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Background and purpose: Radiomics is an emerging field of quantitative imaging. The
prognostic value of radiomics analysis in patients with localized clear cell renal cell
carcinoma (ccRCC) after nephrectomy remains unknown.

Methods: Computed tomography images of 167 eligible cases were obtained from the
Cancer Imaging Archive database. Radiomics features were extracted from the region of
interest contoured manually for each patient. Hierarchical clustering was performed to
divide patients into distinct groups. Prognostic assessments were performed by Kaplan–
Meier curves, COX regression, and least absolute shrinkage and selection operator COX
regression. Besides, transcriptome mRNA data were also included in the prognostic
analyses. Endpoints were overall survival (OS) and disease-free survival (DFS).
Concordance index (C-index), decision curve analysis and calibration curves with 1,000
bootstrapping replications were used for model’s validation.

Results: Hierarchical clustering groups from nephrographic features and mRNA can
divide patients into different prognostic groups while clustering groups from
corticomedullary or unenhanced phase couldn’t distinguish patients’ prognosis. In
multivariate analyses, 11 OS-predicting and eight DFS-predicting features were
identified in nephrographic phase. Similarly, seven OS-predictors and seven DFS-
predictors were confirmed in mRNA data. In contrast, limited prognostic features were
found in corticomedullary (two OS-predictor and two DFS-predictors) and unenhanced
phase (one OS-predictors and two DFS-predictors). Prognostic models combining both
nephrographic features and mRNA showed improved C-index than any model alone (C-
index: 0.927 and 0.879 for OS- and DFS-predicting, respectively). In addition, decision
curves and calibration curves also revealed the great performance of the novel models.

Conclusion:We firstly investigated the prognostic significance of preoperative radiomics
signatures in ccRCC patients. Radiomics features obtained from nephrographic phase
had stronger predictive ability than features from corticomedullary or unenhanced phase.
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Multi-omics models combining radiomics and transcriptome data could further increase
the predictive accuracy.
Keywords: radiomics, computed tomography, clear cell renal cell carcinoma, prognosis, predictive model
INTRODUCTION

Renal cell carcinoma (RCC) is the third most prevalent
malignancy of urological tumors (1). It is estimated that 80–
90% RCCs belong to clear cell RCC (ccRCC) (2). For patients
with localized ccRCC, nephrectomy remains to be the standard
treatment. However, even after surgery, disease progression can
still occur in many patients. Besides, due to the tumor
heterogeneity, the prognosis of ccRCC varies from cases to
cases. Precise prognostic prediction for ccRCC patients is not
only important for patients’ counseling but also essential for
clinicians making personalized therapeutic decision.

Computed tomography (CT) scan plays a critical role in RCC
diagnosis and is also one of the routine examinations for post-
treatment disease assessment. Yet, in clinic, the interpretation of CT
images relies largely on the experience of radiologists, thus, lacking
quantitative information and occasionally showing inter-observer
inconsistency. In contrast, the recent emerging technique of
radiomics texture analysis provides more objective and quantitative
details for medical images. Thereby, it has great potential in assessing
the heterogeneity of tumors. Many studies reported that radiomic
analysis harbors promising ability in predicting oncologic
characteristics such as malignant lesion, pathological type, tumor
stage and etc. as well as non-oncologic disease (3–6). Furthermore,
radiomics features were also associated with treatment response and
prognosis in several tumors (7–9).

In kidney-related disease, radiomics analysis showed wide
applications. CT texture analysis was capable of distinguishing
benign and malignant renal masses and predicting the Fuhrman
nuclear grade of RCC accurately (10–12). Besides, CT radiomics
features could also assist in differentiating kidney stones from
phleboliths (6). In addition, texture analysis was able to facilitate
the assessment of renal allograft function after kidney
transplantation (13). However, till now, little is known as to
whether radiomics features extracted from different CT phases
have prognostic value in predicting the survival outcomes of
ccRCC patients after nephrectomy.

Apart from radiomics analyses, gene expression profiling also
showed marked significance in prognostic evaluation in many
cancers. Therefore, the aim of the current study is to explore the
role of radiomics features extracted from CT images in predicting the
postoperative prognosis of patients with localized ccRCC. In addition,
we investigated if the combination of both radiomics features and
transcriptomemRNAwould further increase the predictive accuracy.
MATERIAL AND METHODS

Patients and Data Acquisition
No ethical approval or informed consent was needed for this
study because all data we used were from public databases.
2

Clinicopathological data and CT images were obtained from
the Cancer Imaging Archive (TCIA) database (http://www.
cancerimagingarchive.net/) (14). TCIA is the U.S. National
Cancer Institute’s image repository supporting cancer research
which contains millions of public oncology images. While
transcriptome mRNA data were obtained from the Cancer
Genome Atlas (TCGA) database (http://cancergenome.nih.gov)
(15). TCGA is an openly web-accessible database collecting
molecular information of 33 different cancer types. The
inclusion criteria are shown in Figure 1A which mainly
include: 1) patients with available CT images of good quality;
2) patients with M0 ccRCC, and 3) patients with accessible
mRNA data. Eventually, 167 out of 537 patients from the TCGA-
KIRC cohort were eligible.

CT Imaging
All abdominal CT images of included ccRCC patients were
acquired before nephrectomy. The imaging data were collected
from seven institutions and three different manufactures
(General Electric (GE), Siemens and Philips Medical Systems).
The acquisition parameters of CT were as follows: slice thickness,
1–5mm; tube voltage, 120–140 kV; tube current, 160–618 mA;
display field of view, 278–628; matrix, 512 × 512; and pixel size,
0.542 × 0.542 mm2 to 0.976 × 0.976 mm2. The image format of
DICOM was used in this study. Radiomics modeling details
according to the Imaging Biomarker Standardization Initiative
(IBSI) guidelines are shown in Table S1.

Data Pre-Processing
Pre-processing steps were performed in all images to reduce the
potential influences of protocol variability from various institutions
and CT scanners. Specifically, image pre-processing and features
pre-processing were carried out before data analysis. Image pre-
processing includes voxel resampling and gray-level discretization.
The cubic B-spline interpolation method was employed for voxel
resampling (resampled pixel spacing = 1 × 1 mm2) (16). The fixed
bin size (FBS) discretization method (bin widths = 25 HU) was used
for gray-level discretization (17). As for feature pre-processing,
Combat algorithm was conducted for feature harmonization
(https://github.com/Jfortin1/ComBatHarmonization) (18, 19).
Besides, Z-score transformation was used for data normalization.

Feature Extraction
CT images were acquired before surgery. On the axial image
slice, the regions of interest (ROI) of the tumor with the largest
cross-sectional area were selected and contoured manually using
the open-source software Imaging Biomarker Explorer (IBEX)
by two radiologists independently (20). In order not to cover the
adjacent normal renal tissue, the radiologists determine the
tumor margin with the guide of available contrast-enhanced
March 2021 | Volume 11 | Article 591502
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CT during segmentation of unenhanced CT. Finally, 486
radiomics features were extracted from nephrographic,
corticomedullary and unenhanced phase, including gray-level
co-occurrence matrix (GLCM), gray-level run length matrix
(GLRLM), shape, gradient orient histogram (GOH), neighbor
intensity difference (NID), and intensity histogram. Most
definitions of IBEX feature are compliant with Image
Biomarkers Standardization Initiative (IBSI) (21).

Prognostic Analyses and
Radiotranscriptomics Models’ Building
All radiomic features were standardized using the Z-score
transformation. The agreement upon radiomics features between
the two radiologists were examined by inter-rater interclass
correlation coefficient (ICC). Only features with inter-rater
ICC >0.8 were further analyzed. As for transcriptome data, only
genes with median FPKM mRNA value >0.5 were included.

The endpoints or predictive objects of this study were overall
survival (OS) and disease-free survival (DFS). OS was the period
from the initial diagnosis of ccRCC to death, while DFS was the
duration from the initial diagnosis to the date of cancer
progression or death.

The prognostic analyses consisted of three parts. In the first
part, we applied unsupervised hierarchical clustering analyses
using radiomics features from different CT phases and mRNA
data, which classified patients into different clustering groups.
Hierarchical clustering was conducted based on Euclidean
distance. Then, to explore the overall value of radiomic
Frontiers in Oncology | www.frontiersin.org 3
features from each CT phase and the mRNA data in predicting
patients’ prognosis, OS and DFS were compared within the
clustering groups from each CT phase or mRNA data.

Secondly, we test and compare the predictive ability
of radiomic features extracted from each CT phase and
transcriptome mRNA in prognostic assessment, which was
carried out as follows: firstly, univariate COX regression was
performed to identify potential prognosticators from
radiomic features and mRNA data. Then, radiomic features
with p<0.05 and genes with p<0.01 in univariate analyses were
further tested by the least absolute shrinkage and selection
operator (LASSO) COX regression methods. Finally,
backward stepwise COX was used to simplify the predictive
models. The predictive accuracy of these models based on
each CT phase and transcriptome data were compared by the
concordance index (C-index).

The third part of prognostic evaluation was to build
prognostic models by integrating radiotranscriptomics data
together aiming at developing more accurate prognostic
assessment tools. In this part, two prognostic models
respectively predicting OS and DFS were developed using the
110 cases with available nephrographic phase data and mRNA
data and were visualized by nomograms. Additionally, the
models were tested by 1,000 bootstrapping replications. In this
process, three distinct aspects of the final models were evaluated,
i.e. discrimination ability examined by C-index; clinical benefit
assessed by decision curve analyses (DCA) and consistency
between observation and prediction by calibration curve.
A B

C

FIGURE 1 | Flowchart showing the inclusion criteria (A), the detailed analytic strategy (B) and the results of the prognostic analyses (C). TCGA, The Cancer Genome
Atlas; TCIA, The Cancer Imaging Archive; ccRCC, Clear cell renal cell carcinoma; CT, Computed tomography; OS, Overall survival; DFS, Disease-free survival.
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Statistical Analyses
Radiomics features were extracted from CT imagines using the
IBEX software. Statistical analyses were performed using R
software (V 3.6.2). R packages used in this study include
“pheatmap”, “survival” and “glmnet”. All tests were two-sided.
A p value <0.05 was considered significant for all the tests except
in univariate COX regression for mRNA data, a p value <0.01
was defined as significant.
RESULTS

Patients’ Characteristics
According to our inclusion criteria, 167 eligible patients with M0
ccRCC were included (Figure 1A). Available images of
nephrographic, corticomedullary and unenhanced phase were
obtained from 110 (65.9%), 78 (46.7%) and 146 (87.4%) cases,
respectively, while transcriptome mRNA data was accessible for
all patients. The baseline characteristics of all cases are
summarized in Table 1. The median follow-up time using the
reverse Kaplan–Meier method was 50.0 Mo. In total, death and
disease progression occurred in 34/167 (20.4%) and 46/167
(27.5%) cases, respectively. The median OS was not reached,
while the median DFS was 118.8-Mo (95%CI: 84.6–152.9 Mo).

Unsupervised Hierarchical Clustering
Analyses
Using radiomic features of different CT phases and mRNA data,
we performed unsupervised hierarchical clustering to present the
radiomic profiles of each CT phase and the expressional pattern of
Frontiers in Oncology | www.frontiersin.org 4
mRNA. According to the clustering groups, patients were
classified into distinct radiomic or transcriptome subsets
(Figure 2). Patients’ prognosis was compared within the
clustering groups from each CT phase or mRNA data. Notably,
clustering from both nephrographic phase and mRNA can divide
patients into different prognostic groups (Figures 2A, D).
Specifically, cases in the clustering groups A and B of the
nephrographic phase had statically significant shorter median
OS (not reach, 78.4-Mo vs. not reach) and DFS (62.8-Mo, 78.4-
Mo vs. 123.7-Mo) against those in group C, while patients in the
clustering groups B and C based on mRNA data harbored
significantly poorer prognosis than those in group A (median
OS: 74.1-Mo, 118.8-Mo vs. not reach; median DFS: 78.4-Mo,
118.8-Mo vs. not reach). In contrast, clustering groups from
corticomedullary or unenhanced phase shared similar OS and
DFS (Figures 2B, C). Based on the unsupervised characteristic of
the clustering analysis, these findings reflected the strong potential
of both nephrographic radiomic features and mRNA data in
predicting the clinical outcomes of ccRCC patients, warranting
further investigation.

The Prognostic Value of Radiomics
Features and Transcriptome mRNA
We further explored the value of each radiomic feature and
mRNA in predicting OS and DFS. The detailed processes of
prognostic analyses are shown in Figures 1B, C. In univariate
analyses, 48, 15 and 10 radiomic features extracted from
nephrographic, corticomedullary and unenhanced phase were
predictors of both OS and DFS, respectively, while the mRNA
FPKM of 521 genes were significantly associated with patients’
prognosis (Figure 3, Table S2).

The overall ability of each CT phase and transcriptome
mRNA in predicting survival outcomes was further tested.
LASSO COX regression was carried out using factors with
ability in predicting both OS and DFS in univariate analyses
(Figure 4). Then, potential OS- and DFS-predictors identified by
LASSO COX regression were analyzed by the backward stepwise
COX, aiming at generating more exquisite models and
eliminating the redundant factors (Tables S3, S4). At last, 11
OS-predicting and eight DFS-predicting features were identified
in nephrographic phase. Similar number of predictors were
confirmed in mRNA data (seven OS-predictors and seven
DFS-predictors). On the contrary, very few prognostic features
were found in corticomedullary (2 OS-predictor and 2 DFS-
predictors) and unenhanced phase (one OS-predictors and one
DFS-predictors).

Based on the beta value of predictors included in the
backward COX regression, the prognostic models of each CT
phase and mRNA were developed (Tables S3, S4). The C-index
for OS-predicting in nephrographic, corticomedullary,
unenhanced phase and transcriptome mRNA model was 0.815,
0.745, 0.680, and 0.856, respectively. In terms of DFS-predicting,
the C-index was 0.771, 0.728, 0.643, and 0.823, respectively.
Taking together, these findings demonstrated again
nephrographic features harbored superior predictive value
against features from corticomedullary or unenhanced phases.
TABLE 1 | Baseline characteristics of the total patients included in the current study.

Age

Median (IQR) 59.0 (51.0-70.0)
Diagnosis Year
2000-2005 75 (44.9%)
2006-2010 92 (55.1%)

Sex
Male 54 (32.3%)
Female 113 (67.7%)

Laterality
Left 74 (44.3%)
Right 93 (55.7%)

T stage
T1-2 118 (70.7%)
T3-4 49 (29.3%)

N stage
N0 74 (44.3%)
N1 2 (1.2%)
Nx 91 (54.5%)

Fuhrman grade
Grade I-II 75 (44.9%)
Grade III-IV 92 (55.1%)

Available CT phase
Nephrographic phase 110 (65.9%)
Corticomedullary phase 78 (46.7%)
Unenhanced phase 146 (87.4%)
IQR, interquartile range.
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Besides, transcriptome mRNA data were also capable for
prognostic evaluation.

Since radiomic features from the nephrographic phase and
mRNA data exhibited strong prognostic power, we further
investigated the inner correlation between them (Figure S1). The
Frontiers in Oncology | www.frontiersin.org 5
results revealed that a group of GLCM25 radiomic features
belonging to the InformationMeasureCorr1 feature set were
positively associated with the transcriptional expression of a great
number of genes, while another group of GLRLM25 features
(LongRunEmphasis and LongRunHigh/LowGrayLevelEmpha
A B

DC

FIGURE 3 | Volcano plots illustrating the univariate COX regression results of features extracted from nephrographic (A), corticomedullary (B) and unenhanced (C)
phase and transcriptome mRNA level (D). OS, Overall survival; DFS, Disease-free survival; HR, Hazard ratio.
A B

DC

FIGURE 2 | Unsupervised hierarchical clustering analysis of radiomic and mRNA data: (A) Nephrographic phase; (B) Corticomedullary phase; (C) Unenhanced
phase; (D) mRNA data. Based on the clustering results, patients were divided into different clustering groups. The OS and DFS of cases in each group are shown
and compared by Kaplan–Meier curves. OS, Overall survival; DFS, Disease-free survival.
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feature sets) were negatively associated with the mRNA level of
many genes.

The above analyses were carried out based on radiomic
features after Combat harmonization. The exact values before
and after the Combat harmonization of nephrographic radiomic
features included in the final predictive model are shown in
Figure S2.

The Development and Validation of the
OS- and DFS-Predicting Models Based on
Radiotranscriptomics Data
With the hypothesis that the joint usage of the radiotranscriptomics
data could further strengthen the performance of the models, we
then combined nephrographic features and mRNA data to develop
prognostic models. 110 cases with available data on both
nephrographic phase and mRNA were included. For each patient,
radiomic score and transcriptome score were calculated using
nephrographic features and mRNA data (Tables S3, S4).
Frontiers in Oncology | www.frontiersin.org 6
In univariate analyses for clinical factors, T stage could
predict both OS and DFS, while age was capable of predicting
DFS only. In the backward COX regression analysis, only
radiomic features and transcriptome data were statistically
significant in the OS- and DFS-prediction while no clinical
factors were included (Table 2). The two models were virtually
presented as nomogram (Figures 5A, C).

The models were then examined using 1000 bootstrapping
replications (Figures 5B, D). The C-index of the OS- and DFS-
predicting model was 0.943 and 0.881, respectively, which were
much higher than the radiomics or transcriptome model alone.
C-index at different time points also supported that the
radiotranscriptomic model had the highest discrimination
power (Figure S3). Besides, the DCA exhibited great positive
net benefits among most of the threshold probabilities,
suggesting satisfactory clinical effect of the novel models.
Furthermore, calibration curves reflected great consistency
between the models predicting survival and actual observation.
A

B

D

C

FIGURE 4 | LASSO COX regression for the OS- and DFS-predicting models based on radiomics features extracted from nephrographic (A), corticomedullary
(B) and unenhanced (C) phase and transcriptome mRNA level (D). Left plot of each model: The dotted vertical line was plotted at the value selected by the 10-fold
cross-validation based on the minimum criteria (the value of lambda with the lowest partial likelihood deviance). Right plot of each model: Selection of the tuning
parameter (lambda) in the LASSO regression via 10-fold cross-validation based on minimum criteria. LASSO: Least absolute shrinkage and selection operator; OS,
Overall survival.
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DISCUSSION

The past two decades have witnessed the rapid development of
radiomics. In the current study, we firstly investigated the
prognostic value of radiomics signatures extracted from CT
images in patients with localized ccRCC. According to our
findings, radiomics features from nephrographic phase could
predict the postoperative prognosis of ccRCC patients with high
accuracy, whereas the prognostic value of corticomedullary or
Frontiers in Oncology | www.frontiersin.org 7
unenhanced phases was limited. We further showed that
radiotranscriptomics models integrating both radiomics
features and transcriptome data along with clinical factors
could more precisely predict both OS and DFS.

The application of radiomics analysis could be traced back to
the 1970s (22). Nowadays, the application scope of radiomics
analysis has extended dramatically and penetrated into various
fields of different diseases (3–6). The biggest advantage of
radiomics analysis is that, unlike interpreting medical images
TABLE 2 | The development of the OS- and DFS-predicting models.

A. OS-predicting model Beta value HR (95%CI) P value C-index

Radiomic OS Score 0.59 1.78 (1.26-2.53) 0.001 0.927
Transcriptome OS Score 0.73 2.08 (1.48-2.91) <0.001

B. DFS-predicting model Beta value HR (95%CI) P value C-index
Radiomic DFS Score 0.58 1.78 (1.25-2.52) 0.001 0.879
Transcriptome DFS Score 0.66 1.94 (1.35-2.78) <0.001
M
arch 2021 | Volume 11 | Articl
OS, Overall survival; DFS, Disease-free survival.
A B

DC

FIGURE 5 | Nomograms and validation of the OS- and DFS-predicting models. (A) Nomogram predicting OS. (B) Validation of the OS-predicting model:
(A, B) DCA of the nomogram predicting 36-Mo and 60-Mo OS. (C, D) Calibration curves showing the probability of 36-Mo and 60-Mo OS between model
prediction and actual observation. (C) Nomogram predicting DFS. (D) Validation of the DFS-predicting model: (A, B) DCA of the nomogram predicting 36-
Mo and 60-Mo DFS. (C, D) Calibration curves showing the probability of 36-Mo and 60-Mo DFS between model prediction and actual observation. In DCA
plot, the X-axis shows the threshold probabilities while the Y-axis shows the net benefit (adding true positives and subtracting false positives). The black
horizontal line along the x-axis assumes that no patients died (or progressed) whereas the gray line assumes that death (or progression) occurred in all
cases. DCA and calibration curve analyses were carried out using 1000 bootstrapping replications. The bootstrapped 95%CIs of the decision curves and
calibration curves are present. OS, Overall survival; DFS, Disease-free survival; DCA, Decision curve analyses, CI, Confidence interval.
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using human eyes, radiomics provides objective and quantifiable
imaging information that could reflect the biological process of
different diseases (23). Because of this, radiomics is now
recognized as an important biomarker.

Many studies had explored the association between radiomics
analyses and clinical outcomes in patients with various cancers (7–
9). In RCC, radiomics features were proved to be capable of not
only differentiating benign and malignant masses but also
predicting the stage and Fuhrman nuclear grade of tumor, two
critical prognosticators of ccRCC (5, 10–12). Thus, presumably,
radiomics signatures should also be related to patients’ prognosis.
Actually, in 2016, there was a study exploring the clinical value of
CT textural analysis in large primary RCC which also reported the
relationship between radiomics features and clinical outcomes (24).
However, a major flaw of that study was the mixture of both M0
and M1 cases as well as cases of different histologic types. Since the
standard treatment schemes for these patients differed, it’s
improper to evaluate their prognosis using a unified approach.

In this study, we found that nephrographic phase was the best
CT phase for prognostic assessment, which was reasonable because
nephrographic phase was commonly regarded as the most sensitive
phase for tumoral detection (25, 26). Likewise, other studies
focusing on the value of radiomics in predicting Fuhrman grade
of ccRCC also revealed that models based on nephrographic phase
had the highest discrimination power and contained more
radiomics features than models based on other phases (10–12).
Yet, several researchers reported that the unenhanced phase had
better performance in differentiating RCC and angiomyolipoma
than other phases (27, 28), suggesting that radiomics features from
distinct CT phases might have different advantages in distinct areas.

It was reported that the combination of multi-omics data could
strengthen the predictive precision of prognostic models (9). In our
study, we found the predictive accuracy of the models increased
remarkably when combining both radiomics and transcriptome
data. This could be explained by the hypothesis that multi-omics
models could reflect the biological characteristics with higher
dimension, and thus, more precisely predict tumor progression.

Apart from prognostic assessment for localized ccRCC cases,
radiomics was also capable of evaluating the clinical outcomes for
advanced ccRCC patients. Early in 2011, Goh et al. reported that
CT texture could predict the DFS of tyrosine kinase inhibitors
(TKIs) treatment in patients with M1 ccRCC (29). The role of
radiomics in predicting TKIs efficacy was also found in
gastrointestinal stromal tumors and lung cancers (7, 8). Taking
together, our study as well as the previous ones verified that the
prognostic significance of radiomics features could be applied in
both early and late stage of ccRCC. On the other hand, with the
emerging of immunotherapy in advanced RCC (30), future studies
are still needed to elucidate the role of radiomics in predicting
treatment outcomes of immunotherapy in ccRCC patents.

Several limitations existed in this study. Firstly, this is a
retrospective study with shortcomings connected to its
retrospective nature. Secondly, the occurrence of outcome
events (death and progression) was relatively low, which might
hinder the accuracy of prognostic assessment. Thirdly, in our
study, radiomics features were extracted from two-dimensional
Frontiers in Oncology | www.frontiersin.org 8
ROI rather than from three-dimensional ROI. Finally, only cases
from the TCGA-KIRC were included and only a bootstrapping
validation was used in this study, thus, the findings of this study
require further external validation using data from other centers.
Besides, we will also construct our own cohort in the future to
further validate our findings.
CONCLUSION

To our knowledge, in this study, we firstly explored the value of
radiomics signatures extracted from different CT phases in
predicting the survival outcomes of ccRCC patients after
nephrectomy. Our findings revealed that features obtained from
nephrographic phase harbored promising prognostic ability in
predicting both OS and DFS, while the prognostic value of
features from corticomedullary or unenhanced phase was
relatively weak. Besides, radiotranscriptomics models combining
both radiomics and mRNA data exhibited improved predictive
accuracy in prognostic evaluation. Our works will facilitate
clinicians in better assessing the prognosis of ccRCC patients, and
thus, making personalized therapeutic decision.
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Supplementary Figure 1 | The inner correlation between radiomic features from
the nephrographic phase and mRNA data. Nephrographic radiomic features and
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genes with p<0.05 and p<0.005 respectively in predicting both OS and DFS
were included.

Supplementary Figure 2 | The exact values before and after the Combat
harmonization of nephrographic radiomic features that are included in the final
predictive model.

Supplementary Figure 3 | C-index examination of different models predicting
either OS or DFS at different time points. 1000 bootstrapping replications were
used. OS, Overall survival; DFS, Disease-free survival; C-index, concordance index.
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