
RBM15 were identified as the commonly prognostic m°A RNA
methylation modulators for HCC in both TCGA and ICGC
projects. Finally, 3 m®A RNA methylation modulators, namely
HNRNPC, YTHDFI1, and YTHDF2, were included for the
construction of circRNA regulatory network. Our findings
were consistent with previous reports that high expression of
YTHDF1, HNRNPC, or METTL3 is related to the poor
prognosis of HCC (23-25). While high level of METTL3 or
YTHDF2 can be used as the poor prognostic factor for
hepatoblastoma (26). In addition, the combination of YTHDF1
and METTL3 can reflect the malignant degree and evaluate the
prognosis of HCC (27). Combining the biomarkers reported in
the previous reports and the prognostic m°A RNA methylation
modulators found in this study, we may try to construct a
predictive signature related to the prognosis of HCC in the
future study. This may be more beneficial to the evaluation of
the prognosis of patients with HCC.

Accumulating evidence revealed that m°A writers, erasers,
and readers participate in the development and progression of
HCC by targeting various tumor-related genes. For example,
overexpression of METTL3 promotes cell proliferation,
migration, and clonal formation by inhibiting suppressor of
cytokine signaling 2 mRNA expression in a m°A-YTHDF2-
dependent manner (28). RAD52 motif 1 (RDM1) binds to the
tumor suppressor p53 and enhances its stability, while METTL3
overexpression can significantly reduce the expression of RDM1
mRNA through m°A modification (24). In addition, knockdown
of METTL3 results in the down-regulation of Snail, a key
transcription factor of epithelial-mesenchymal transition
(EMT), thereby reducing the invasion and EMT of HCC cell
lines (29). As an m°A reader, YTHDF is also involved in the
occurrence of HCC. YTHDF1 promotes HCC progression by
enhancing FZD5 mRNA translation or AKT/GSK-3p/B-catenin
signaling activation (30, 31). YTHDEF?2 is involved in the decay of
IL11 and Serpine2 mRNA, which are important genes that
regulate the normalization and inflammation of vessels (32).
The expression of YTHDF2 in HCC is specifically induced by
hypoxia, and overexpression of YTHDF2 inhibits cell
proliferation, tumor growth and the activation of MEK and
ERK. Mechanistically, YTHDF2 can bind to the 3'UTR m°A
modification site of EGFR, and down-regulate the expression of
EGFR mRNA in HCC cells (33). However, the specific
mechanisms of HNRNPC in the development of HCC remain
unclear. In this study, GSEA results showed that cell cycle, base
excision repair and homologous recombination were enriched in
YTHDF1 high expression group. Emerging studies had showed
that cell cycle dysregulation and DNA damage repair are
involved in HCC progression (34, 35), which indicates that
high expression of YTHDF1 may promote the progression of
HCC by regulating cell cycle progression and DNA damage

repair. We also confirmed that knockdown the expression of
YTHDEF]1 could inhibit the proliferation of HCC. These findings
explain to some extent the reasons for high YTHDFI expression
was associated with high pathological grade, advanced TNM
stage and poor survival of HCC in both TCGA and ICGC
project. Combining the reported results with our findings
indicate that m°®A RNA methylation modulators play
important roles in the occurrence and development of HCC.

Previous studies have demonstrated that some miRNAs
participate in the regulation of RNA methylation modulators.
For instance, hsa-miR-145 and YTHDF2 mRNA levels were
negatively correlated in HCC tissues and overexpression of hsa-
miR-145 could down-regulate the expression of YTHDEF2,
thereby increasing the mA level in HCC cells (36). In
hepatoblastoma, METTL3 is identified as a direct target of hsa-
miR-186, and the hsa-miR-186/METTL3 axis participates in the
progress of hepatoblastoma through the Wnt/B-catenin signaling
pathway (26). In this study, YTHDF1 was predicted to be the
target gene of hsa-miR-139-5p and hsa-miR-767-5p with a co-
expression relationship, and HNRNPC was co-expressed with
and predicted to be targeted by hsa-miR-335-5p. There are no
reports about these miRNAs acting on these m°A regulators right
now. However, all three miRNAs have been shown to be involved
in the development of HCC. For example, high expression of
hsa-miR-139-5p and hsa-miR-335-5p can inhibit the
proliferation and invasion of HCC cells and induce tumor
shrinkage (37, 38). While HCC cells with hsa-miR-767-5p
overexpression have significantly higher proliferation,
migration and invasion potential (39). In addition, many
studies have confirmed that high expression of hsa-miR-139-
5p is associated with a better prognosis of HCC (37, 40).
Different from previous studies, we firstly found that hsa-miR-
139-5p could act on m°A RNA methylation modulator to
regulate the progress of HCC. The present study demonstrated
that the expression of hsa-miR-139-5p is negatively correlated
with YTHDF1. High expression of hsa-miR-139-5p is associated
with a lower grade, an earlier clinical stage, and a better
prognosis of HCC, while high expression of YTHDF1 shows
the contrast relationship. Moreover, in-vitro experiments also
demonstrated that overexpression of hsa-miR-139-5p could
inhibit the proliferation of HCC by targeting YTHDF1. These
findings suggest that hsa-miR-139-5p/YTHDF]1 regulatory axis
play an important role in the development of HCC.

According to the important role of hsa-miR-139-5p/YTHDF1
regulatory axis in the progression of HCC, we further evaluated
the candidate circRNAs involving in regulating hsa-miR-139-5p
and hsa_circ_0007456 and hsa_circ_0091570 were identified
finally. As for hsa_circ_0091570, it serves as hsa-miR-1307
sponge and its inhibition promotes HCC cell proliferation,
migration and tumor growth in the mouse xenograft model
(41). However, to date, the function of hsa_circ_0007456
(circMAP2K4) has not been reported in HCC, which
encourages us to test whether circMAP2K4 can also function
as miRNA sponge like hsa_circ_0091570 in regulating the
proliferation of HCC. We firstly demonstrated that
circMAP2K4, hsa-miR-139-5p and YTHDF1 participate in
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regulating the proliferation of HCC. Importantly, we validated
that circMAP2K4 has the bind site for hsa-miR-139-5p and
could reverse the repression of hsa-miR-139-5p on YTHDFI,
thus eliminating the inhibitory effect of hsa-miR-139-5p on cell
proliferation. YTHDFI high expression was correlated with high
pathological grade and advanced stage, which indicates YTHDF1
may be involved in the migration and metastasis of HCC. Indeed,
previous studies have confirmed that upregulation of YTHDF1
improve the migratory and invasive capabilities of HCC cells (30,
31), which provide clues for the investigation of circMAP2K4/
miR-139-5p/YTHDF1 axis in the migration and metastasis of
HCC in our future study.

There are several limitations in this study. First, the datasets
included in this study were from different sources, in which the
circRNA data were obtained from the microarray data of GEO,
while the data of miRNA and m®A RNA methylation modulators
were obtained from the sequencing data of TCGA or ICGC.
Different data sources may affect the reliability of the conclusions
to a certain extent. There was no survival information related to
the circRNA microarray of HCC in GEO database and due to our
lack of HCC tissues, we were unable to evaluate the prognostic
value of circRNAs for HCC. Second, due to the limited datasets
included in this study, it may lead to that these identified
DERNAs were not the most representative although we have
verified the expression status of DERNAs through different
databases. Moreover, with the advancement of technology and
research, more and more m°A RNA methylation modulators are
discovered. In this study, only 13 m®A RNA methylation
modulators were included for analysis, and the threshold for
circRNA selection was relatively strict, which may lead to the loss
of some DEcircRNAs and m°A RNA methylation modulators.

In conclusion, we utilize the m®°A RNA methylation modulators
with prognostic value combined with DEcircRNAs and DEmiRNAs
to construct a circRNA regulatory network in HCC. Among this
network, the expression of hsa-miR-139-5p was negatively correlated
with YTHDF1. hsa-miR-139-5p low or YTHDF1 high expression
was illustrated to be associated with high grade, advanced stage and
poor prognosis of HCC. The hub circRNA regulatory network was
constructed based on hsa-miR-139-5p/YTHDF1 axis. In the hub
network, circMAP2K4 could serve as the hsa-miR-139-5p sponge to
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