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Purpose: Machine learning (ML) can extract high-throughput features of images to
predict disease. This study aimed to develop nomogram of multi-parametric MRI
(mpMRI) ML model to predict the risk of breast cancer.

Methods: The mpMRI included non-enhanced and enhanced T1-weighted imaging
(T1WI), T2-weighted imaging (T2WI), apparent diffusion coefficient (ADC), Ktrans, Kep, Ve,
and Vp. Regions of interest were annotated in an enhanced T1WI map and mapped to
other maps in every slice. 1,132 features and top-10 principal components were extracted
from every parameter map. Single-parametric and multi-parametric ML models were
constructed via 10 rounds of five-fold cross-validation. The model with the highest area
under the curve (AUC) was considered as the optimal model and validated by calibration
curve and decision curve. Nomogram was built with the optimal ML model and patients’
characteristics.

Results: This study involved 144 malignant lesions and 66 benign lesions. The average
age of patients with benign and malignant lesions was 42.5 years old and 50.8 years old,
respectively, which were statistically different. The sixth and fourth principal components
of Ktrans had more importance than others. The AUCs of Ktrans, Kep, Ve and Vp, non-
enhanced T1WI, enhanced T1WI, T2WI, and ADC models were 0.86, 0.81, 0.81, 0.83,
0.79, 0.81, 0.84, and 0.83 respectively. The model with an AUC of 0.90 was considered
as the optimal model which was validated by calibration curve and decision curve.
Nomogram for the prediction of breast cancer was built with the optimal ML models and
patient age.

Conclusion: Nomogram could improve the ability of breast cancer prediction
preoperatively.
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INTRODUCTION

Breast cancer is the most frequently diagnosed malignancy
among women worldwide and accounts for 30% of all new
cancer cases in 2018 (1). It is estimated that one in eight
women will be diagnosed with breast cancer in their lifetime
and that one patient will be diagnosed with breast cancer every
10 min (2). Therefore, the diagnosis of breast cancer is crucial for
every patient with breast lesions.

Dynamic contrast-enhanced MRI (DCE-MRI) is a powerful
tool for detecting breast cancer. It has the highest sensitivity of all
methods for the examination of breast lesions (3). However,
because of an overlap of the morphologic and kinetic features of
benign and malignant lesions, the limited specificity of DCE-MRI
could lead to the misdiagnosis of malignant lesions, overtreatment
of benign lesions, and unnecessary breast biopsies and surgery (4,
5). Therefore, it is necessary to combine multi-parametric MRI
(mpMRI), which includes conventional sequences such as pre-
enhanced and enhanced T1-weighted imaging (T1WI) and T2-
weighted imaging (T2WI), and also function sequences such as
diffusion weighted imaging (DWI) and pharmacokinetic DCE
(Pk-DCE) to improve diagnosing efficiency in breast cancer.

Nevertheless, not every parameter in mpMRI will increase the
diagnostic specificity of breast cancer. Given the huge amount of
information offered by mpMRI, it is challenging to select the
most effective method for the diagnosis of breast cancer in
humans (6). Machine learning (ML), which is a branch of
artificial intelligence, can extract high-throughput features of
lesions that are imperceptible to human eyes, learn the
characteristics of lesions, and make a diagnosis based on them
using computer-aided technology (7–13). Although, ML on
mpMRI is widely under investigation for the diagnosis of
breast lesions (8, 9, 14–23), there are few studies that focus on
nomogram of the optimal mpMRI model to diagnose breast
cancer. In this study, our aim is to provide an effective
nomogram of the optimal ML model based on mpMRI for the
risk prediction of breast cancer preoperatively.

MATERIALS AND METHODS

Patient Inclusion Criteria
This study was approved by our institution and informed consent
was obtained from all study participants. The patients were selected
based on the inclusion criteria as follows: 1) all patients underwent
an MRI examination before treatment or biopsy; 2) breast lesions
were identified as primary malignant and benign lesions via
pathology; 3) the mpMRI for every patient enrolled must include
consistent sequences, pre-enhanced and enhanced T1WI, T2WI,
DWI, and Pk-DCE. The exclusion criteria were the following: 1) the
patient was undergoing biopsy or surgery at an external institution
Abbreviations: ML, machine learning; mpMRI, multi-parametric magnetic
resonance imaging; PK-DCE MRI, pharmacokinetic dynamic contrast-enhanced
magnetic resonance imaging; DWI, diffusion weighted imaging; ADC, apparent
diffusion coefficient; T1WI, T1-weighted imaging; T2WI, T2-weighted imaging;
PCA, Principal component analysis; ROC curve, receiver operating characteristic
curve; AUC, area under curve; ROI, region of interest.
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and the pathological results were not available; 2) the Pk-DCE
sequence could not be processed to generate pharmacokinetic
parameter maps; 3) DWI sequence could not generate clear
apparent diffusion coefficient (ADC) map; and 4) lesions on the
image could not be identified so that they could not be annotated.

Pathological Examination
All patients underwent surgical resection, and the removed
specimens were fixed in formalin and embedded with paraffin.
The specimens were stained with hematoxylin and eosin to
determine the histological type. According to the Scarff, Bloom,
and Richardson histologic grade, invasive ductal carcinoma of
breast cancer was classified as Grade I, Grade II, or Grade III
(24). All pathological diagnoses were obtained by two
experienced pathologists.

MRI Protocol
MRI was performed with the patient lying in the prone position,
with 4-channel bilateral breast coils covering both breasts on a 3.0
T MRI scanner (Verio, Siemens Healthcare, Erlangen, Germany).
The parameters of the sequences were as follows: (1) T2WI with a
repetition time/echo time (TR/TE) of 4,300/61 ms, 34 slices, a field
of view (FOV) of 340–400 mm, a slice thickness of 4 mm, and an
acquisition time of 2 min 45 s; (2) DWI with a TR/TE of 7,100/95
ms, b = 50 and 800 s/mm2, 24 slices, an FOV of 320–380 mm, a
slice thickness of 4 mm, and an acquisition time of 3 min 12 s; (3)
axial, vibe fat-suppressed T1WI with a TR/TE of 3.61/0.96 ms; flip
angles of 3°, 6°, 9°, 12°, and 15° successively, 30 slices, an FOV of
380–420 mm, a slice thickness of 4 mm, and an acquisition time of
8 s per scan. The next similar sequence with a flip angle of 12° was
performed for 40 scans continuously, and after the second period,
MRI contrast agent Omniscan (GE Healthcare Co., Ltd.) with 0.2
ml/kg was injected into an antecubital vein via a catheter at rate of
2 ml/s using a power injector (Medrad, Warrendale, PA), followed
by a 20 ml saline flush.

Pk-DCE Data Processing
Pk-DCE datasets were processed using Omni-Kinetics (O.K.)
software (GE Healthcare). First, the acquired Pk-DCE images
were processed by a Markov-random-field based three-
dimensional non-rigid registration algorithm to correct for the
patient motion that occurs between the phases of dynamic data
due to respiration and other involuntary movements. Second, the
individual arterial input function was obtained from a region of
interest (ROI) in the thoracic aorta. Third, using an extended Tofts
model,Ktrans,Kep,Ve, andVp maps were obtained for each case (25).

ROI Segmentation
All the maps were preprocessed to ensure that their matrices
were consistent. ROIs were segmented manually in the
enhanced-T1WI map over the entire lesion to avoid the partial
volume effect and exclude necrosis, cystic areas, and vessels using
ITK-SNAP software (version 3.0; www.itksnap.org) separately by
two radiologists who had more than 10 years of experience in
breast MRI analysis. If the boundary of tumor area was blurred
or the results were inconsistent, two radiologists negotiate each
other and reached a consensus. The maximum diameter of the
February 2021 | Volume 11 | Article 570747
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lesion was measured in the enhanced-T1WI map to compare the
lesion sizes. The ROIs in the enhanced-T1 weighted map were
firstly resampled and transformed to physical space which was
shared by all maps. Then the ROIs in physical space were
transformed back to voxel space of other maps. The radiologist
would tweak and exam other maps (i.e., the non-enhanced
T1WI, T2WI, ADC, Ktrans, Kep, Ve, and Vp) to make sure
ROIs’ right place. This step was completed using SimpleITK
(Version 1.2.0, http://www.simpleitk.org).

ML and Statistical Analysis
Radiomics Features Extraction
Radiomics features extraction was performed using Pyradiomics
(26) (Version 2.1.0). With this package, a total of 1132 features of
each lesion were extracted from all eight MRI parameter maps,
including first-order, shape, and texture features.

Principal Component Analysis of Features
Extracted by Random Forest Model
The top-10 principal components from each MRI parameter
were extracted construct a random forest model with the breast
lesion labels of benign and malignant. The top 22 out of 80
principal components in coefficient ranking were chosen to
analyze by the method of Random forest models with the
breast lesion labels of benign and malignant. All of the above
steps were performed in Python 3.6.

Feature Selection
To avoid overfitting, feature selection was implemented. In this
stage, different statistical methods were applied to features to
calculate the scores. And features were selected or removed
according to their rank. F-test, Pearson Correlation Coefficient,
Mutual information, L1 based method, Tree based method and
Recursive Feature Elimination were used in our study. Feature
selection was implemented using the Deepwise Research
Platform (https://research.deepwise.com/).

Single-Parameter ML Models
Twelve classifiers (Logistic Regression, SVM, Linear SVC, Decision
Tree, Random Forest, Ada Boost, Bernoulli NB, Gaussian NB, K
Nearest Neighbors, Linear Discriminant Analysis, SGD and
Multilayer Perceptron) were used to construct discriminative
models for each MRI parameter with features selected. Models
were trained and validated for 5-fold cross-validation with 10
rounds on all the lesions using the Deepwise Research Platform.
Thefinalperformanceof each single-parametermodelwas averageof
the all models from all ten rounds. The area under the receiver
operating characteristic (ROC) curve (AUC) values of themodel was
calculated using ground truth label and score. The AUC, accuracy,
specificity, and sensitivity of the eight single-parameter models were
evaluated to determine their diagnostic efficiency for breast cancer.

Multi-Parametric ML Models
The appropriate classifiers were chosen to construct a multi-
parametric model based on the results of the single-parametric
ML models. There were 247 potential combinations of eight MRI
parameters. In addition to classifier selection, models were also
Frontiers in Oncology | www.frontiersin.org 3
trained and validated for 5-fold cross-validation with 10 rounds on
all the lesions using the Deepwise Research Platform. The average
of the 10 verification scores from all 10 rounds was used as the
final verification score of every multi-parametric ML model. Same
metrics were used to evaluate the diagnostic efficiency as single-
parameter MLmethods. For the multi-parametric MLmodels, the
one with highest diagnostic efficiency was determined to be the
optimal ML model. The overall ML scheme was described in
Figure 1, which showed how the features of the MRI parametric
images are handled.

Validation of the Optimal ML Model
The performance of the validation was tested in the validation
cohort. The value of the optimal ML model as a predictor of
benign and malignant lesions was evaluated with the index of
consistency in calibration curve. The net benefit was calculated by
subtracting the proportion of all patients who were false positive
from the proportion who were true positive in the decision curve.

The calibration curve was created using RMS package in
RStudio 1.1., while the decision curve was plotted in python 3.6
with matplotlib package.

Breast Cancer Risk Model Built by
Nomogram
The clinicopathologic characteristic of breast lesions were
statistically analyzed using the software of GraphPad Prism 6. A
parametric test (unpaired t‐test) was applied when normality
assumptions and homogeneity of variance were satisfied.
Otherwise, the equivalent non‐parametric test (Mann–Whitney
test) was used. P < 0.05 indicated statistical significance. The
clinicopathologic characteristics with statistical difference between
benign andmalignant lesions and the optimalMLmodel were used
to construct breast cancer risk model. Nomogram was created to
construct the riskmodel to assess the risk of breast cancer using the
RMS package in RStudio 1.1.
RESULTS

Enrolled Patients
As shown in Figure 2, fromOctober 2016 to June 2018, 210 breast
lesions (144 malignant lesions and 66 benign lesions) from 199
female patients met the above criteria and were enrolled in the
study. There were nine patients with two benign lesions, one
patient with bilateral malignant lesions, and one patient with 1
benign lesion and 1 malignant lesion. The clinicopathologic
characteristics of patients, including age, lesion size, pathological
type and histologic grade, were summarized in Table 1. The
average age of patients with benign and malignant were 42.5
years old and 50.8 years old respectively, which had statistically
significant difference. The size of the benign lesions was not
significantly different from that of the malignant lesions.

The Sixth Principal Component of Ktrans

Was the One With the Highest Importance
The top-10 principal components of every parameter were
extracted from 1,132 features to construct a random-forest
February 2021 | Volume 11 | Article 570747
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FIGURE 2 | Flow diagram of inclusion and exclusion about the cohort data in this study.
A

B

FIGURE 1 | The machine learning workflow with the features of multi-parametric MRI images. (A) The features of the single and Multi-parametric MRI parametric
images are extracted and selected to construct machine learning models. (B) Machine Learning Models were trained and validated for 5-fold cross-validation with
10 rounds on all the lesions.
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model, which had AUC of 0.84 and accuracy of 0.81. In this
model, the sixth and fourth principal component of Ktrans were
about twice as important as the other principal components
(Figure 3A).

Single-Parameter ML Model
The Ktrans ML Model Had the Best Discriminative
Performance in the Single-Parametric ML Models
The models of Ktrans, Kep, Ve, Vp, non-enhanced T1WI, enhanced
T1WI, T2WI, and ADCmaps had AUC values of 0.86, 0.81, 0.81,
0.83, 0.79, 0.81, 0.84, and 0.83 for the validation cohort,
respectively. The sensitivity, specificity, and accuracy of each
parameter model was listed in Table 2. The Ktrans ML model was
the optimal single-parametric model with the best
discriminative performance.

Classifiers Selection During Single-Parametric ML
Models
In unbalanced data, AUC was more appropriate than accuracy,
sensitivity and specificity to evaluate the performance of a model.
We can see from Figure 3B that the models using the classifiers
Frontiers in Oncology | www.frontiersin.org 5
of Logistic Regression, SVM and Multilayer Perceptron had
higher AUC values (>0.80), which were considered to be
relatively good classifiers for constructing the breast cancer
discriminative model in this study. These three feature
classifiers were chosen to analyze the combined multiple
parameters in the next section.

The Optimal mpMRI ML Model
A total of 247 experiments with mpMRI ML models were
performed using six feature selection methods and three
classifiers. The AUC values of every single and multi-parametric
models were shown in Figure 4. The model that combined of
Ktrans, non-enhanced T1WI, T2WI, and ADC, achieved the
highest AUC value of 0.90 with multilayer perceptron as
classifier in our study (Figure 4B).

It was showed that the 16 high-weight features in the optimal
model were chosen by a Pearson correlation analysis from the
features of four MRI parameters, and Ktrans had seven features
beyond the other three parameters in Figure 5A. Each lesion’s
score predicted by the optimal ML model was displayed in
Figure 5B. The sensitivity, specificity, and accuracy rates of the
TABLE 1 | Clinicopathologic characteristics of the study cohort.

Classification Age (mean ± SD), years Lesion size, [media(Q25, Q75], cm Histologic type/grade

Benign lesions (n = 66) 42.5 ± 11.0 2.8[1.6, 4.4] Fibroadenoma (n=21)
Adenosis (n=14)
Others (n=31)

Malignant lesions
(n=144)

50.8 ± 9.5 3.3[2.2, 4.8] IDC
(n=121)

I (n=8)
II (n=86)
III(n=27)

Others (n=23)
P <0.001 0.081 /
February
 2021 | Volume 11 | Art
IDC, invasive ductal carcinoma.
A B

FIGURE 3 | (A) The principal component analysis of each parameter by Random forest model. The top-10 principal components of every parameter were extracted.
The top 22 out of 80 principal components in coefficient ranking were chosen to construct a model by the method of Random forest model. The sixth and fourth
principal component of Ktrans were obviously more important than other principal component of parameters. (B) Machine learning models with 12 classifiers were
constructed to select the appropriate classifier according to the AUC of the single parameter models. The models with Logistic Regression, SVM, Multilayer
Perceptron had relatively high AUC values (>0.80) and this three classifiers were considered as appropriate classifiers in our study.
icle 570747
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optimal ML model were 81%, 89%, and 85%, respectively
(Table 2).

Validation of the Optimal Model
The index of concordance in the optimal ML model was 0.90 for
the calibration curve in Figure 4C. The decision curve in Figure
4D shows that the clinical usefulness of the optimal model on the
validation cohort. A greater net benefit was obtained when the
threshold probability (Pt) was between 0.17 and 0.95, comparing
Treat-none or Treat-all. Besides, according to the Youden index
in the validation cohort, when the Pt was 0.80, the corresponding
Frontiers in Oncology | www.frontiersin.org 6
result was 0.42 on the decision curve, which meant that the
optimal model was able to detect 42 breast-cancer-positive
patients per 100 patients without increasing false-positives.

Nomograms of the Optimal ML Model
There was significant statistical difference in the patient age between
benign and malignant lesions. The nomograms were built to predict
the risk of malignant breast lesions by using the optimal ML model
scores and patient age (Figure 6). In the nomogram, the older a
person with breast disease and the higher radiomic score in the
optimal ML model, the greater the risk of breast cancer.
A

B C D

FIGURE 4 | (A) All the models including single and multiply parameters were built with Logistic Regression, SVM and Multilayer Perceptron. One model combined
with Ktrans, non-enhanced T1WI, T2WI and ADC had an AUC of 0.90, and was highest in all experiments. (B) ROC curve of the optimal model was constructed by
four parameters with the AUC value of 0.90 in the diagnosis of breast cancer. (C) Calibration curves of the optimal ML model for the diagnosis of breast cancer
based on the mpMRI. The y-axis represented the actual probability. The x-axis represented the predicted probability. The diagonal gray line represented a perfect
prediction by an ideal model. The black solid line represented the performance of the optimal ML model, of which a closer fit to the diagonal gray line represented a
better prediction. (D) Decision curve analysis for the optimal ML model based on the mpMRI for the diagnosis of breast cancer. The y-axis measured the net benefit.
The x-axis represented the threshold probability. The blue line represented the optimal ML model. The dotted line represented the assumption that all patients had
breast cancer. Thin black line represented the assumption that no patients had breast cancer. The net benefit was calculated by subtracting the proportion of all
patients who were false positive from the proportion who were true positive, weighting by the risk of malignant lesions compared with the lesions. According to the
Youden index in the validation cohort, when the threshold probability (Pt) was 0.80, the net benefit was 0.42. When Pt was 0.17–0.95, the net benefit of the optimal
model was better than the treat-all or treat-none strategies.
TABLE 2 | The AUC, sensitivity, specificity, and accuracy of single-parameter models and the joint optimal model.

Parameters Rad_Score[media(Q25, Q75] AUC Sensitivity Specificity Accuracy

Ktrans 0.84(0.46,0.93) 0.86 88% 74% 83%
Kep 0.78(0.48,0.90) 0.81 80% 67% 76%
Ve 0.69(0.35,0.84) 0.81 76% 77% 77%
Vp 0.96(0.18,1.24) 0.83 84% 74% 80%
T1WI 0.83(0.25,1.08) 0.79 78% 68% 77%
T1WI+ 0.70(0.33,0.88) 0.81 80% 70% 76%
T2WI 0.66(0.34,0.84) 0.84 67% 88% 76%
ADC 0.80(0.46,0.92) 0.83 84% 74% 77%
Ktrans_T1WI_T2WI_ADC 0.90(0.34,0.98) 0.90 81% 89% 85%
February
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DISCUSSION

In the present study, the principle components of Ktrans were more
important than the principle components of other parameters, and
the ML model of Ktrans map had the highest AUC, accuracy, and
sensitivity of all single-parameter ML models. This indicated that
Frontiers in Oncology | www.frontiersin.org 7
Pk-DCE may be an important functional MRI with a high ability
to identify breast cancer. The ML model combined of Ktrans, non-
enhanced T1WI, T2WI, and ADC had the highest AUC value,
accuracy, and specificity as well as a higher sensitivity than the
other single-parameter and multi-parameter models for the breast
cancer diagnosis. This four-parameter ML model could improve
A

B

FIGURE 5 | (A) Features of the optimal model constructed by Ktrans, non-enhanced T1WI, T2WI, and ADC. The joint multi-parameter model was constructed by the
top 16 features in the weight coefficient ranking of features. Red represented that the lesion with higher weight feature was possible of malignant lesion in the model.
Blue represented that the lesion with higher weight feature was possible of benign lesion in the model. (B) Score of the optimal model constructed by Ktrans, non-
enhanced T1WI, T2WI and ADC for each lesion. Scores above zero meant malignant lesions in the model. Scores below zero meant benign lesions in model. Red
represented malignant lesions in pathology, while blue represented benign lesions.
FIGURE 6 | Nomogram for the risk prediction of breast cancer with patient age and the optimal ML model. The risk of breast cancer was positively correlated with
the patient age and radiomic score of every lesion in the optimal ML model.
February 2021 | Volume 11 | Article 570747
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the discrimination ability of breast lesions. The calibration curve
and decision curve demonstrated that the optimal ML model has
good clinical value. In addition, patient age was significantly
different for benign and malignant lesions. We created
nomograms by combining the optimal ML model and clinical
data, which could be helpful in the prediction of breast cancer risk.

This study was the first ML research on breast mpMRIs with
conventional and functional sequences. First, we noted that ML
was superior to the previous diagnostic analysis because it can
recognize texture features that hardly be found by human eyes.
Furthermore, the functional MRI, especially Pk-DCE, was
suitable for identifying breast cancer. Additionally, breast
cancer can be diagnosed not only by single parameter but also
by combinations of multiply parameter. However, we found that
the optimal ML model was not a single-parametric model nor a
model that combined all the parameters, but instead was a model
that combines four parameters, Ktrans, non-enhanced T1WI,
T2WI, and ADC. The optimal ML model, with AUC 0.90,
specificity 89% and accuracy 85%, was a good tool for
preoperatively breast cancer diagnosing. The calibration curve
and the decision curve analysis revealed that the optimal ML
model was clinically useful. Nowadays, pathological diagnosis
after surgery or biopsy was predominately used as the gold
standard. However, sampling error was inevitable and invasive
procedures may have adverse effects on patients (27).

The nomograms built by the optimal ML model could be
beneficial for preoperatively predicting the risk of breast cancer
in patients, enabling them to avoid unnecessary interventions for
benign lesions.

The nomograms revealed that the optimal ML model was an
important factor for predicting the risk of malignant breast
lesions. In addition to the optimal ML model, the patient age
played important roles in the prediction of breast cancer risk.
The median age at breast cancer diagnosis was 61 years (28).
Moreover, 81% of breast cancers were diagnosed among females
50 years old and older (29). In our study, the average age of
patients with breast cancer was 50.8 years old. The age
distribution in the literature was somewhat different to that of
our study, which may be caused by the different samples.

There have been a few studies on breast mpMRI that applied
conventional analytical methods (3, 25, 30–33). Truhn et al. used
radiomics and deep learning to analyze breast mpMRI but the
breast mpMRIs in their study only included T2WI and contrast-
enhanced subtracted or non-subtracted images (23). In our
study, we diagnosed breast lesions not only with conventional
sequences, non-enhanced and enhanced T1WI as well as T2WI,
but also with the functional sequences, DWI and Pk-DCE.

For the lesion segmentation of mpMRI images, the
consistency of ROI annotation was a prerequisite to ensuring
the accuracy of feature extraction (23). To improve the accuracy
of lesion segmentation, we marked lesion ROIs on the enhanced
T1WI image. We then matched this image and the lesion ROIs
with the other multi-parametric images and the corresponding
target areas using the software ITK-SNAP, whose powerful
image processing facilitated the development of multiple MRI
parameter-based ML methods.
Frontiers in Oncology | www.frontiersin.org 8
This study had some limitations. First, the inherent limitation
of ML was that the complex decision-making process of the
model is difficult to understand, which resulted in ML often
being called a “black box.” Additionally, the number of cases was
relatively small and the appropriate external validation data were
difficult to obtain. It was impossible to do a ML study based on
histologic grade. In the next step, we plan to expand the sample
for further study of ML methods in breast mpMRIs.
CONCLUSION

The ML based on mpMRI with functional sequences in the
current study could extracted more image features of breast
lesions that naked eyes could detect and had certain advantages
in the diagnosis of breast cancer over the traditional analysis
method. The nomograms with the optimal ML model based on
mpMRI will clearly improve the efficiency of breast
cancer prediction.
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