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Background: Muscle wasting (Sarcopenia) is associated with poor outcomes in cancer
patients. Early identification of sarcopenia can facilitate nutritional and exercise
intervention. Cross-sectional skeletal muscle (SM) area at the third lumbar vertebra (L3)
slice of a computed tomography (CT) image is increasingly used to assess body
composition and calculate SM index (SMI), a validated surrogate marker for sarcopenia
in cancer. Manual segmentation of SM requires multiple steps, which limits use in routine
clinical practice. This project aims to develop an automatic method to segment L3 muscle
in CT scans.

Methods: Attenuation correction CTs from full body PET-CT scans from patients enrolled
in two prospective trials were used. The training set consisted of 66 non-small cell lung
cancer (NSCLC) patients who underwent curative intent radiotherapy. An additional 42
NSCLC patients prescribed curative intent chemo-radiotherapy from a second trial were
used for testing. Each patient had multiple CT scans taken at different time points prior to
and post- treatment (147 CTs in the training and validation set and 116 CTs in the
independent testing set). Skeletal muscle at L3 vertebra was manually segmented by two
observers, according to the Alberta protocol to serve as ground truth labels. This included
40 images segmented by both observers to measure inter-observer variation. An
ensemble of 2.5D fully convolutional neural networks (U-Nets) was used to perform the
segmentation. The final layer of U-Net produced the binary classification of the pixels into
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muscle and non-muscle area. The model performance was calculated using Dice score
and absolute percentage error (APE) in skeletal muscle area between manual and
automated contours.

Results: We trained five 2.5D U-Nets using 5-fold cross validation and used them to
predict the contours in the testing set. The model achieved a mean Dice score of 0.92 and
an APE of 3.1% on the independent testing set. This was similar to inter-observer variation
of 0.96 and 2.9% for mean Dice and APE respectively. We further quantified the
performance of sarcopenia classification using computer generated skeletal muscle
area. To meet a clinical diagnosis of sarcopenia based on Alberta protocol the model
achieved a sensitivity of 84% and a specificity of 95%.

Conclusions: This work demonstrates an automated method for accurate and
reproducible segmentation of skeletal muscle area at L3. This is an efficient tool for
large scale or routine computation of skeletal muscle area in cancer patients which may
have applications on low quality CTs acquired as part of PET/CT studies for staging and
surveillance of patients with cancer.
Keywords: deep learning, convolutional neural networks, skeletal muscle, image segmentation, sarcopenia,
lung cancer
INTRODUCTION

Loss of skeletal muscle (SM) mass is an important consideration
in oncologic patients as a key component of cancer-related
malnutrition, sarcopenia and cachexia (1, 2). The loss of
skeletal muscle occurring in these conditions has been linked
with diminishing physical function (3, 4), increased risk of
chemotherapy-related toxicities (5) and unfavorable survival
outcomes (6–8). Early diagnosis and intervention with
nutrition and exercise however, may improve outcomes in
patients with loss of skeletal muscle (4). Importantly, weight
and body mass index (BMI) alone are not good predictors of
sarcopenia or cancer-related malnutrition (4, 9). Therefore,
specifically in the oncology setting, there is a clear need to
identify the presence of low skeletal muscle mass and intervene
as necessary to reduce adverse effects.

Computed Tomography (CT) is proven to be an effective
method to evaluate total body SM mass. In particular, cross-
sectional area of SM at the third lumbar (L3) vertebra on
abdominal CTs has been found to be highly correlated with
the total body SM mass (10, 11). SM area at L3 normalized by
patient height is commonly used as a surrogate marker of
sarcopenia in cancer (9, 12) and as a component of recent
diagnostic criteria for malnutrition and sarcopenia (2, 13). This
marker is known as the L3 skeletal muscle index (SMI). Accurate
segmentation of SM on CT is a time-consuming task and
requires specific skill, training and experience, which limits the
measurement in routine clinical practice as well as for large
cohort studies. The advances in deep learning and computing
resources in recent years provide novel opportunities to revisit
these types of manual, time-consuming and routine tasks. In
particular, deep learning has been shown to be particularly well
suited to segmentation tasks (14, 15).
2

Previous work has demonstrated high accuracy deep learning
segmentation in skeletal muscle of diagnostic quality CT scans
acquired for a range of cancer and non-cancer indications (16–
18). Positron Emission Tomography PET/CT studies are
standard of care in staging and surveillance for a range of
cancers (19–21), and are typically whole body acquisitions
therefore are well suited for measurement of L3 skeletal muscle
area. CT scans acquired during these studies are typically low
quality, often only acquired for attenuation correction (22).
These CT scans are acquired with reduced current to reduce
patient dose, and no intravenous contrast, resulting in increased
noise and reduced soft-tissue contrast (23). AI segmentation as
trained on high quality diagnostic CT images may thus not be
applicable to low quality CT scans such as those obtained in
PET/CT studies. The current study aims to use a 2.5D
convolutional neural network (CNN) based model to
automatically segment SM area at L3 on low quality CT scans
acquired as part of PET/CT studies.
METHODS

Study Design
A CNN based deep learning model was trained to automatically
segment the skeletal muscle in an axial L3 slice of a full body CT
scan. Manual segmentation was performed by a single observer
according to the Alberta protocol (10, 11). A data set consisting
of 147 scans obtained from 66 patients were used as the training
and validation set (Table 1). A separate data set of 116 CTs from
42 patients were used to independently test the model (Table 1).
The accuracy of the CNN model was assessed by comparing the
overlap between manual and automatic skeletal muscle contours
(Dice score) and percentage error between manual and CNN
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based contours. Approval to conduct this retrospective study was
granted by the Institutional Research and Ethics Committee.

Training and Validation Dataset
The training and validation dataset consisted of 66 patients who
underwent repeat FDG PET/CT scans as part of a prospective
observational trial investigating lung function PET/CT
(ACTRN12613000061730). The trial protocol has been
previously described (24); inclusion criteria was any patient
receiving curative intent radiotherapy for NSCLC, with or
without chemotherapy. Each patient had one baseline scan and
up to three follow-up scans. Overall, the training dataset consists
of 147 CTs (Table 1 and Supplementary Table 1). Manual
segmentation was performed by a single observer (observer A).
This dataset will be referred to as Cohort 1.

Independent Testing dataset
Independent Testing Dataset The dataset was derived from a
prospective observational trial of 42 patients with NSCLC, which
investigated the associations between interim tumor responses
on 18F-flurodeoxyglucose (18F-FDG) PET/CT and 18F-fluoro-
thymidine (18F-FLT) PET/CT and patient outcomes including
progression-free survival and overall survival (ACTRN
12611001283965). The methodology for the original study has
previously been described (25); inclusion criteria was any patient
receiving curative intent radiotherapy for NSCLC, with or
without chemotherapy. The survival outcomes and the
relationship between skeletal muscle loss was described in (26).
There were 42 patients in the testing set with NSCLC, with a
base-line scan and up to 4 follow-up scans. In total, the testing
dataset consists of 116 CTs (Table 1 and Supplementary Table 1).
Manual segmentation was performed by a single observer
(observer B). This dataset will be referred to as Cohort 2.

Manual Segmentation
Manual segmentation of the skeletal muscle at an axial L3 slice of
the full body CT scan was performed according to the Alberta
protocol (10, 11). Briefly, the skeletal muscle including external
and internal oblique, psoas, paraspinal, transverse abdominis
Frontiers in Oncology | www.frontiersin.org 3
and rectus abdominis was segmented using Hounsfield Unit (HU)
thresholds of -29 – 150. This was manually adjusted to exclude
ligaments and connective tissue around the vertebra. A single
expert trained in the Alberta protocol (NK) supervised two
observers to perform the segmentation according to the protocol.
The training and test datasets were contoured by different
observers, who performed cross comparison and review of
segmentations with the expert as well as medical staff on the
study (NB). Subsequent revisions of segmentations were
performed if deemed necessary to adhere to the Alberta protocol.
To measure inter-observer consistency and to provide inter-
observer context to the automated segmentation results, the two
observers each performed segmentation on 20 images of the other
observer’s data, resulting in 20 images from each data set with
segmentation from both observers. The inter-observer difference
was computed usingDice score and absolute percentagedifference.

Neural Network Development
We experimented with several model architectures, cross-
validation designs, loss functions, augmentation techniques, and
optimization methods. All the models were implemented using
PyTorch. The initial model consisted of a variation of 2D U-Net
(27) (Figure S1). The model was trained by dividing the patients
in Cohort 1 into two disjoint groups: training and validation. This
ensures that our model is never trained and validated on scans
from the same patient. The validation set had 10% of randomly
selected patients. The model was trained using several loss
functions including binary cross entropy loss, Dice loss (28) and
focal loss (29). The trained model was evaluated using the
validation set at each epoch in terms of network loss and Dice
score. The model with the best average validation Dice score was
retained and tested using Cohort 2. We achieved a median
absolute percentage error (APE) in skeletal muscle area of 3.82%
under the 2Dmodel. The 2Dmodel had poor performance mainly
in distinguishing SM from other organs such as liver.

A 3D U-Net (30) model can improve the predictions by
analyzing 3D volumes simultaneously, which mimics the manual
segmentation procedure. Therefore, we tested a 2.5D U-Net
architecture for SM segmentation; we have defined this as 2.5D
as we have constrained the model to three axial slices, as opposed
to a full 3D volume. Two setups were used to train the 2.5D
model. Firstly, we used the same training and validation sets
from Cohort 1 and trained one 2.5D model. Secondly, we trained
an ensemble of 2.5D models. We divided the training patients
(Cohort 1) into five groups, namely CV1 to CV5, to train five
2.5D models (5-fold cross validation). At each training round, we
held back one group of patients as validation set and used the
other four groups for the training process. This model achieved a
median APE of 1.46%. Therefore, we discarded the 2D model in
favor of the 2.5D model. The ensemble technique is used to
tackle overfitting potential in a small sample size problem. It is
expected that the five individual models may have varying
performance, but can collectively give a consensus decision
that outperforms traditional training.

The following sections describe in detail, the 2.5D model
architecture, loss function, optimization and neural
network training.
TABLE 1 | Patient and scanner information.

Cohort 1 (Training and
validation set)

Cohort 2 (Independent
testing set)

No. of Patients 66 42
No. of scans 147 116
Age at first
scan
(mean ± SD)

66.94 ± 9.81 67.03 ± 8.72
(based on 35 patients)

Gender
(female/male)

24/42 9/26 (based on 35 patients)

Slice thickness Average 3.0 mm (range 0.6-5.0) Average 3.3 mm (range 3.0-
3.3)

PET/CT
Scanner

Nine different scanners from
eight providers

Two different scanners from
one provider

Scanner
energy

80 – 140 kV 140 kV

Manual
segmentation

Observer A Observer B
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2.5D U-Net Architecture
U-Net (27, 30) is a type of fully convolutional neural network
(FCNN).Mainly, it consists of a contractingpath andanexpanding
path (Figure 1). First, the input goes through the contracting path,
which consists of convolutional blocks and focuses on finer details
of the image at the expense of losing spatial information. Each
convolutional block in the contracting path consists of two sets of
2.5D convolutional steps, batch normalization and rectified linear
unit (ReLU) activations. All convolutions are 3x3x3 with stride 1
and padding 1. Finally, a max pooling step is performed for down
sampling (halving the feature set) from one encoder block to the
other encoder block down the line.

Secondly, during the expanding path, the spatial information
is recovered by means of skip connections (Figure 1). Before
going through the convolutional block, the input undergoes an
up-sampling step to expand dimensions. The up-sampling is
done by means of trilinear interpolation. The expanding path
consists of three convolutional blocks. Here, each convolution
block comprises of three sets of 2.5D convolutions followed by
batch normalization and ReLU. All convolutions are 3x3x3 with
stride 1 and padding 1.

Input to the Model
The input to the model is the three axial slices from the CT scan,
which consists of the L3 slice and adjacent slices on top and
bottom of L3. The input is pre-processed by replacing the pixel
values outside -29 to +150 HU (Hounsfield unit) range by 0.
Further, input is resized to 256x256x3 from a 512x512x3 image.
Frontiers in Oncology | www.frontiersin.org 4
Training the Proposed Model Architecture
Training data set consisted of CT image stacks of the three slices
and manually contoured skeletal muscle at L3. To increase the
number of training data, we performed data augmentation ‘on
the fly’. Specifically, we performed horizontal flip, vertical flip
and addition of Gaussian noise. The use of Gaussian noise is a
technique to improve generalization ability of the trained model,
implicitly assuming that CT images can be degraded with a
Gaussian noise component. It is noteworthy that other
augmentation techniques – cropping, rotation, random
translation and elastic transformation – were deliberately
omitted in the final model as they did not improve
performance. The loss function was a combination of Dice loss
(28) and focal loss (weighted cross entropy loss) (29) and model
weights were optimized using “Adam” (31) optimization
technique during training. The network was trained up to 300
epochs. The best model was selected based on the model’s
accuracy, which was measured by Dice score, on the validation
set at each epoch. We performed 5-fold cross validation (CV)
and retained the best model for each fold (Figure S2). The entire
cross-validation model training process took ~14 hours.

Output of the Model
The output of the model is a probability map of the image pixels.
The probabilities give the model’s confidence on predicting each
pixel being inside or outside of skeletal muscle area. The output,
which is 256x256x3, is scaled up to match the original image
dimensions of 512x512x3. Pixels with a probability above 0.3
FIGURE 1 | 2.5D U-Net like architecture used in the current model.
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were included in the resultant segmentation. The threshold of 0.3
was chosen empirically based on inclusiveness and absolute
percentage error; 0.5 was also compared but was too stringent
and led to suboptimal results. The segmentation output of the
model was compared with ground truth segmentation using Dice
score, absolute percentage error (APE) in skeletal muscle area
and SMI. Further, the model was compared with an existing 2D
deep learning segmentation model (16). The AutoMATiCA
model had been trained on diagnostic quality CT scans with
(mean ± SD) tube current of 338 ± 123 mA, which was
substantially higher than the tube current in the validation set
images (mean ± SD) 158 ± 52 mA.
RESULTS

Inter-Observer Variation
Strong agreement between both observers was achieved with a
mean ± SD Dice score 0.96 ± 0.02 and mean ± SD absolute
Frontiers in Oncology | www.frontiersin.org 5
percentage difference in muscle area of 2.9 ± 2.5% for the 40
images with both observers’ contours.

Cross-Validation Performance on Cohort 1
The resultant network consists of a 2.5D U-Net trained using
focal loss and Dice loss for 300 epochs. The training and
validation performance of Cohort 1 in terms of Dice score and
network loss for the five CVs are given in Figure S3 and Figure
S4 respectively. Average performance during CV is given in
Figure 2. For each CV, the results from best model on validation
set are given in Table 2 and Supplementary Table 2. The results
in terms of Dice score and percentage/absolute percentage error
between manual and automatic contours are given. All CV folds
show similar performance.

Ensemble Learning Outperforms Individual
Learning
For each image in the test set, five different probability maps were
predicted using the five models from 5-fold CV. Each image took
A B

FIGURE 2 | Average (A) Dice score and (B) loss performance for training and validation data during network training.
TABLE 2 | Validation results for cross validation (CV) in terms of mean and standard deviation (SD) of performance measure.

CV 1 CV 2 CV 3 CV 4 CV 5

Training
No. of patients 52 53 53 53 53
Total scans 112 118 122 117 119
Validation
No. of patients 14 13 13 13 13
Total scans 35 29 25 30 28
Mean skeletal muscle area (cm2)
(mean ± SD) 122.37 ± 34.84 138.75 ± 33.33 148.54 ± 34.34 141.15 ± 35.38 130.63 ± 43.44
[Range] 42.05 – 178.35 83.91 – 186.35 86.55 – 213.48 80.87 – 226.47 76.81 – 205.03
Dice score
(mean ± SD) 0.90 ± 0.07 0.91 ± 0.06 0.93 ± 0.03 0.93 ± 0.02 0.90 ± 0.04
Percentage Error (PE) - %
(mean ± SD) 0.09 ± 9.31 -4.73 ± 4.11 -2.28 ± 3.31 -2.79 ± 4.22 -6.81 ± 5.98
Absolute Percentage Error (APE) - %
(mean ± SD) 4.67 ± 8.02 4.78 ± 4.04 3.50 ± 1.90 3.88 ± 3.21 6.81 ± 5.98
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~0.4 seconds to go through the five models. Then, the final
probability map for a test image was calculated by combining the
probabilities of the five probability maps. Any pixel with
probability greater or equal to 0.3 was classified as positive (i.e.
belongs to skeletal muscle) and others as negative (i.e. outside of
skeletal muscle).

We experimented with two approaches on how to combine the
outputs from the fivemodels: 1) taking the average probability and
2) taking the maximum probability. We compared the SM area
from both approaches to themanual SM area (Figure 3). Superior
performancewasachievedby calculating averageprobabilitymaps.
Basedonaverageprobability, the skeletalmuscle area for the test set
ranged from 19.76 cm2 to 241.04 cm2 (with mean ± standard
deviation of 138.88 cm2 ± 38.27 cm2). The majority of test cases
(n=92, 79%), were within ±5% error between manual and
automated contours. 57 (49%) cases showed an error within ±
1% (Figure 3, Figure S5).

Accuracy of Segmentation of Skeletal
Muscle Using the Deep Learning Model
The accuracy of the model was calculated by Dice score and
difference in area between manual and automated contours. The
Frontiers in Oncology | www.frontiersin.org 6
prediction accuracies are given in Table 3 for 2D U-Net, single
2.5D U-Net model and the ensemble of 2.5D U-Net models
(Supplementary Table 3). Improvements between the 2D U-Net
and 2.5D U-Net was limited to classification of the liver-muscle
interface; where there was no clear border between the liver and
adjacent muscle on the L3 slice, the 2D U-Net was unable to
accurately define the skeletal muscle. Use of the 2.5D U-Net
improved this. The qualitative results are shown in Figure 4.
A B

C D

FIGURE 3 | Ensemble learning results. On left, sub figures (A, C) show Bland-Altman plots. On right, sub figures (B, D) show correlation plots. The top graphs
show the results for average probability and bottom graphs show results for maximum probability maps.
TABLE 3 | Performance on test data set using 2.5D/2D U-Net.

Performance measure Median Mean ± Std. dev. Range

Based on 5-fold cross validation (2.5D U-Net)
Dice score 0.94 0.92 ± 0.06 0.57 – 0.97
APE (%) 1.46 3.09 ± 4.52 0.02 – 32.49
Based on single model with 0.1 validation set (2.5D U-Net)
Dice score 0.94 0.92 ± 0.07 0.41 – 0.97
APE (%) 2.80 4.86 ± 7.62 0.04 – 54.28
Based on single model with 0.1 validation set (2D U-Net)
Dice score 0.94 0.92 ± 0.05 0.57 – 0.97
APE (%) 3.82 5.16 ± 5.64 0.03 – 46.55
AutoMATiCA results
APE (%) 4.0 4.98 ± 6.78 0.20 – 53.68
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Top, middle and bottom rows show representative contours from
best performing, less than average performing and least
performing cases respectively. Figure 4I shows a scan with a very
low skeletal muscle area compared to all other images in training
and testing sets, and this resulted ina very lowDice score. For the20
scans in the test data set that had contours fromboth observers, the
inter-observermean ± SDof the dice scoreswas 0.96 ± 0.02 and the
mean± SDof the absolute percentage difference inmuscle areawas
2.7 ± 2.5%. For the same 20 scans, themean ± SD of the dice scores
Frontiers in Oncology | www.frontiersin.org 7
was 0.93 ± 0.03 and themean ± SDof the absolute percentage error
in muscle area was 3.8 ± 2.8%, showing slightly inferior
performance compared with inter-observer variation.

The AutoMATiCA model was applied to all images in the
validation image set. The Dice score was not able to be computed
as AutoMATiCA does not export segmentation, only the muscle
area measurement and a merged image file. The mean ± SD APE
for AutoMATiCA was 5.0 ± 6.8%, compared with 3.1 ± 4.5% for
the current model.
FIGURE 4 | Qualitative performance of the model on Cohort 2. Red represents deep learning contours and green represents manual contours. Panels (A–C) in the
top panel show three of the best performing cases (Dice ± 0.96). Panels (D–F) in the middle panel show the cases with average performance (Dice ± 0.90) and
Panels (G–I) in the bottom panel show cases with lowest performance (Dice ± 0.88).
May 2021 | Volume 11 | Article 580806
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Using Model Output to Predict Sarcopenia
Skeletal muscle index (SMI) at L3, which is calculated by dividing
skeletal muscle area by the height of patient squared, is a well-
known surrogate for sarcopenia in cancer. In the test set, 35
patients out of 42 had recorded height and weight information,
which we used to calculate SMI on each of their images. Then, we
compared the SMI values based on manual and automated SM
area for these patients (Figure S6, Supplementary Table 3).
Finally, we use these SMI values to classify scans into sarcopenic
and non-sarcopenic groups (Figure 5). Sarcopenic patients were
classified based on reference values from Martin et al. (32).
Sarcopenia was defined as SMI < 43 cm2/m2 in men with a body
mass index (BMI) < 24.9 kg/m2 and < 53 cm2/m2 in men with a
BMI > 25 kg/m2; and < 41cm2/m2 in women of any BMI. Out of
94 CT scans in the validation set for which we had the required
clinical data, 85 were correctly classified as sarcopenic or not by
automatic SM contours. The positive and negative predictive
values shown in Figure 5 resulted in a sensitivity of 84% and a
specificity of 95%.
DISCUSSION

In this study, we present an ensemble model of 2.5D CNNs to
automatically segment skeletal muscle on low quality CTs
acquired in PET/CT studies, and investigate its qualitative and
quantitative accuracy and precision to measure SM area and
detect sarcopenia in NSCLC patients. It is widely recognized that
robust measures of skeletal muscle mass are often challenging to
use in clinical practice due to cost, time and the training required
(33). This results in a tendency to use subjective assessments
which have demonstrated inaccuracy in identifying
sarcopenia (34).
Frontiers in Oncology | www.frontiersin.org 8
The variation between the model and manual segmentation
was similar to that measured between multiple observers;
Perthen et al. (35) quantified inter-observer variation for L3
skeletal muscle area as delineated by three radiologists. The mean
absolute difference between any two observers was up to 2.69
cm2. In our data set we achieved a mean absolute difference
between two observers of 3.55 cm2 and a mean absolute
difference between the manual and automated contours of 3.69
cm2. Further, the mean Dice score between our two observers
was 0.96, compared with the mean dice score for our automated
contours with manual contours of 0.92. We achieved a sensitivity
of 84% and specificity of 95% when classifying sarcopenic
patients using automatic contours and using Alberta protocol
based manual diagnosis as ground truths. These results indicate
our model has the potential to facilitate large scale robust
assessment of skeletal muscle from low quality CT scans in the
research setting, as well as clinical practice to support early
identification and intervention.

Despite promising results, our study has several limitations.
In some cases, with very low SM area, the model tends to
misclassify other organs as belonging to skeletal muscle. These
results suggest that the CNN has not been trained with images
that fully represent the diversity and heterogeneity of SM area.
To potentially overcome this problem, the proposed model can
be retrained with new images as they are being acquired. We also
observed limited benefit of data augmentation apart from
flipping and addition of Gaussian noise, which may suggest
limited variability in the validation set. Further improvement for
use in external data sets may be achieved with increased
variability in the training image acquisition and reconstruction
parameters, and inclusion of images from a wider range of
institutions. However, we observed that these limitations did
not impact the ability to provide correct sarcopenia classification.
Further, these can be improved by incorporating user interaction
to correct mislabeled sections of CT. A further systematic
difference between the manual and automated segmentation
occurred when the patient was scanned with arms down; the
model mis-classified portions of the arm at the L3 level, as there
were no patients in the training set who were scanned with
arms down.

Our approach is only trained and validated on attenuation
correction quality CTs, specifically those that were obtained as
part of PET/CT studies since these will typically contain L3 in the
scan range. Our model shows improved results on our validation
data set compared with a 2D AI model trained specifically on
higher quality diagnostic CT scans. This suggests a domain
specific training is likely required for widespread applicability
of such models. Further, our model was a 2.5D model, which
may provide further improvements over the 2D model, in
particular with organ-muscle interfaces that may not be visible
in the selected slice for analysis. Specific image normalization
methods and model parameter tuning are needed to extend our
method to other modalities, including diagnostic quality CTs and
magnetic resonance imaging (MRI). Potential improvement may
be achieved through use of higher quality diagnostic CT scans.

Deep learning-based methods are showing the potential to
reliably automate a number of rudimentary pattern recognition
FIGURE 5 | Sarcopenia classification based on manual and automatic SM area.
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tasks. If coupled with other methods to localize to the
appropriate L3 slice (36), there is a pathway to fully automate
these measures for any patient receiving CT imaging. It is
foreseeable that being able to track trends in body composition
would have implications in management in a number of chronic
diseases, which are regularly monitored through volumetric CT
or MR imaging.
CONCLUSION

We present an automated method to delineate skeletal muscle
area at L3 region of attenuation correction CT scans acquired as
part of PET/CT studies for patients with NSCLC. The proposed
method can be used to classify sarcopenia with minimal manual
intervention, which may be an efficient method in large studies.
Further, the model can be potentially used in clinical practice to
identify early sarcopenia in patients with lung cancer.
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