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Background and Objective: Increasing evidence has elucidated the clinicopathological
significance of individual TME component in predicting outcomes and immunotherapeutic
efficacy in lung adenocarcinoma (LUAD). Therefore, we aimed to investigate whether
comprehensive TME-based signatures could predict patient survival and therapeutic
responses in LUAD, and to assess the associations among TME signatures, single
nucleotide variations and clinicopathological characteristics.

Methods: In this study, we comprehensively estimated the TME infiltration patterns of
493 LUAD patients and systematically correlated the TME phenotypes with genomic
characteristics and clinicopathological features of LUADs using two proposed
computational algorithms. A TMEscore was then developed based on the TME
signature genes, and its prognostic value was validated in different datasets.
Bioinformatics analysis was used to evaluate the efficacy of the TMEscore in predicting
responses to immunotherapy and chemotherapy.

Results: Three TME subtypes were identified with no prognostic significance exhibited.
Among them, naïve B cells accounted for the majority in TMEcluster1, while M2 TAMs and
M0 TAMs took the largest proportion in TMEcluster2 and TMEcluster3, respectively. A
total of 3395 DEGs among the three TME clusters were determined, among which 217
TME signature genes were identified. Interestingly, these signature genes were mainly
involved in T cell activation, lymphocyte proliferation and mononuclear cell proliferation.
With somatic variations and tumor mutation burden (TMB) of the LUAD samples
characterized, a genomic landscape of the LUADs was thereby established to visualize
the relationships among the TMEscore, mutation spectra and clinicopathological profiles.
In addition, the TMEscore was identified as not only a prognosticator for long-term survival
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in different datasets, but also a predictive biomarker for the responses to immune
checkpoint blockade (ICB) and chemotherapeutic agents. Furthermore, the TMEscore
exhibited greater accuracy than other conventional biomarkers including TMB and
microsatellite instability in predicting immunotherapeutic response (p < 0.001).

Conclusion: In conclusion, our present study depicted a comprehensive landscape of
the TME signatures in LUADs. Meanwhile, the TMEscore was proved to be a promising
predictor of patient survival and therapeutic responses in LUADs, which might be helpful
to the future administration of personalized adjuvant therapy.
Keywords: lung adenocarcinoma, tumor microenvironment, signature, survival, therapeutic response
INTRODUCTION

Lung adenocarcinoma (LUAD) is the commonest histological
type of all lung cancers, accounting for approximately 50% of
them (1, 2). Nowadays, surgical resection remains as the
standard treatment for early-stage LUADs. Meanwhile,
chemotherapy plays an important role in LUAD patients at all
stages of the disease. Recently, blockade of immune checkpoint
has been proved as a promising therapy for patients with
LUADs (3, 4) which seems to be an alternative to conventional
chemotherapy. Nevertheless, the fact that most patients do not
derive any benefit from PD-1/PD-L1 blockade combined
with the risk of serious immune-related adverse events (5, 6)
and the significant up-front costs, underscore the need for
developing accurate tools for predicting therapeutic response
to chemotherapy and immune checkpoint blockade (ICB) (7).

Nowadays, an increasing body of literature suggests a crucial
role for the tumor microenvironment (TME) in cancer
progression and therapeutic responses (8–11). The TME
context in LUADs has been reported not only to reflect the
potential benefits from treatment (12–14), but also to predict
patient survival (15, 16), which includes tumor-infiltrating
lymphocytes (e.g., CD8+ T cells, CD4+ T cells), tumor-
associated macrophages (TAMs), cancer-associated fibroblasts
(CAFs), and other cell types. With the introduction of
computational methods to assess the abundance of cells
infi ltrating in the TME, several studies using these
methodologies have explored the clinical utility of TME
context (13, 17–19). However, the comprehensive landscape of
TME infiltrates and its predictive power for therapeutic
responses in LUADs have not been fully investigated.

In our present study, two previously proposed computational
algorithms (20, 21) were employed to estimate the fractions of
23 immune and stromal cells based on LUAD gene expression
profiles from The Cancer Genome Atlas (TCGA) database. The
TME infiltrating patterns of LUAD samples were investigated
and correlated with both transcriptomic characteristics and
clinicopathological features. Unsupervised clustering was
applied to quantify the TME infiltrating patterns which were
calculated as a TMEscore. Consequently, the TMEscore was
proved to be a promising prognostic biomarker and a robust
predictive factor for the therapeutic responses in LUADs.
2

MATERIALS AND METHODS

LUAD Datasets and Preprocessing
The transcriptomic dataset of LUAD from TCGA database was
downloaded from the UCSC Xena browser (https://xenabrowser.
net/datapages/). LUAD patients without survival information
were removed from further evaluation, among whom 499 were
available to construct the TMEscore. Data of somatic mutations
(MuSE Variant Aggregation and Masking) were downloaded
from TCGA database, which included 567 LUAD specimens.
Somatic mutation data, transcriptomic data and survival
information were available in 493 of the 499 specimens, of
which clinical characteristics were accessible in 474. The raw
data in TCGA dataset generated from Illumina were processed
using the lumi software package according to a previous study (8).

The microarray data (GSE68465) generated by Affymetrix were
obtained from the Gene Expression Omnibus (https://www.ncbi.
nlm.nih.gov/geo/) (GEO) as a validation dataset, which included
422 LUAD specimens with expression profiles and clinical
outcomes available. The raw data for the dataset from Affymetrix
were processed using the Range Migration Algorithm (RMA) for
background adjustment in the Affy software package (22). The
RMA was used to perform background adjustment, quantile
normalization, and final summarization of oligonucleotides per
transcript using the median polish algorithm. The detailed
information of the LUAD datasets is listed in Supplementary
Table 1.

Assessment of Infiltrating Cells in TME
To calculate the proportions of immune cells in the LUAD
samples, we used the CIBERSORT (cell type identification by
estimating relative subset of known RNA transcripts) algorithm
(20) and the LM22 gene signature, which allows for highly
sensitive and specific discrimination of 22 human immune cell
phenotypes (8). CIBERSORT is a deconvolution algorithm that
uses a set of reference gene expression values (a signature with
547 genes) considered a minimal representation for each cell type
and, based on those values, infers different cell type proportions
in tumor samples using support vector regression (8). Gene
expression profiles were prepared using standard annotation
files, and data were uploaded to the CIBERSORT web portal
(http://cibersort.stanford.edu/), with the algorithm run using the
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LM22 signature and 1,000 permutations. Proportions of stromal
cells were estimated by applying the Microenvironment Cell
Populations (MCP)-counter method, which allows for robust
quantification of the absolute abundance of immune and stromal
cell populations in heterogeneous tissues from transcriptomic
data (21).
Consensus Clustering for TME-Infiltrating
Cells
Hierarchical agglomerative clustering (based on Euclidean
distance and Ward’s linkage) was employed to group the
samples with qualitatively different TME cell infiltration
patterns. Unsupervised clustering methods (K-means) (23) for
dataset analysis were used to identify TME patterns and classify
patients for further analysis. A consensus clustering algorithm
was applied to determine the number of clusters (8), which was
repeated 1000 times to ensure the stability of classification using
the ConsensuClusterPlus R package (24).
Generation and Analysis of TME
Gene Signatures
To identify genes associated with TME cell infiltrating patterns,
we classified patients into three TMEclusters. Differentially
expressed genes (DEGs) among these three groups were
determined using the R package limma (25). DEGs among
different TME patterns were determined by significance criteria
(adjusted p value < 0.05; |logFC|>0.58). An unsupervised
clustering method (K-means) for analysis of DEGs was
employed to classify patients into two groups for further
analysis. TME signature genes were then obtained using the
random forest classification algorithm to screen redundant
genes. Gene-annotation enrichment analysis using the
clusterProfiler R package (26) was performed on TME
signature genes. Gene Ontology (GO) terms were identified
with a strict cutoff of p < 0.01 and false discovery rate (FDR)
of less than 0.05.
Establishment of TME Scores
Cox regression model was applied to assess the prognostic value
of each signature gene which was classified according to its Cox
coefficient. A method similar to gene expression grade index (24)
was used to define the TMEscore of each patient:

TMEscore = S   log2(X + 1) − S   log2(Y + 1)

where X is the expression level of genes whose Cox coefficient is
positive, and Y is the expression level of genes whose Cox
coefficient is negative. The cut-off values of each dataset were
evaluated based on the association between patient overall
survival (OS) and TMEscore in each separate dataset using the
survminer package (8). The R package MaxStat (27) which
iteratively tests all possible cut points to find the one achieving
the maximum rank statistic, was used to dichotomize
TMEscore, and patients were then divided into low- and high-
TMEscore subgroups.
Frontiers in Oncology | www.frontiersin.org 3
Analysis of Tumor Mutation Profiles
Somatic mutation data were obtained from the publicly available
TCGA database. Notably, one sample with merely silent
mutation was excluded from the aforementioned 493 samples
in our analysis. We prepared the Mutation Annotation Format
(MAF) of somatic variants, and implemented the R package
Maftools (https://bioconductor.org/packages/release/bioc/html/
maftools.html) which provides a multiple of analysis modules
to perform the visualization process (28) to display somatic
landscape. In addition, the R package SomaticSignatures
(https://bioconductor.org/packages/release/bioc/html/
SomaticSignatures.html) was used to characterize the mutation
signatures of the LUAD samples (29). Mutational signatures
were extracted using 96 nonnegative components (single-base
somatic substitutions and their immediate sequence context) and
compared to the validated consensus mutational signatures in
the Catalogue Of Somatic Mutations In Cancer (COSMIC) (30),
version 2 (https://cancer.sanger.ac.uk/cosmic/signatures_v2) to
identify the set of COSMIC mutational signatures in TCGA
datasets (31). Moreover, the estimation of TMB in LUAD
samples was conducted according to a previous study (32).

Predictive Value of TMEscore to Estimate
Therapeutic Effect
Tumor Immune Dysfunction and Exclusion (TIDE) (http://tide.
dfci.harvard.edu/) (33), a computational method to predict ICB
response based on melanoma patients who underwent anti-PD-1
or anti-CTLA-4 agent, was used to investigate the predictive
value of TMEscore for immunotherapy. TIDE uses a set of gene
expression markers to estimate two distinct mechanisms of
tumor immune evasion, including dysfunction of tumor
infiltrating cytotoxic T lymphocytes (CTL) and exclusion of
CTL by immunosuppressive factors (34). Patients with higher
TIDE score have a higher chance of antitumor immune escape,
thus exhibiting lower response rate of ICB treatment (33). The
TIDE score was shown to have a higher accuracy than PD-L1
expression level and tumor mutation burden (TMB) in
predicting survival outcome of cancer patients treated with
ICB agents (34–37). The R package MaxStat (27) was also
employed to dichotomize the TMB level. The R package
pRRophetic (38) was used to determine whether TMEscore
could accurately predict clinical chemotherapeutic responses.

Immunohistochemistry Staining
LUAD samples resected from a cohort of chemo- and/or radio-
naïve patients (Supplementary Table 2) were obtained from the
Second Affiliated Hospital of Soochow University, which was
approved by the Institutional Review Board (IRB NO.JD-HG-
2020-09). The chairperson of the ethics committee waived the
need for patient consent. The sections of tumor tissues were
firstly deparaffinized and rehydrated. Endogenous peroxidase
was then quenched using 10% H2O2 for 10 min at room
temperature. Subsequently, nonspecific proteins were blocked with
10% goat serum for 1 h. Afterwards, the sections were rinsed and
incubated with anti-BTK (YM0083, Immunoway; diluted 1: 400)
overnight at 4°C. The DAB Horseradish Peroxidase Color
Development Kit (Beyotime, China) was used for color
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https://bioconductor.org/packages/release/bioc/html/maftools.html
https://bioconductor.org/packages/release/bioc/html/maftools.html
https://bioconductor.org/packages/release/bioc/html/SomaticSignatures.html
https://bioconductor.org/packages/release/bioc/html/SomaticSignatures.html
https://cancer.sanger.ac.uk/cosmic/signatures_v2
http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chen et al. Microenvironment-Based Immune Signatures in LUAD
development. Finally, the sections were counterstained with
hematoxylin and mounted.

As described in our previous study (39), the staining index was
calculated as a product of staining intensity (negative = 0, weak = 1,
moderate= 2, and strong=3)multiplied by staining extent (0%=0,
1%–10% = 1, 11%–50% = 2, and > 50% = 3). A final score of 0–2
indicated low BTK expression, and a score of > 2 indicated high
BTK expression.
Statistical Analysis
For comparisons of two subgroups, unpaired Student t tests was
used to estimate statistical significance for normally distributed
variables, andWilcoxon rank-sum testwasused for analyzingnon-
normally distributed variables. To identify significant genes in the
DEG analysis, Benjamini-Hochberg method was applied to
converting the p values to FDRs (40). The Kaplan-Meier method
was used to generate survival curves for the subgroups in each
dataset, and the Log-rank test was used to determine the statistical
significanceofdifferences.Thehazard ratios forunivariate analyses
Frontiers in Oncology | www.frontiersin.org 4
were calculated using a univariate Cox proportional hazards
regression model. A multivariate Cox regression model was used
to determine independent prognostic factors. The R package
pROC (41) was used to plot and visualize receiver operating
characteristic (ROC) curves to calculate the area under the curve
(AUC) and confidence intervals to evaluate thediagnostic accuracy
of TMB and TMEscore. For comparison of AUCs, likelihood ratio
test for two correlated ROC curves was used. All statistical analyses
were conducted using R (https://www.r-project.org/) or SPSS
software (version 25.0). A two-tailed p-value < 0.05 was
considered statistically significant.
RESULTS

Characterization of TME in LUADs and
Distinct Patterns of TME Subtypes
The general flowchart of our study is shown in Supplementary
Figure 1A. A TCGA dataset comprised of 499 patients with
A B

C

FIGURE 1 | Characterization of TME in LUADs and distinct patterns of TME subtypes. (A) Cellular interaction of tumor microenvironment (TME) cell types in LUADs;
(B) Barplot showing the specific 23 immune fractions represented by various colors in each TMEcluster; (C) Unsupervised clustering of TME cell types and histologic
subtypes for LUAD patients.
March 2021 | Volume 11 | Article 581030
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their transcriptomic data were included in our initial analysis.
By applying CIBERSORT algorithm and MCP-counter method, we
obtained the proportions of 23 different immune and stromal cells in
the499 samples (SupplementaryFigure1B).Meanwhile, aTMEcell
network was used to depict the comprehensive landscape of tumor-
immune cell interactions and their effects on the OS of patients with
LUADs (Figure 1A and Supplementary Table 3).

Unsupervised learning using K-means algorithm was used
on the dataset to perform group clustering, which identified
K=3 according to the elbow method and gap statistic
(Supplementary Figures 2A, B). To identify the aforementioned
optimal cluster number, we assessed clustering stability using
the ConsensusClusterPlus R package which displayed the
clustering stability using 1,000 iterations of hierarchical
clustering. The consensus matrix supported the existence of
three robust clusters of LUADs (Supplementary Figure 2C).
As shown in Figures 1B, C, the proportions of infiltrating
immune cells and histologic subtypes differ significantly among
the three TME subtypes. We found that naïve B cells accounted
for the majority in TMEcluster1, while M2 TAMs and M0 TAMs
took the largest proportion in TMEcluster2 and TMEcluster3,
respectively. However, log-rank test revealed no significant
difference in survival among different TMEclusters (p = 0.45)
(Supplementary Figure 2D).
Frontiers in Oncology | www.frontiersin.org 5
Construction and Validation of the
TMEscore in Different LUAD Datasets

A total of 3395 DEGs among the three TME clusters were
determined by significance criteria (adjusted p value < 0.05;
|logFC| > 0.58) as implemented in the R package limma
(Supplementary Figure S3A). An unsupervised clustering
method (K-means) for analysis of DEGs was then employed to
classify the patients into two groups (Supplementary Figure
3B). Among these DEGs, 217 TME signature genes were
obtained using the random forest classification algorithm, on
which Gene-annotation enrichment analysis using the
clusterProfiler R package (26) was performed. Consequently,
the data indicated that these TME signature genes significantly
enriched in pathways associated with T cell activation,
lymphocyte proliferation and mononuclear cell proliferation
(Supplementary Figure 3C).

Cox regression model was used to assess the prognostic value
of each signature genes according to the Cox coefficient, by
which the TMEscore was established for each patient. As shown
in Figure 2A, the TMEscore could effectively distinguish
significantly different OS in the entire cohort. Notably, patients
with high TMEscore (n = 120) had significantly better survival
than those with low TMEscore (n = 354) (p < 0.0001).
A B

C

FIGURE 2 | Construction and validation of the TMEscore in different LUAD datasets. (A) Kaplan-Meier curves of high- and low-TMEscore subgroups in the entire
TCGA cohort; (B) Alluvial diagram showing the relationships among TME subtypes and TMEscore subgroups as well as clinical outcomes; (C) Forest plot showing
the prognostic value of TMEscore in different datasets.
March 2021 | Volume 11 | Article 581030
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Additionally, we visualized the relationships of TME subtypes
and TMEscore subgroups as well as patient outcomes using an
alluvial diagram (Figure 2B). Moreover, TMEscore remained
efficient in stratifying the patients with early-stage disease (stage
I-II) into different OS (Supplementary Figures 4A, B), which
exhibited its value in the external validation cohort from the
GEO database as well (Supplementary Figure 4C). To be noted,
even for smokers in the validation cohort, significantly different
OS was also observed among the subgroups stratified by the
TMEscore (Supplementary Figure 4D). A forest plot was used
to summarize the predictive value of TMEscore in different
patient cohorts (Figure 2C).
Association Between TMEscore and
Cancer Somatic Genomes
We analyzed the somatic variations of the 492 LUAD samples in
TCGA database which revealed missense mutation as the leading
type of single nucleotide variant (SNV) (Supplementary Figure
5A). Meanwhile, SNV was identified as the major variant in
LUADs that occurred more frequently than insertion or deletion
Frontiers in Oncology | www.frontiersin.org 6
(Supplementary Figure 5B). In addition, it was observed that
C>A was the predominant SNV type in LUADs (Supplementary
Figure 5C). Besides, we calculated the TMB and showed the
mutation type with different colors in LUAD samples
(Supplementary Figures 5D, E), as well as the top 10 mutated
genes in LUADs with ranked percentages (Supplementary
Figure 5F). We also mapped the landscape of mutation
profiles among the three TMEclusters, which characterized the
mutation types of the frequently mutated genes (Supplementary
Figure 6). Waterfall plots were then used to exhibit the mutation
profiles of patients with high/low-TMEscore in which various
colors with annotations at the bottom represented the different
mutation types and TMB levels (Figures 3A, B). Meanwhile,
boxplots were applied to showing the mutation frequency of each
frequently mutated genes in high- and low-TMEscore subgroups,
respectively (Figures 3C, D).

There are six classes of base substitution—C>A, C>G,C>T,
T>A, T>C, T>G(all substitutions are referred to by the
pyrimidine of the mutated Watson–Crick base pair)—and as
we incorporated information on the bases immediately 5’ and 3’
to each mutated base, there are 96 possible mutations in this
A B

DC

FIGURE 3 | Mutation profiles of different TMEscore subgroups. (A, B) Waterfall plots exhibiting the mutation profiles of patients with high/low-TMEscore in which
various colors with annotations at the bottom represented the different mutation types and tumor mutation burden; (C, D) Boxplots showing the mutation frequency
of the 10 most frequently mutated genes in high- and low-TMEscore subgroups.
March 2021 | Volume 11 | Article 581030
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A B

D

E

C

FIGURE 4 | Visualization of mutational signatures and TME signatures in TME subgroups. (A, B) Mutation spectra showing the 96 substitution classification defined
by the substitution class and sequence context immediately 3’ and 5’ to the mutated base in the high- and low-TME subgroups. (C, D) Barplot showing the
differential mutation signatures between the high- and low-TME subgroups. The y-axis indicates exposure of 96 trinucleotide motifs to overall signature. The plot title
indicates best match against validated COSMIC signatures and cosine similarity value along with the proposed etiology. (E) Unsupervised analysis and hierarchical
clustering of the 217 TME signature genes and their associations with clinicopathological characteristics.
Frontiers in Oncology | www.frontiersin.org March 2021 | Volume 11 | Article 5810307
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classification (30). This 96 substitution classification is
particularly useful for distinguishing mutational signatures that
cause the same substitutions but in different sequence contexts
(30). A previous study (30) applied this approach to the 30
cancer types and revealed 21 distinct validated mutational
signatures. Each mutational signature was characterized by
different substitutions and was associated with epidemiological
and biological features of particular cancer types. Therefore the
frequency distribution of the 96 mutations based on the six
classes of base substitution were analyzed in both TMEscore
subgroups (Figures 4A, B). Moreover, by comparing the
extracted signatures from our samples with those in COSMIC,
we identified different mutational signatures between the two
TMEscore subgroups. The identified signatures in both groups
similarly showed a strong resemblance to COSMIC signature 13
and COSMIC signature 4 (Figures 4C, D). A high similarity to
COSMIC signature 7 was also found in the high-TMEscore
subgroup (Figure 4C). Meanwhile, a mutational signature
similar to COSMIC signature 5 was present in the low-
TMEscore subgroup (Figure 4D). As reported previously (30),
COSMIC signature 13 and COSMIC signature 4 were associated
with APOBEC and smoking, respectively, while COSMIC
signature 7 was mainly associated with ultraviolet light.

A genomic landscape of the LUADs was thereby plotted by
integrating the TMB information and clinical characteristics with
TME profiles including the 217 TME signature genes and
TMEscore (Figure 4E).
Frontiers in Oncology | www.frontiersin.org 8
Predictive Value of TMEscore as a
Biomarker for Therapeutic Effect
TIDE to evaluate TMEscore as a predictor of immunotherapy,
interestingly, no significant difference (p = 0.8) was observed in
TIDE score between the high- (n = 120) and low-TMEscore
(n = 354) subgroups (Figure 5A). However, we observed
significantly different PD-L1 expression levels between the
high- and low-TMEscore subgroups (p < 0.001) (Figure 5B).
Since microsatellite instability (MSI), the spontaneous loss or
gain of nucleotides from repetitive DNA tracts, is a promising
predictive biomarker for patient survival and response to
immunotherapy (42, 43), TMEscore was compared between
the two subgroups stratified by MSIscore which was calculated
by TIDE (44). As shown in Figure 5C, TMEscore in the high-
MSI subgroup (n=314) was significantly higher than that in the
low-MSI one (n = 160) (p < 0.001). Meanwhile, TMEscore in the
high-TMB subgroup (n = 257) was significantly lower than that
in the low-TMB one (n = 217) (p < 0.001) (Figure 5D).
Furthermore, the AUC indicated that TMEscore was superior
to TMB alone in predicting response to ICB (p < 0.001) which
exhibited greater accuracy in combination with TMB (Figure
5E). Additionally, comparison of the 50% inhibitory
concentration (IC50) of chemotherapy drugs indicated that the
low-TMEscore subgroup had higher sensitivity to cisplatin (p =
0.019) (Figure 6A) while the high-TMEscore subgroup was
prone to the benefits from gemcitabine (p = 0.00042)
(Figure 6B).
A B

D

E

C

FIGURE 5 | Predictive value of TMEscore as a biomarker for immunotherapy. (A, B) Violin plot showing TIDE score and PD-L1 level between the high- and low-
TMEscore subgroups; (C, D) Violin plot showing TMEscores in groups with different microsatellite instability (MSI) status and with different TMB levels; (E) ROC
curves to compare the accuracy of TMB, MSI and TMEscore in predicting responses to immunotherapy.
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DISCUSSION

Our findings indicated that assessment of the immune and
stromal statuses via the TME signature provided a potent
predictor of survival in early-stage patients with LUAD and a
promising biomarker for therapeutic responses as well. Based on
the DEGs and GO enrichment analysis, we observed that the
TME signature genes significantly enriched in pathways mainly
associated with lymphocyte activation and proliferation.
Moreover, missense mutation was identified as the leading type
of SNV which was identified as the major variant in LUADs.
Meanwhile, the established TMEscore could stratify the patient
cohort from TCGA database into two subgroups with distinct
mutation profiles and COSMIC signatures. A genomic landscape
of the LUADs was also characterized by integrating the TMB
information and clinical characteristics with TME profiles. To
our best knowledge, the present study is the first bioinformatics-
based study to comprehensively investigate the associations
among clinicopathological features, the mutation spectra and
the TME profiles of LUADs, which also developed a
computational algorithm and demonstrated its predictive value
for both ICB and chemotherapeutic agents.

Previously, Yue et al. (45) identified a prognostic gene signature
associated with TME, and validated its predictive accuracy for OS
in LUAD patients. However, they omitted to analyze whether the
signature could predict therapeutic responses to ICB or
chemotherapy. In their study, univariate Cox regression analysis
was initially employed to screen out 23 prognostic TME-related
DEGs. Afterwards, Yue et al. (45) used selection operator (LASSO)
and multivariate Cox regression analyses to identify three key
genes for constructing a prognostic model, in which the analytical
methods were different from ours. Interestingly, there are five
common DEGs between their 23 TME-related DEGs and our 217
signature genes, including BTK, CCDC69, CD33, CD52, and
LY86. Among the five common DEGs, only BTK was selected
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out as a signature gene in both their and our studies. We therefore
validated the prognostic impacts of the five DEGs using the LUAD
cohort from TCGA database (Supplementary Figures 7A–E).
Additionally, the role of BTK as a prognostic factor was also
validated in our domestic cohort using IHC (Supplementary
Figure 7F). Similar to our data, Bi et al. (46) who performed a
study based on TCGA mining also found that BTK was an
immune-related gene and a promising prognostic factor for
LUAD. Recently, Tan et al. (47) performed a bioinformatics
study to characterize the immune landscape of LUADs, in
which they divided the patients with LUAD into two
immunophenotypes based on the tumor microenvironment. The
two immunophenotypes were denoted as the Active Immune
Class and Exhausted Immune Class. The former showed
significant IFN, T‐cells, M1 macrophage signatures, and better
prognosis, while the latter presented an exhausted immune
response with activated stromal enrichment, M2 macrophage
signatures, and immunosuppressive factors such as WNT/
transforming growth factor‐b. In addition, Tan and his
colleagues (47) identified their developed Immune Class as a
useful tool to predict the response to ICB. However, merely 32
patients in a metastatic melanoma cohort were included in their
prediction of PD-L1 inhibitor response. In addition, the
relationships of clinicopathological characteristics and
immunophenotypes were not comprehensively characterized,
neither were the somatic landscape and COSMIC signatures.
Additionally, Huang et al. (48) identified two LUAD subtypes
with specific immune and metabolic state based on the
bioinformatic analyses of TME, who constructed a TME score
to predict TME phenotypes in LUADs. Interestingly, they
constructed the TME score using the principal component
analysis algorithm based on the TME signature genes, which
could represent the signature of the two TME clusters in their
study (48). Differently, their TME score was applied to evaluating
the expression patterns of immune-associated genes in LUADs,
A B

FIGURE 6 | Predictive value of TMEscore as a biomarker for chemotherapy. (A) Violin plot comparing IC50 of cisplatin between the high- and low-TMEscore
subgroups; (B) Violin plot comparing IC50 of gemcitabine between the high- and low-TMEscore subgroups.
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which merely exhibited diagnostic value. It remained unknown
whether the TME score raised by Huang et al (48) could accurately
predict patient survival and therapeutic responses to ICB or
chemotherapy. Meanwhile, the data of somatic variations in
LUADs were unavailable in their study.

Hitherto, several bioinformatics studies (34, 47, 49, 50) have
identified the immune-related signatures as a prognostic
biomarker in LUADs. However, the roles of immunophenotype-
derived signatures in predicting response to chemotherapy have
not been fully clarified. Notably, a number of clinical
investigations (51–53) have highlighted adjuvant chemotherapy
as a prognostic factor for improved survival in patients with stage
IB LUADs. Under the circumstances, our study not only proved
TMEscore as a survival-related predictor, but also identified its
potential in stratifying patients with distinct sensitivity to different
chemotherapy regimens. According to our analysis, low-
TMEscore subgroup had higher sensitivity to cisplatin while
high-TMEscore group was more likely to respond to
gemcitabine, which offered insights into the administration of
personalized adjuvant therapy.

There are some limitations that should not be ignored in our
study: 1) lack of domestic sequencing data to validate the
associations between the TME infiltrating patterns and
clinicopathological characteristics as well as mutation spectra;
2) lack of external validation cohort to confirm the roles of
TMEscore in predicting therapeutic responses; 3) possessing
predictive power though, the chosen set of signature genes are
not necessarily valid in terms of their biological significance. For
instance, the differences in IC50 scores between high- and low-
TMEscore subgroups in Figure 6 do not seem to be obvious
although statistically significant differences were obtained. It
raises the possibility that the observed differences may not be
biologically important; however, they are statistically significant
due to a large number of samples included in the analyses. More
prospective clinical trials are warranted to verify the potentials of
TMEscore in predicting patient outcomes and response to both
chemotherapeutic agents and ICB.

In conclusion, our present study depicted a comprehensive
landscape of the TME signatures in LUADs. Meanwhile, the
TMEscore was proved to be a promising predictor of patient
survival and therapeutic responses in LUADs, which might
be helpful to the future administration of personalized
adjuvant therapy.
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Supplementary Figure 1 | General flowchart and TME infiltrates of LUAD
samples in our study. (A) Overview of the study design; (B) The specific 23 immune
and stromal fractions represented by various colors in each LUAD sample from The
Cancer Genome Atlas (TCGA) database.

Supplementary Figure 2 | Determination and assessment of different
TMEclusters. (A, B) Elbow method and gap statistic to determining the optimal
number of clusters in the dataset; (C) Consensus matrix of the LUAD cohort for
K=3, displaying the clustering stability using 1000 iterations of hierarchical
clustering; (D) Kaplan-Meier curves showing the survival stratified by different
TMEclusters.

Supplementary Figure 3 | Characterization of DEGs among the three
TMEclusters and the derived TME signature genes. (A) Venn diagram illustrating the
number of differentially expressed genes (DEGs) among the three TMEclusters;
(B) Consensus matrix of DEGs for K=2, displaying the clustering stability using 1000
iterations of hierarchical clustering; (C) Gene Ontology (GO) enrichment analysis of
the TME relevant signature genes. The x axis indicates the number of genes within
each GO term.

Supplementary Figure 4 | Survival analyses of LUAD patients in different
datasets stratified by TMEscore. (A, B) Kaplan-Meier curves exhibiting the survival
of patient cohort from TCGA dataset with stage I-II disease stratified by TMEscore;
(C) Kaplan-Meier curves for the two subgroups of patients from the Gene
Expression Omnibus (GEO) dataset (GSE68465) stratified by TMEscore;
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(D) Kaplan-Meier curves for the survival of smokers in the GEO dataset stratified
by TMEscore.

Supplementary Figure 5 | Summary of the mutation information with statistical
calculations. (A–C) Classification of mutation types according to different
categories, in which missense mutation accounts for the most fraction of SNV, SNV
showed more frequency than insertion or deletion, and C>A was the most common
of SNV; (D–E) tumor mutation burden and variant classification in specific samples;
(F) the top 10 mutated genes in LUADs.
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Supplementary Figure 6 | Mutation landscape of the top 10 mutated genes in
TCGA LUAD cohort stratified by TME subtypes and its association with histologic
subtypes.

Supplementary Figure 7 | Survival curves of patient cohorts stratified by TME-
related signature genes. (A–E) Kaplan-Meier curve showing OS of TCGA cohort
stratified by (A) BTK, (B) LY86, (C) CCDC69, (D) CD33, and (E) CD52 expression,
respectively; (F) Kaplan-Meier curve showing OS of domestic cohort stratified by
BTK expression.
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