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Background: Tumor-infiltrating lymphocytes (TILs) have important roles in predicting
tumor therapeutic responses and progression, however, the method of evaluating TILs is
complicated. We attempted to explore the association of TILs with clinicopathological
characteristics and blood indicators, and to develop nomograms to predict the density of
TILs in patients with high-grade serous ovarian cancer (HGSOC).

Methods: The clinical profiles of 197 consecutive postoperative HGSOC patients were
retrospectively analyzed. Tumor tissues and matched normal fallopian tubes were
immunostained for CD3+, CD8+, and CD4+ T cells on corresponding tissue
microarrays and the numbers of TILs were counted using the NIH ImageJ software.
The patients were classified into low- or high-density groups for each marker (CD3, CD4,
CD8). The associations of the investigated TILs to clinicopathological characteristics and
blood indicators were assessed and the related predictors for densities of TILs were used
to develop nomograms; which were then further evaluated using the C-index, receiver
operating characteristic (ROC) curves and calibration plots.

Results:Menopausal status, estrogen receptor (ER), Ki-67 index, white blood cell (WBC),
platelets (PLT), lactate dehydrogenase (LDH), and carbohydrate antigen 153 (CA153) had
significant association with densities of tumor-infiltrating CD3+, CD8+, or CD4+ T cells.
The calibration curves of the CD3+ (C-index = 0.748), CD8+ (C-index = 0.683) and CD4+
TILs nomogram (C-index = 0.759) demonstrated excellent agreement between
predictions and actual observations. ROC curves of internal validation indicated good
discrimination for the CD8+ TILs nomogram [area under the curve (AUC) = 0.659, 95% CI
0.582–0.736] and encouraging performance for the CD3+ (AUC= 0.708, 95% CI 0.636–
0.781) and CD4+ TILs nomogram (AUC = 0.730, 95% CI 0.659–0.801).
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Conclusion: Menopausal status, ER, Ki-67 index, WBC, PLT, LDH, and CA153 could
reflect the densities of T cells in the tumor microenvironment. Novel nomograms are
conducive to monitor the immune status of patients with HGSOC and help doctors to
formulate the appropriate treatment strategies.
Keywords: high-grade serous ovarian cancer, nomograms, tumor-infiltrating lymphocytes, tumor
microenvironment, blood indicators
INTRODUCTION

Ovarian cancer is the most lethal gynecological malignancy
worldwide (1); of which high-grade serous ovarian cancer
(HGSOC) accounts for 70–80% of all ovarian cancer-related
deaths. The prognosis of HGSOC has not been significantly
improved in the past decades (2). Clinically, HGSOC prognosis is
mainly assessed using the International Federation of
Gynecology and Obstetrics (FIGO) staging system (3).
However, the predictive limitations of the FIGO staging system
have forced researchers to explore more specific and accurate
prediction models using histological classification, molecular
typing, biomarkers, and tumor-infiltrating lymphocytes (TILs)
approaches (4–8).

TILs refer to mononuclear immune cells (such as white blood
cells [WBC], T-cells and B-cells) nested in the tumor stroma or
intra-epithelium (9). It has now been well-established that TILs
play a crucial role in controlling tumor growth, recognition of
cancer antigens, therapeutic response, and the inhibition of
cancer development in solid tumors (10, 11). The survival
benefits of TILs have been shown in a variety of cancers
including, but not limited to, melanoma (12), colon cancer
(13), and ovarian cancer (14). Quantification of TILs has
shown promising potential to be used as a new biomarker for
cancer. Approaches of quantifying TILs include image-analysis,
methylation signature and multi-omics data, and have been
devised to assess therapeutic prediction or prognosis (15–17).
However, there is not a convenient method to provide
standardized and efficient TILs evaluation in clinical practice yet.

Blood routine and biochemical indicators are widely used to
monitor the patients’ health conditions because of related
cancer-induced disorders in the bio-energetic metabolism, and
their potential roles in tumors have been extensively studied in
recent years. Blood indicators, including lactate dehydrogenase
(LDH) (18), the NLR (neutrophil-to-lymphocyte ratio) (19), the
PLR (platelet-to-lymphocyte ratio) (20), the LMR (lymphocyte-
to-monocyte ratio) (21), carbohydrate antigen 125 (CA125) (22),
ration of Gynecology and Obstetrics;
cancer; TILs, Tumor-infiltrating
haracteristic; AUC, Area under the
dex; White blood cells, WBC; NLR,
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and carbohydrate antigen 153 (CA153) (23), have shown
important diagnostic and/or prognostic value in ovarian
cancer. Additionally, nomograms, considered as a clinically
easy-to-implement and reliable calculating model, have been
established by combining related risk factors to help clinicians
to develop individualized treatment and follow-up management
strategies in breast, gastric and bladder cancers (24–27). These
have attracted our attention to devise such a model for HGSOC.

To the best of our knowledge, no nomograms had been
proposed for predicting TILs in HGSOC. This study aimed to
explore the association of TILs (CD3+, CD8+, and CD4+) to the
clinicopathological characteristics and blood indicators of
HGSOC; based on which nomograms were established to
assess the density levels of TILs, with the hope of providing
a convenient method to monitor the immune status of
HGSOC patients and help to guide therapeutic strategies in
clinical practice.
MATERIALS AND METHODS

Patients
One hundred ninety-seven surgically resected ovarian cancer
samples and matched normal fallopian tubes were collected at
the Sun Yat-sen University Cancer Center between February 1,
2008, and December 31, 2013. All the included patients were
histologically diagnosed as HGSOC. Additionally, no patients
had a second primary tumor, chronic inflammatory disease
(such as autoimmune disease and infection, etc.), or received
any preoperative treatments, including chemotherapy,
radiotherapy, targeted therapy, immunotherapy. Basic
clinicopathological data of the patients were obtained by
reviewing their medical records. This study was approved by
the Institutional Review Board and Ethics Committee at Sun Yat-
sen University Cancer Center.

Laboratory Measurements of Blood
Biochemical Indicators
Tumor biomarkers, including CA125, CA153, carbohydrate
antigen 199 (CA199), and carcinoembryonic antigen (CEA),
were measured using an automatic electrochemistry
luminescence immunoassay system [ROCHE E170 (Roche,
Mannheim, Germany)]. WBC, neutrophils, lymphocytes,
monocytes, platelets (PLT), NLR, PLR, LMR, LDH, albumin
(ALB), and C-reactive protein (CRP) were classified as
inflammatory markers. WBC, neutrophils, lymphocytes,
monocytes, and PLT were measured by routine blood
February 2021 | Volume 11 | Article 590414
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examination [XE-5000TM Automated Hematology System
(Sysmex UK Ltd., Milton Keynes, UK)]. LDH, ALB, and CRP
were tested with a blood analyzer [Hitachi Automatic Analyzer
7600-020 (Hitachi, Tokyo, Japan)]. All biomarkers data were
obtained within one week before surgery. The normal ranges of
CA125, CA153, CA199, CEA, WBC, neutrophils, lymphocytes,
monocytes, PLT, LDH, ALB, and CRP levels in blood were 0–35
U/mL, 0–25 U/L, 0–35 U/mL, 0–5 ng/mL, 3.69–9.16 10E9/L,
2.0–7.0 10E9/L, 0.8–4 10E9/L, 0.12–1.2 10E9/L, 100–300 10E9/L,
109–245 U/L, 35–55 g/L, and 0–8.2 mg/L, respectively. NLR,
PLR, and LMR had no standard normal range. The patients were
classified into four subgroups according to quartiles of CA153
(quartile1, 22.3; quartile2, 62.1; quartile3, 148.1), WBC
(quartile1, 5.95; quartile2, 7.2; quartile3, 8.8), PLT (quartile1,
234.7; quartile2, 305.0; quartile3, 379.8) and LDH (quartile1,
182.1; quartile2, 224.5; quartile3, 306.6).

Tissue Microarray (TMA) Construction and
Immunohistochemistry (IHC)
The tissue array (TMA) slides contained 197 pairs of HGSOC
cases and matched normal fallopian tubes. Each core tissue
biopsy (1 mm in diameter) was taken from individual paraffin-
embedded HGSOC or internal controls (donor block) and re-
arranged in a new recipient paraffin block (tissue array block)
with a tissue array instrument (Minicore Excilone, Minicore,
UK). Then, the paraffin-embedded tissue specimens were cut
into 4-mm sections and mounted onto glass slides. The slides
were stained with anti-CD3 (2GV6; 1:100; Roche/Ventana),
-CD8 (AM0063; 1:100; Ascend Biotechnology Co.,Ltd), -CD4
(ZM-0418; 1:100; ZSGB-BIO), -Ki-67 (ZA-0502; 1:100; ZSGB-
BIO), -p53 (Bp-53-12; 1:100; BioGenex), -ER (clone SP1; Roche/
Ventana), and all slides were stained with hematoxylin and eosin
(H&E). Stained slides from representative areas of the core of the
tissue biopsy were scanned using an Olympus digital slide
scanner. Each slide was evaluated by two pathologists, who
were blinded to the clinical status of the patients. Densities of
CD3+, CD8+, and CD4+ TILs per mm2 were calculated using the
NIH ImageJ v1.48 software, a Java-based image processing
program (28). Patients were divided into subgroups based on
each immunostained marker. The median density of TILs was
chosen as the cut-off value for defining high and low expression.
ER positivity threshold was defined as ≥1% displaying nucleus
ER staining of any intensity (29). A median Ki-67 index of 30%
was chosen as the cut-off value for defining high and low Ki-67
index. For p53, tumors with more than 60% immunoreactivity in
the nuclei were defined as mutational, otherwise wild.

Construction and Validation
of Nomograms
Independent predictors of CD3+, CD8+, and CD4+ TILs for
HGSOC patients were identified by univariate and multivariate
analyses. All variables were evaluated with the backward
multivariate binary logistic regression model (30). Then, based
on the screened variables, three nomograms were developed.
Bootstrapping with 40 resamples were applied for internal
validation of the nomograms. The performance of each
Frontiers in Oncology | www.frontiersin.org 3
nomogram for prediction was judged using the Harrell's
concordance index (C-index) and receiver operating
characteristic (ROC) curves. Calibration curves were
implemented to validate the accuracy and reliability of the
nomograms (31).

Statistical Analysis
Statistical analyses were performed using the SPSS software,
version 22.0 (SPSS, Chicago, IL, USA) and the programming
language R (version 3.6.3, http://www.R-project.org) for
Windows. The correlation between the clinical variables and
density levels of TILs (CD3+, CD8+, CD4+ T cells) were assessed
by the chi-squared test. Based on the levels of TILs, all blood
indicators between subgroups were displayed as median
(minimum–maximum) and the distribution differences were
analyzed by non-parametric tests. Due to non-normal
distributions of blood indicators, the association between blood
indicators and the expression levels of TILs were assessed using
the Spearman's correlation test to obtain correlation coefficients.
All variables with p less than 0.1 in the univariate analysis were
incorporated into multivariate analyses to identify the
independent predictors related to TILs. According to the
results of the multivariate analysis, nomograms, ROC curves,
and calibration plots were established respectively by R 3.6.3 with
the rms, ROC, and calibrate packages. All statistical tests were
two-sided, and p values less than 0.05 were considered
statistically significant.
RESULTS

Patients' Clinical Characteristics
A total of 197 HGSOC patients were found eligible for this study
and their characteristics are detailed in Table 1. The patients’ age
ranged from 22 to 85 years, with a median age of 52 years. 111
(56.3%) patients were in menopause. Most of the tumors
recorded were larger than 5 cm [n = 165 (83.8%)] and
occurred in the bilateral ovaries [n = 144 (73.1%)]. The
pathological differential for the vast majority of tumors was
poorly differentiated (160, 81.2%), and only 37 patients were
moderately differentiated. 143 (72.6%) patients were classified as
stage III–IV (2009 FIGO) and 144 (73.1%) patients had ascites.
Approximately 1/3 of the patients had metastatic lymph nodes
and 57 (28.9%) patients did not undergo lymphadenectomy. 173
(87.8%) cases had p53 mutations, and 6 cases without successful
immunohistochemical (IHC) staining. Hormone levels were also
tested as follows: 161 (81.7%) for positive ER and 128 (65.0%) for
positive progesterone receptor (PR). Using a Ki-67 index of 30%
as boundary, the amount of patients in the two groups is similar.

Immunohistochemical Characteristics of
Various Markers
TILs were examined in 197 pairs of tissue samples from patients
with HGSOC and normal fallopian tube. As 24 out of the 197
matched normal specimens lack the fallopian tube epithelium,
the actual number of normal specimens was 173. We detected
February 2021 | Volume 11 | Article 590414
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the density levels of CD3+, CD8+, and CD4+ T cells /mm2 in
tumor and normal specimens, respectively (Figures 1A–C). The
degree of various T cell infiltrations in the tumors was
significantly higher than that of the normal tissues (all p <
0.001) (Figure 1J). The median density of CD3+ T cells in the
tumor was 104/mm2 (1/mm2–791/mm2), 48/mm2 (0/mm2–684/
mm2) for CD8+ T cells, and 12/mm2 (0/mm2–236/mm2) for
CD4+ T cells, respectively. Low-density level was defined as a
value below the median, and high-density level was defined as a
value above the median (Figures 1D–I). Representative H&E
and IHC images of ER, Ki-67 index, and p53 are shown in
Figures 2A–H, respectively.

Association Between Clinical
Characteristics and Tumor-Infiltrating
T Cells
The association between CD3+, CD4+, CD8+ TILs, and
clinicopathological characteristics is shown in Table 2. CD3+,
Frontiers in Oncology | www.frontiersin.org 4
CD4+, CD8+ TILs were significantly correlated with tumor
differentiation and ER status (all p < 0.05). Additionally, CD8+
TILs were relatively higher in older patients with more than 52
years (57.5% vs. 42.6%, p = 0.039) and menopausal patients
(58.6% vs. 41.1%, p = 0.008). Only the level of CD4+ TILs were
higher in patients with high Ki-67 index (62.5% vs. 37.5%, p <
0.001). Tumor size, location, ascites, and lymph node metastasis
had no significant association with the densities of CD3+, CD8+,
and CD4+ TILs.

Association Between Inflammatory
Markers and Tumor-Infiltrating T Cells
As shown in Table 3, the levels of LDH, PLT, and WBC
demonstrated a significant association with the expression
levels of TILs. Furthermore, we investigated the linear
relationship between the three inflammatory markers and
TILs, and found that higher level of serum LDH was associated
with a higher density of CD3+ TILs in the tumor
microenvironment, with a coefficient of 0.153 (p = 0.031)
(Figure 3A). Figure 3B presents that the more PLT was
significantly associated with lower levels of CD3+ TILs in the
tumor, with a coefficient of −0.186 (P = 0.009). However, no
significant linear correlation between LDH level and density of
CD8+ TILs was observed, with a coefficient of 0.111 (p = 0.120)
(Figure 3D) and the same for the correlation between WBC and
CD4+ TILs density, with a coefficient of −0.126 (P = 0.079)
(Figure 3F). We also found that the density of TILs had no
significant correlations with neutrophils, lymphocytes,
monocytes, NLR, PLR, LMR, ALB, and CRP in the tumor
microenvironment (Table 3).

Association Between Tumor Markers and
Tumor-Infiltrating T Cells
Only CA153 was significantly associated with the density level of
TILs, as displayed in Table 4. Linear correlation analysis showed
that higher level of serum CA153 was associated with higher
density of CD3+ or CD4+ TILs in the tumor microenvironment
with a coefficient of 0.168 (p = 0.019) and 0.207 (p = 0.004)
(Figures 3C, G), respectively. However, a similar trend for CD8+
TILs was not observed, which had a coefficient of 0.133 (p =
0.065). The remaining tumor markers, including CA125, CEA,
and CA199, had no significant association with the density
of TILs.

Independent Predictors of Density Levels
of TILs
Our previous results showed that age, menopausal status,
pathological differentiation, ER, Ki-67 index, CA153, WBC,
PLT, and LDH had significant association with the expression
levels of TILs. To further distinguish independent predictors of
expression levels of TILs, we assessed the aforementioned clinical
characteristics and blood indicators using the binary logistic
regression. Predictors for CD3+, CD8+, CD4+ TILs were initially
distinguished by univariate logistic regression analysis (Table 5).
Six variables, including menopausal status, pathological
differentiation, ER, CA153, PLT, and LDH, were potentially
TABLE 1 | Basic clinicopathological characteristics of 197 high-grade serous
ovarian cancer patients.

Variables No. of patients (%)

Age (year)
<52 96 (48.7%)
≥52 101 (51.3%)

Menopausal status
Negative 86 (43.7%)
Positive 111 (56.3%)

Tumor size (cm)
<5 32 (16.2%)
≥5 165 (83.8%)

Location
Unilateral 53 (26.9%)
Bilateral 144 (73.1%)

p53 status
Wild 18 (9.1%)
Mutant 173 (87.8%)
Unknown 6 (3.1%)

Pathological differentiation
Moderate 37 (18.8%)
Poor 160 (81.2%)

ER
Negative 36 (18.3%)
Positive 161 (81.7%)

PR
Negative 69 (35.0%)
Positive 128 (65.0%)

Ki-67 index (%)
<30 93 (47.2%)
≥30 104 (52.8%)

Ascites
No 53 (26.9%)
Yes 144 (73.1%)

Lymph node metastasis
Negative 78 (39.6%)
Positive 62 (31.5%)
Unknown 57 (28.9%)

FIGO stage (2009)
I 19 (9.6%)
II 35 (17.8%)
III 118 (59.9%)
IV 25 (12.7%)
ER, estrogen receptor; PR, Progesterone receptor.
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associated with the expression levels of CD3+ TILs (p < 0.1). Age,
menopausal status, pathological differentiation, ER, and LDH
were potentially associated with expression levels of CD8+ TILs
(p < 0.1). Additionally, there were six potential factors related to
the expression levels of CD4+ TILs, namely, menopausal status,
pathological differentiation, ER, Ki-67 index, CA153, and WBC.
Then, all of the above factors were included in multivariate
Frontiers in Oncology | www.frontiersin.org 5
regression analyses to identify the respective independent
predictors of CD3+, CD8+, and CD4+ TILs (Table 6). Three
factors were actually correlated with the expression level of
CD3+ TILs: ER [positive: odds ratio (OR) 4.455, 95% CI
1.761–11.274, p = 0.002], PLT (234.7≤ x <305.0: 0.661, 0.277–
1.575, p = 0.350; 305.0≤ x <379.8: 0.800, 0.332–1.928, p = 0.619;
≥379.8: 0.151, 0.056-0.405, p < 0.001) and LDH (182.1≤ x <224.5:
FIGURE 1 | Expression of CD3+, CD8+, and CD4+ TILs in HGSOC tissues (Tu) and matched normal epithelium of the fallopian tubes (N), shown at 40× magnification with
inset (400×). (A–C) Representative images of CD3+, CD8+, and CD4+ TILs in the normal fallopian tube tissues. (D, G) Representative images of low-density and high-density
of CD3+ TILs in the HGSOC tissues. (E, H) Representative images of low-density and high-density CD8+ TILs in the HGSOC tissues. (F, I) Representative images of low-
density and high-density of CD4+ TILs in the HGSOC tissues. (J) Box plots of CD3+, CD8+, and CD4+ TILs per mm2 in tumor tissues (n=197) or normal epithelium of the
fallopian tubes (n=173). Quantitative data are presented as mean ± SEM. TILs, tumor-infiltrating lymphocytes; HGSOC, high-grade serous ovarian cancer.
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FIGURE 2 | Immunohistochemical staining of H&E, ER, Ki-67, and p53 in HGSOC tissues (Tu) and matched normal fallopian tubes tissue (N), shown at 40×
magnification with inset (400×). (A, B) Representative images of H&E in the matched normal epithelium of the fallopian tubes (N) and HGSOC tissues (Tu).
(C, D) Representative images of negative and positive ER in HGSOC tissues are presented. (E, F) Representative images of high and low Ki-67 index in
HGSOC tissues are shown (G, H) Representative images of mutant type and wild type p53 staining in HGSOC tissues are presented. TILs, tumor-infiltrating
lymphocytes; HGSOC, high-grade serous ovarian cancer; H&E, Hematoxylin and Eosin.
Frontiers in Oncology | www.frontiersin.org February 2021 | Volume 11 | Article 5904146
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1.715, 0.709–4.152, p = 0.232; 224.5≤ x <306.6: 1.713, 0.708–4.145,
p = 0.233; ≥306.6: 4.885, 1.825–13.076, p = 0.002). There were also
three factors correlated with the expression level of CD8+ TILs:
Menopausal status (positive: 1.926, 1.047–3.544, p = 0.035), ER
(positive: 2.771, 1.199–6.402, p = 0.017), and LDH (182.1≤ x
<224.5: 1.576, 0.669–3.710, p = 0.298; 224.5≤ x <306.6: 1.659,
0.704–3.907, p = 0.247; ≥306.6: 3.654, 1.450–9.209, p = 0.006).
Similarly, the expression levels of CD4+ TILs were related to four
factors: ER (positive: 2.400, 1.031–5.584, p = 0.042), Ki-67 index
(≥30%: 3.034, 1.604–5.741, p = 0.001), CA153 (22.3≤ x <62.1:
1.151, 0.470–2.817, p = 0.759; 62.1≤ x <148.1: 1.557, 0.629–3.856,
p = 0.339; ≥148.1: 3.479, 1.385–8.743, p = 0.008), and WBC (5.95≤
x <7.2: 0.347, 0.141–0.855, p = 0.022; 7.2≤ x <8.8: 0.281, 0.115–
0.688, p = 0.005; ≥8.8: 0.219; 0.086–0.559, p = 0.002).
Development and Validation of
Nomograms for Density Levels of TILs
According to the independent predictors identified in the
multivariate logistic regression analysis, three nomograms were
Frontiers in Oncology | www.frontiersin.org 7
respectively developed to predict the possible density levels of
CD3+ (Figure 4A), CD8+ (Figure 4D), and CD4+ (Figure 4G)
TILs in patients with HGSOC. The CD3+ TILs nomogram
showed that PLT had the largest contribution, followed by
LDH and ER. ER made the largest contribution in the CD8+
TILs nomogram, followed by LDH and menopausal status. For
the CD4+ TILs nomogram, WBC made the largest contribution,
followed by CA153, Ki-67 index, and ER. Harrell' concordance
indicators of CD3+ (C-index = 0.748), CD8+ (C-index = 0.683),
and CD4+ (C-index = 0.759) TILs nomograms were assessed and
the calibration curves showed their good agreement between
predictions and observations (Figures 4B, E, H). Then, we
applied ROC analysis to evaluate the discrimination power for
TILs nomograms. In the ROC curves of CD3+ TILs nomogram,
the AUC value was 0.708 (95%CI 0.636–0.781) (Figure 4C), for
the CD8+ TILs nomogram, it was 0.659 (95%CI 0.582–0.736)
(Figure 4F) and was 0.730 (95%CI 0.659–0.801) (Figure 4I) for
the CD4+ TILs nomogram. The results show that the CD4+ TILs
nomogram had the best calibration and discrimination, followed
by CD3+ and CD8+ TILs nomograms.
TABLE 2 | Association between clinicopathological characteristics and tumor infiltrating T cells.

Variable N=197 CD3+ T cells CD8+ T cells CD4+ T cells

Low High p-valuea Low High p-valuea Low High p-valuea

Age(year) 0.175 0.039* 0.522
<52 (young) 96 53 (55.2%) 43 (44.8%) 55 (57.3%) 41 (42.7%) 50 (52.1%) 46 (47.9%)
≥52 (older) 101 46 (45.5%) 55 (54.5%) 43 (42.6%) 58 (57.4%) 48 (47.5%) 53 (52.5%)

Menopausal satus 0.097 0.008* 0.074
Negative 86 49 (57.0%) 37 (43.0%) 52 (60.5%) 34 (39.5%) 49 (57.0%) 37 (43.0%)
Positive 111 50 (45.0%) 61 (55.0%) 46 (41.4%) 65 (58.6%) 49 (44.1%) 62 (55.9%)

Tumor size(cm) 0.676 0.975 0.459
<5 32 15 (46.9%) 17 (53.1%) 16 (50.0%) 16 (50.0%) 14 (43.8%) 18 (56.3%)
≥5 165 84 (50.9%) 81 (49.1%) 82 (49.7%) 83 (50.3%) 84 (50.9%) 81 (49.1%)

Location 0.838 0.838 0.907
Unilateral 53 26 (49.1%) 27 (50.9%) 27 (50.9%) 26 (49.1%) 26 (49.1%) 27 (50.9%)
Bilateral 144 73 (50.7%) 71 (49.3%) 71 (49.3%) 73 (50.7%) 72 (50.0%) 72 (50.0%)

p53 status 0.671 0.357 0.705
Wild 18 8(44.4%) 10 (55.6%) 7 (38.9%) 11 (61.1%) 8(44.4%) 10(55.6%)
Mutant 173 86 (49.7%) 87 (50.3%) 87 (50.3%) 86 (49.7%) 85 (49.1%) 88 (50.9%)
Unknown 6

Pathological differentiation 0.049* 0.041* 0.016*
Moderate 37 24 (64.9%) 13 (35.1%) 24 (64.9%) 13 (35.1%) 25 (67.6%) 12 (32.4%)
Poor 160 75 (46.9%) 85 (53.1%) 74 (46.3%) 86 (53.8%) 73 (45.6%) 87 (54.4%)

ER 0.001* 0.009* 0.009*
Negative 36 27 (75.0%) 9 (25.0%) 25 (69.4%) 11 (30.6%) 25 (69.4%) 11 (30.6%)
Positive 161 72 (44.7%) 89 (55.3%) 73 (45.3%) 88 (54.7%) 73 (45.3%) 88 (54.7%)

PR 0.692 0.617 0.424
Negative 69 36 (52.2%) 33 (47.8%) 36 (52.2%) 33 (47.8%) 37 (53.6%) 32 (46.4%)
Positive 128 63 (49.2%) 65 (50.8%) 62 (48.4%) 66 (51.6%) 61 (47.7%) 67 (52.3%)

Ki-67 index(%) 0.352 0.176 <0.001*
<30 93 50 (53.8%) 43 (46.2%) 51 (54.8%) 42 (45.2%) 59 (63.4%) 34 (36.6%)
≥30 104 49 (47.1%) 55 (52.9%) 47 (45.2%) 57 (54.8%) 39 (37.5%) 65 (62.5%)

Ascites 0.599 0.661 0.447
No 53 25 (47.2%) 28 (52.8%) 25 (47.2%) 28 (52.8%) 24 (45.3%) 29 (54.7%)
Yes 144 74 (51.4%) 70 (48.6%) 73 (50.7%) 71 (49.3%) 74 (51.4%) 70 (48.6%)

Lymph node metastasis 0.112 0.211 0.082
Negative 78 42 (53.8%) 36 (46.2%) 41 (52.6%) 37 (47.4%) 43 (55.1%) 35 (44.9%)
Positive 62 25 (40.3%) 37 (59.7%) 26 (41.9%) 36 (58.1%) 25 (40.3%) 37 (59.7%)
Unknown 57
Febru
ary 2021 | Vol
ume 11 | Articl
*p < 0.05, statistically significant.
aUsing Chi-square test, p < 0.05 was considered statistically significant.
ER, estrogen receptor; PR, Progesterone receptor.
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The instruction for using nomograms are as follows. The
score of the parameter is displayed at the top of the scale, and
sum up the scores of each parameter. Finding the corresponding
point at the axis of total points and drawing a line
perpendicularly to the axis of high TILs infiltration probability,
the intersection point is the personal probability of high TILs
infiltration. For example, for high CD3 T cells, values for
negative ER, PLT<234.7 10E9/L, and LDH <182.1 U/L will
obtain a total score of approximately 100 which means the
probability for high CD3+ T cells infiltration is 0.2. It implies
that the patient has a high probability of lacking of CD3+ T
cells infiltration.
DISCUSSION

We present a retrospective study with TMA analysis, to explore
the correlations of TILs (CD3+, CD8+, or CD4+) with clinical
characteristics and blood indicators in HGSOC; based on which
novel nomograms to help monitor the density levels of TILs in
the tumor environment were developed. Our study showed the
older patients in menopause had more CD8+ TILs and the
clinical characteristics (including pathological differentiation,
ER, and Ki-67) were significantly associated with TILs in
HGSOC patients. Additionally, inflammation markers and
tumor markers including WBC, PLT, LDH, and CA153
demonstrated significant linear correlations with TILs.
Multivariate analysis indicated that most of the above
markers were independent predictors for TILs and the
Frontiers in Oncology | www.frontiersin.org 8
nomograms displayed good efficacy to assess the density levels
of CD3+, CD8+, and CD4+ TILs in the tumor environment.
These results imply that the nomograms using minimally-
invasive peripheral blood markers could be a promising
approach to facilitate the monitoring of the immune status
for HGSOC patients.

We observed more CD8+ TILs in older or menopausal
patients than those in younger or un-menopausal patients but
no similar differences for CD3+ and CD4+ TILs were found. We
hypothesized that this might be because the state of the patient's
hormone levels may play a more important role in immune
function than age. There was a bi-directional interaction effect
for hormones and immune system (32) and fertile women were
found to be more vulnerable to auto-immune diseases than men
till post-menopause (33). Kumru and his colleagues reported that
surgical menopause contributed to an increase in CD8+ cells and
reduced the ratio of CD4+ to CD8+ cells, and such trends could
be reversed by estrogen replacement therapy (34). Therefore,
estrogen deficiency may be the cause for the change of
lymphocyte subsets in the tumor microenvironment. In our
study, we stratified the patients based on the median age of 52
years. The median menopausal age of Chinese women reported
was 50 years (35). Thus, we observed an increased CD8+ TILs in
both older and post-menopausal people. Additionally, the
interaction process of tumor cells and the immune system is
critical for tumor progression. The infiltration of various TILs in
the tumor microenvironment reflects the immune response to
tumor aggressive biological features. The present study revealed
that the increased number of various TILs was significantly
TABLE 3 | Association between inflammatory markers and T cells in the microenvironment.

Variable CD3+ T cells CD8+ T cells CD4+ T cells

Low High p-valuea Low High p-valuea Low High p-valuea

WBC 7.20
(4.30-15.90)

7.20
(2.70-18.60)

0.396 7.05
(4.40-15.90)

7.30
(2.70-18.60)

0.898 7.50
(2.70-18.60)

6.80
(4.20-14.20)

0.026*

Neutrophils 4.90
(1.30-13.98)

4.75
(2.00-15.70)

0.247 4.89
(1.30-13.98)

4.90
(2.00-15.70)

0.762 5.17
(2.00-15.70)

4.70
(1.30-11.02)

0.075

Lymphocytes 1.50
(0.60-3.39)

1.70
(0.20-3.00)

0.220 1.50
(0.60-3.39)

1.70
(0.20-3.00)

0.093 1.50
(0.20-3.39)

1.60
(0.60-2.80)

0.932

Monocytes 0.41
(0.10-1.20)

0.42
(0.20-1.10)

0.753 0.41
(0.10-1.20)

0.44
(0.20-1.10)

0.865 0.50
(0.20-1.20)

0.40
(0.10-1.07)

0.284

Platelets 317.00
(30.50-637.00)

285.00
(132.00-614.00)

0.021* 310.50
(30.50-637.00)

294.00
(132.00-614.00)

0.286 309.00
(30.50-637.00)

299.00
(41.00-614.00)

0.490

NLR 3.50
(0.57-18.83)

2.91
(0.97-12.08)

0.191 3.48
(0.57-18.83)

2.92
(0.93-12.08)

0.264 3.46
(0.89-18.83)

2.94
(0.57-15.83)

0.326

PLR 208.46
(20.33-950.75)

177.71
(64.33-1155.00)

0.062 204.02
(20.33-950.75)

177.26
(64.33-1155.00)

0.145 202.36
(20.33-1155.00)

185.64
(27.33-641.25)

0.893

LMR 3.48
(0.92-12.96)

3.71
(0.67-10.00)

0.357 3.41
(0.92-10.27)

3.67
(0.67-12.96)

0.253 3.49
(0.67-12.96)

3.67
(0.98-10.00)

0.354

LDH 214.00
(97.90-652.70)

237.45
(118.40-1117.70)

0.032* 213.40
(97.90-652.70)

236.50
(118.40-1117.70)

0.021* 216.50
(114.20-761.90)

234.00
(97.90-1117.70)

0.208

ALB 41.90
(20.70-52.20)

41.35
(25.40-50.70)

0.754 42.05
(20.70-52.20)

41.50
(25.40-48.30)

0.418 42.45
(27.30-52.20)

40.90
(20.70-50.70)

0.206

CRP 12.24
(0.35-218.29)

7.56
(0.22-151.28)

0.090 7.44
(0.22-218.29)

11.55
(0.27-151.28)

0.968 10.01
(0.35-218.29)

8.14
(0.22-179.28)

0.418
February 2021 |
 Volume 11 | Articl
*p < 0.05, statistically significant.
aUsing Nonparametric test, p < 0.05 was considered statistically significant.
WBC, white blood cells; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; LMR, lymphocyte-to-monocyte ratio; LDH, lactate dehydrogenase; ALB, albumin; CRP,
C-reactive protein.
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associated with pathological differentiation and ER status, and
the increased number of CD4+ TILs was significantly associated
with high expression of the Ki-67 index (p < 0.001) (Table 2).
The relationships between TILs and biological features of tumors
shown here are in line with the results from other literatures in
ovarian and breast cancers (36, 37). It would be meaningful to
further explore the correlations and potential mechanisms
between TILs and tumor pathological characteristics in a large
number of patients with HGSOC.
Frontiers in Oncology | www.frontiersin.org 9
Several studies have demonstrated that high levels of pro-
inflammatory cytokines and inflammation among HGSOC
patients were associated with the initiation and/or progression
of most ovarian cancers (38, 39). We observed that the
concentration of various TILs was closely correlated to the
inflammatory markers. High densities of CD3+ and CD8+
TILs in the tumor microenvironment were associated with
higher levels of serum LDH. Besides, the levels of PLT and
WBC were negatively related to the densities of CD3+ and CD4+
A B

D E

F G

C

FIGURE 3 | Correlation between various blood indicators and the density of TILs. (A) The density of CD3+ TILs showed a positive correlation with the level of serum
LDH, with a coefficient of 0.153 (p = 0.031). (B) The density of CD3+ TILs was negatively related to the PLT, with a coefficient of −0.186 (P = 0.009). (C) The density
of CD3+ TILs showed a positive correlation the level of serum CA153, with a coefficient of 0.168 (P = 0.019). (D) The density of CD8+ TILs showed a tendency that
positively correlated with the level of serum LDH, with a coefficient of 0.111 (P = 0.120). (E) The density of CD8+ TILs showed a tendency that positively related to
the serum CA153, with a coefficient of 0.133 (P = 0.065). (F) The density of CD4+ TILs showed a tendency that negatively correlated with the number of WBC in the
blood, with a coefficient of -0.126 (P = 0.079). (G) The density of CD4+ TILs was positively related to the CA153, with a coefficient of 0.207 (P = 0.004). TILs, tumor-
infiltrating lymphocytes; WBC, white blood cells; LDH, lactate dehydrogenase; PLT, platelet; CA153, carbohydrate antigen 153.
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TILs, respectively. The high level of serum LDH could suppress
immune function in the tumor microenvironment and was a
poor prognostic biomarker for many solid neoplasms (40–42).
Previous study reported that the high level of lactate and
acidification promoted immune inactivation and immune
escape, even though tumor tissue with heavily infiltrated by
functionally inactive T cells in metastatic melanomas (43).
Cancer-associated thrombocytosis is a poor prognostic factor
for various cancer types and platelets also have adverse effects on
adaptive immunity (44). Another study showed that the TGF-b
released by PLT could suppress anti-tumor T cell immunity and
promoted tumor immune escape (45). Especially, increased
counts of WBC also showed a heightened inflammatory state
(46). A previous study showed that CD4+ T regulatory cells
could inhibit neutrophil function and promote their apoptosis
and death (47), and our results also pointed out a negative
relation trend of neutrophil levels and CD4 + TILs (Table 3). We
speculated that the WBC count was the sum of the absolute
numbers of various inflammatory cells, so the WBC count was
more likely to be an overall reflection of the association between
CD4+ TILs and various inflammatory cells.

We observed that the level of CA153 in the blood was
positively correlated with the densities of CD3+ and CD4+
TILs in the tumor microenvironment, and the same tendency
for CD8+ TILs (Table 4) was observed. However, CA153 was an
independent predictor only for CD4+ TILs in the multivariate
logistic analysis and other tumor markers, such as CA125, CEA,
CA199, had no significant association with TILs. Mucin 1
(MUC1), also known as CA153, is one of the commonly used
tumor markers in the diagnosis and recurrence monitoring of
ovarian cancer (48). The expression of MUC1 can disrupt cell–
cell and cell–matrix adhesions, and promote tumor adhesion and
presumably metastasis (49, 50). A previous study also showed
soluble MUC1 mediated immune suppression by blocking T-cell
activation (51) and Budiu et al. reported that the expression of
MUC1 in ovarian tumor cells could promote regional spread and
increase the accumulation of CD4+Foxp3+ immune-suppressive
regulatory T cells which is often accompanied with high levels of
MUC1 in the blood (52). Further investigation on circulating
MUC1 for the chemotaxis of T cells in the tumor
microenvironment would be interesting and the intensive
molecular mechanisms are worthy of more elaborate study.

For advanced patients with HGSOC, to the approaches of
preferentially select neoadjuvant chemotherapy (NAC) or
primary debulking surgery remains controversial (53, 54).
Besides prognostic value, higher pre-treatment TILs levels were
related with higher pathologic complete response (pCR) for
NAC (55). However, tumors lacking TILs tended to lack TILs
after NAC, and the assessment of TILs level in pretreatment
could help identify immune-inert tumors that would be probably
resistant to NAC or immunotherapy (56). Conversely, tumors
that initially have high TILs infiltration tend to have more TILs
infiltration after NACT (57). Tumors with abundant TILs
infiltration may have higher levels of PD-L1 expression, and
patients may respond better to PD1/PD-L1 inhibitors (58). A
study reported that before chemotherapy, patients with
T
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suppressed immune function were at high Treg levels, and low
levels of cytotoxic, helper T cells and NK cells. However, a single
cycle of the combination of carboplatin and paclitaxel can reverse
the immunosuppressive effect, reaching a peak two weeks after
treatment, suggesting that 1–2 days after chemotherapy is the
best time to start immunotherapy (59, 60). Therefore, physicians
could determine whether the patient needs to undergo NACT
first to adjust the immune function and the timing of
immunotherapy based on the status of tumor TILs infiltration.
At present, TILs in tumor tissues are mainly evaluated by IHC
staining of tissue sections (61). However, in daily clinical
practice, this approach is invasive, costly and technically
complex and alternatives are urgently warranted for timely
treatment (62). Therefore, we focused on clinical research
according to clinically easily accessible indicators. Some
researchers have estimated the survival probability and
therapeutic response using nomograms with multiple
clinicopathologic factors. A study of 840 patients with
epithelial ovarian cancer assessed available clinicopathological
characteristics to develop nomograms for 5-year survival
Frontiers in Oncology | www.frontiersin.org 11
probability and showed accurate calibration and the C-index
was 0.71 (95% CI 0.69–0.74) (63). In addition, Seung-Hyuk Shim
et al. formulated and validated a positron-emission tomography/
computed tomography-based nomogram incorporating the
radiomics features and surgical aggressiveness index to
facilitate the preoperative individualized prediction of
incomplete cytoreduction in advanced ovarian cancer patients
(64). Hye Won Hwang and colleagues developed a breast cancer
therapeutic response nomogram to predict pCR based on pre-
NAC TILs levels (65). Thus, nomograms are common prediction
tools in oncology and the measuring scales with multiple factors
are convenient for simple calculations, we decided to formulate
nomograms for TILs prediction in HGSOC. Three nomograms
were respectively developed and validated for predicting CD3+,
CD8+, CD4+ TILs in patients with HGSOC. The nomogram for
CD3+ TILs comprised of ER, PLT and LDH and the nomogram
for CD8+ TILs incorporates menopausal status, ER and LDH,
while the nomogram for CD4+ TILs contains four factors: ER,
Ki-67, CA153, and WBC. The factors included in the
nomograms were significantly associated with TILs in tumor
TABLE 5 | Correlative factors for tumor infiltrating T cells identified by univariate logistic regression analysis.

Variable CD3+ T cells CD8+ T cells CD4+ T cells

OR 95%CI p-value OR 95%CI p-value OR 95%CI p-value

Age(year)
<52 1 1 1
≥52 0.679 0.387–1.190 0.176 1.809 1.029–3.183 0.040* 1.200 0.686–2.100 0.523

Menopausal status
Negative 1 1 1
Positive 0.619 0.351–1.092 0.098 2.161 1.217–3.837 0.009* 1.676 0.950–2.957 0.075

Pathological differentiation
Moderate 1 1 1
Poor 2.092 0.995–4.398 0.051 2.146 1.021–4.511 0.044* 2.483 1.167–5.284 0.018*

ER
Negative 1 1 1
Positive 3.708 1.640–8.385 0.002* 2.740 1.263–5.941 0.011* 2.740 1.263–5.941 0.011*

Ki-67 index(%)
<30 1 1 1
≥30 1.305 0.745–2.287 0.352 1.473 0.839–2.583 0.177 2.892 1.620–5.162 <0.001*

CA153 (U/ml)
<22.3 1 1 1

22.3≤ x <62.1 1.105 0.494–2.475 0.808 0.788 0.353–1.756 0.560 1.300 0.583–2.901 0.521
62.1≤ x <148.1 1.804 0.802–4.057 0.154 1.519 0.680–3.398 0.308 1.659 0.738–3.728 0.220

≥148.1 2.410 1.066–5.447 0.034* 1.576 0.707–3.512 0.266 2.629 1.158–5.967 0.021*
WBC (10E9/L)
<5.95 1 1 1

5.95≤ x <7.2 0.556 0.247–1.248 0.154 0.506 0.224–1.142 0.101 0.427 0.187–0.976 0.044*
7.2≤ x <8.8 0.780 0.355–1.716 0.537 0.917 0.417–2.014 0.828 0.368 0.163–0.831 0.016*

≥8.8 0.692 0.313–1.529 0.363 0.957 0.434–2.110 0.912 0.381 0.168–0.863 0.021*
Platelets (10E9/L)
<234.7 1 1 1

234.7≤ x <305.0 0.662 0.298–1.472 0.312 1.085 0.491–2.398 0.840 1.278 0.578–2.828 0.544
305.0≤ x <379.8 1.125 0.502–2.521 0.774 1.440 0.650–3.192 0.369 1.128 0.513–2.482 0.764

≥379.8 0.276 0.119–0.640 0.003* 0.557 0.249–1.249 0.156 0.849 0.384–1.878 0.686
LDH (U/L)
<182.1 1 1 1

182.1≤ x <224.5 1.516 0.679–3.382 0.310 1.516 0.679–3.382 0.310 0.921 0.416–2.039 0.839
224.5≤ x <306.6 1.457 0.656–3.240 0.355 1.579 0.711–3.509 0.262 1.043 0.474–2.297 0.916

≥306.6 2.719 1.201–6.156 0.016* 2.719 1.201–6.156 0.016* 1.785 0.800–3.985 0.157
Febr
uary 2021 |
 Volume 11 | Article
*p < 0.05, statistically significant.
ER, estrogen receptor; CA153, carbohydrate antigen 153; WBC, white blood cells; LDH, lactate dehydrogenase; OR, odds ratio; 95% CI, 95% confidence interval.
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microenvironment and all of the nomograms demonstrated
favorable validation and discrimination in the internal
verification. After investigated the correlations of densities of
TILs with clinicopathologic characteristics and blood indicators
in the tumor microenvironment, we proposed that menopausal
status, ER, Ki-67 index, CA153, WBC, PLT, and LDH may be
utilized to assess the immune status in HGSOC patients and
these data could be easily acquired in the process of diagnosis
through routine blood test and pathological biopsy. Importantly,
the developed nomograms could greatly facilitate to simplify
the calculation process in the assessment of the patient's
immune status.

Nevertheless, the present study also had a few limitations.
First, the nomograms lacked external validation. Because the
sample size was limited for a single-center clinical retrospective
research, multi-center large sample size verification could
provide a higher level of evidence for clinical application.
Second, this study did not incorporate genetic markers.
Because genetic testing is not a routine examination, clinical
factors and blood indicators were more frequently collected.
Frontiers in Oncology | www.frontiersin.org 12
However, combining genetic markers may improve the
prediction of TILs nomograms in patients with HGSOC.
Third, we did not analyze other types of TILs, such as B cells,
natural killer cells, and other specific types of T cells, although
these cells also played important roles in the tumor
microenvironment. Fourth, the study did not pay attention to
the location of TILs, which had particular significance in ovarian
carcinoma. Due to the TMA method, the location and area of
tumor tissue were restricted. Fifth, the conclusions of this study
may only apply to high-grade serous ovarian cancer and the
types of TILs are limited to CD3+, CD4+, and CD8+ T cells.
CONCLUSIONS

Our results demonstrated that menopausal status, ER, Ki-67
index, CA153 level, WBC count, PLT, and LDH were associated
with the densities of CD3+, CD8+ or CD4+ TILs in the tumor
microenvironment. Based on the above factors identified, we
developed the first applied nomograms that could conveniently
TABLE 6 | Correlative factors for tumor infiltrating T cells identified by multivariate logistic regression analysis.

Variable CD3+ T cells CD8+ T cells CD4+ T cells

OR 95%CI p-value OR 95%CI p-value OR 95%CI p-value

Age(year)
<52 — — —

≥52 — — —

Menopausal status
Negative — 1 —

Positive — 1.926 1.047–3.544 0.035* —

Pathological differentiation
Moderate — — —

Poor — — —

ER
Negative 1 1 1
Positive 4.455 1.761–11.274 0.002* 2.771 1.199–6.402 0.017* 2.400 1.031–5.584 0.042*

Ki-67 index(%)
<30 — — 1
≥30 — — 3.034 1.604–5.741 0.001*

CA153 (U/ml)
<22.3 — — 1

22.3≤ x <62.1 — — 1.151 0.470–2.817 0.759
62.1≤ x <148.1 — — 1.557 0.629–3.856 0.339

≥148.1 — — 3.479 1.385–8.743 0.008*
WBC (10E9/L)
<5.95 — — 1

5.95≤ x <7.2 — — 0.347 0.141–0.855 0.022*
7.2≤ x <8.8 — — 0.281 0.115–0.688 0.005*

≥8.8 — — 0.219 0.086–0.559 0.002*
Platelets (10E9/L)
<234.7 1 — —

234.7≤ x <305.0 0.661 0.277–1.575 0.350 — —

305.0≤ x <379.8 0.800 0.332–1.928 0.619 — —

≥379.8 0.151 0.056–0.405 <0.001* — —

LDH (U/L)
<182.1 1 1 —

182.1≤ x <224.5 1.715 0.709–4.152 0.232 1.576 0.669–3.710 0.298 —

224.5≤ x <306.6 1.713 0.708–4.145 0.233 1.659 0.704–3.907 0.247 —

≥306.6 4.885 1.825–13.076 0.002* 3.654 1.450–9.209 0.006* —
Febr
uary 2021 |
 Volume 11 | Article
*p < 0.05, statistically significant.
ER, estrogen receptor; CA153, carbohydrate antigen 153; WBC, white blood cells; LDH, lactate dehydrogenase; OR, odds ratio; 95% CI, 95% confidence interval.
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FIGURE 4 | Nomograms, calibration curves, and ROC curves analysis for predicting density of TILs in patients with high-grade serous ovarian cancer.
(A) The CD3+ TILs prediction nomogram. (B) Calibration curves for predicting density of CD3+ TILs. (C) ROC curves of CD3+ TILs prediction nomogram in
the internal testing set. (D) The CD8+ TILs prediction nomogram. (E) Calibration curves for predicting density of CD8+ TILs. (F) ROC curves of CD8+ TILs
prediction nomogram in the internal testing set. (G) The CD4+ TILs prediction nomogram. (H) Calibration curves for predicting density of CD4+ TILs. (I) ROC
curves of CD4+ TILs prediction nomogram in the internal testing set. All the points assigned on the top point scale for each factor are summed together to
generate a total point score. The total point score is projected on the bottom scales to determine the probability of high density for tumor-infiltrating T cells in
an individual. The nomogram-predicted frequency of high T cell density is plotted on the x-axis, and the actual observed frequency of high T cell density is
plotted on the y-axis. The AUC was calculated, and its 95% CI was estimated by bootstrapping. TILs, tumor-infiltrating lymphocytes; ROC, receiver
operating characteristic; 95% CI, 95% confidence interval.
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assess individualized immune status of TILs for patients with
HGSOC. Moreover, the nomograms demonstrated high
accuracy and reliability in the internal validation and they
could help clinicians to monitor patients' immune status and
make clinical treatment strategies for patients with HGSOC.
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